DESIGN A CONTINGENCY ELECTRICITY FEEDING PLAN

A CASE STUDY: DEHIWALA AREA

Gato Kandege Athula Kumara

(108887 L)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2015

DESIGN A CONTINGENCY ELECTRICITY FEEDING PLAN

A CASE STUDY: DEHIWALA AREA

Gato Kandege Athula Kumara

(108887 L)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2015

DECLARATION

"I hereby declare that this research is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Further, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other media. I retain the right to use the content of this thesis in whole or in part in my future activities.

	· University of Moratuwa, Sri Lanka. · · · · · · · · · · · · · · · · · · ·
G. K. A. Kumara	Electronic Theses & Dissociations
10000PICACIF	www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Dissertation under my supervision.

Dr. Udayanga Hemapala.	Date
Faculty of Engineering	
University of Moratuwa	

ACKNOWLEDGEMENT

First, I pay my sincere gratitude to Dr. Udayanga Hemapala who encouraged and guided me to conduct this case study and on the preparation of final dissertation.

I would like to take this opportunity to extend my sincere thanks to Mrs. Indu Lokubalasooriya, Chief Engineer – Planning & Development (Western Province South - 1, CEB), Mr. Janaka Nuwansiri, Electrical Engineer – Planning & Development (Western Province South – 1, CEB) and the Staff of the Planning & Development Division (Western Province South – 1, CEB) for their valuable assistance to conduct my research successfully.

ABSTRACT

CEB is mainly Electricity Generating, Distributing and solely Electricity Transmitting organization in Sri Lanka. Few years back, main target of CEB was to achieve 100% electrification level and was not greatly concerned about the reliability of electricity supply. Presently Sri Lanka has achieved 96% electrification level [01]. It is expected to reach 100% with in next few years.

Presently CEB is providing electricity supply to 90% consumers and LECO is providing electricity to the remaining 10% consumers in Sri Lanka [02]. Once electricity is there the consumers will be more concerned about supply reliability.

Nowadays most human activities depend on the electricity supply availability. Therefore electricity service providers need to provide reliable supply to consumers. Electricity supply reliability can be improved providing N-1, N-2, and N-3 electricity feeding plans. At least CEB need to provide N-1 electricity feeding arrangement to their consumers.

Dehiwala area is selected for case study to observe the availability of N-1 feeding arrangement and find new proposals if it is not available. This study is done only for MV lines. All peak load details of transformers were collected and model the MV network for year 2014 through Synergee software. Then acceptable growth rate was applied and forecasted SynerGEE model for year 2020 was created. Based on that the availability of N-1 feeding arrangement for model of year 2020 was examined.

New suggestions have been proposed considering availability construction ability and cost where N-1 feeding arrangement is not available. Cost estimation also was prepared these sites. SAIDI value has been calculated for before and after implementing the proposals. It is clearly noted that SAIDI is improved considerably after implementing the new proposals. Three common models are developed to extend this study for other Distribution areas.

TABLE OF CONTENTS

Declaration of the candidate &Supervisor	
Acknowledgement	ii
Abstract	iii
Table of content	iv
List of Figures	vi
List of Tables	vii
List of abbreviations	viii
List of Appendices	ix
1. Introduction	1
1.1. Background	1
1.2. Motivation for the Project	2
1.3. Contribution	3
1.4. University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	3
2. Problem Statement	5
2.1. Identification of the Problem	5
2.2. Objectives of the Study	5
2.3. Literature Review	5
3. Methodology	10
3.1. Proposal for CEB	10
3.2. Case Study .	10
3.2.1. Collect Load data of Dehiwala area	11
3.2.2. SynerGEE Model	11
3.3. SynerGEE Model for year 2020	14
3.4. Validation of SynerGEE Model	15

4.	Find	ing And	d Results	17
	4.1.	New N	MV Line Requirement to Match N-1 Feeding Plan	17
	4.2.	Feede	r of Primary Substation Fails	17
		4.2.1.	Feeder of Kalubowila Primary Substation Fails	18
		4.2.2.	Feeder of Dehiwala Primary Substation Fails	19
		4.2.3.	Feeder of Attidiya Primary Substation Fails	20
	4.3.	Feede	r of Grid Substation Fails .	21
	4.4.	Incom	ing of Primary Substation Fails	22
	4.5.	Prima	ry Substation Fails	22
		4.5.1.	Kalubowila Primary Substation Fails	23
		4.5.2.	Dehiwala Primary Substation Fails	23
		4.5.3.	Attidiya Primary Substation Fails	24
		4.5.4.	Kalubowila PS Fails (Introduce new Council lane PS)	24
		4.5.5.	Dehiwala PS Fails (Introduce new Council lane PS)	26
	4.6.	Cost E	Estimation of New Proposals	27
	4.7.	Calcul	lation of SAIDI	28
	4.8.	Comm		30
		4.8.1.	Electronic Theses & Dissertations Primary Substation Incoming Feeder Fails	31
		4.8.2.	Primary Substation Fails	32
		4.8.3.	33 kV / 11 kV Feeder Fails	33
5.	Co	nclusio	n and Recommendations.	34
		5.1.	Conclusion	34
		5.2.	Recommendations	35
Refe	erence	List		36
App	endix	A: Lo	ad Reading of Dehiwala CSC	37
App	endix	B: Lo	ad Reading of Kaliubowila CSC	41
App	endix	C: Fee	eder and Number of Consumers	45
App	endix	D: Int	erruption Details of the MV Feeders (November 2014)	46
App	endix	E: Inte	erruption Details of the MV Feeders (December 2014)	48
App	endix	F: Inte	erruption Details of the MV Feeders (January 2015)	49

LIST OF FIGURES

Figure No	Description	Page
Figure 3.1	General view of SynerGEE model for year 2014	12
Figure 3.2	View of Kalubowila PS of SynerGEE model for year 2014	12
Figure 3.3	Insertion view of Distribution Load details for SynerGEE Software	13
Figure 3.4	Insertion view of Bulk Load details for SynerGEE Software	13
Figure 3.5	Part view of year 2020 SynerGEE model	15
Figure 4.1	Overload lines after run the load flow	17
Figure 4.2	View of Council Lane	25
Figure 4.3	Graphical representation of SAIDI values	29
Figure 4.4	Develop Model for PS Incoming Feeder Fails	32
Figure 4.5	Develop Model for Primary Substation Fails	33
Figure 4.6	Develop Model for MV Feeder Fails	33

LIST OF TABLES

Table No	Description	Page
Table 3.1	Statistic of Dehiwala Area	11
Table 3.2	Feeders load of GS and PSs in Dehiwala Area	14
Table 3.3	Load Growth Rate of Dehiwala Area	15
Table 3.4	Comparison of Load Values (Actual and Model of Year 2015)	16
Table 4.1	Feeder details of Kalubowila Primary at SynerGEE model 2020	18
Table 4.2	Alternate proposals for Kalubowila PS to match N-1 Criteria	19
Table 4.3	Feeder details of Dehiwala Primary at SynerGEE model 2020	19
Table 4.4	Alternate proposals for Dehiwala PS to match N-1 Criteria	20
Table 4.5	Feeder details of Attidiya Primary at SynerGEE model 2020	20
Table 4.6	Alternate proposals for Attidiya PS to match N-1 Criteria	21
Table 4.7	Feeder details of Dehiwala GS at SynerGEE model 2020	21
Table 4.8	Alternate proposals for Dehiwala GS to match N-1 Criteria	22
Table 4.9	Incoming Feeder details of PSs	22
Table 4.10	Feeder details of Dehiwala Primary at SynerGEE model 2020.	23
Table 4.11	Alternate proposals for Dehiwala PS to match N-1 Criteria	23
Table 4.12	Feeder details of Attidive PS at SynerGEE model 2020	24
Table 4.13	Alternate proposals for Attidiya PS to match N-1 Criteria	24
Table 4.14	Feeder details of Kalubowila PS at SynerGEE model 2020	25
Table 4.15	Alternate proposals for Kalubowila PS to match N-1 Criteria	26
Table 4.16	Feeder details of Dehiwala Primary at SynerGEE model 2020.	26
Table 4.17	Alternate proposals for Dehiwala PS to match N-1 Criteria	26
Table 4.18	Details of Council Lane PS	27
Table 4.19	Estimate cost for new proposals	28
Table 4.20	Summary of SAIDI Values	29

LIST OF ABBREVITIONS

Abbreviation

Amperes Α **CEB** Ceylon Electricity Board Lanka Electricity Company (Pvt) Ltd **LECO** GS **Grid Substation** PS **Primary Substation SAIDI** System Average Interruption Duration Index **SAIFI** System Average Interruption Frequency Index F Feeder MV Medium Voltage kV Kilo Volts N/A Not Available University of Mariatuwa, Sri Lanka. Att

Description

Dehi

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Kalu Kalubowila

RMU Ring Main Unit

AGA Assistant Government Agents

LBS Load Break Switch

Sw Switch

SIN Substation Identification Number

B Bulk

D Distribution

CSC Consumer Service Centre

LIST OF APPENDICES

Appendix No	Description	Page
Appendix A	Load Reading of Dehiwala CSC	37
Appendix B	Load Reading of Kaliubowila CSC	41
Appendix C	Feeder and Number of Consumers	45
Appendix D	Interruption Details of the MV Feeders (November 2014)	46
Appendix E	Interruption Details of the MV Feeders (December 2014)	48
Appendix F	Interruption Details of the MV Feeders (January 2015)	49

