
 

 

 

 

 

 

Performance evaluation of embedded mobile databases: 

RDBMS VS NoSQL 

 

 

 

D.M. Nilanka Chathuri Dissanayaka 

129153K 

 

 

Faculty of Information Technology 

University of Moratuwa 

 

 

March 2015 

 

 

 

  

 



ii 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

  

 

Declaration 
  
We declare that this thesis is our own work and has not been submitted in any form for 

another degree or diploma at any university or other institution of tertiary education. 

Information derived from the published or unpublished work of others has been 

acknowledged in the text and a list of references is given. 

 

 

 

 

 

 

 

Name of Student      Signature of Student 

Nilanka Chathuri Dissanayaka 

 

 

Date: 

 

 

 

 

 

 

 

Supervised by 

Senior Lecturer 

Mr. Saminda Premarathna        Signature of Supervisor 

 

 

Date: 

 

 



iii 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

Dedication 

 

 

 

In dedication of 

My loving mother 

Who is strength of my life. 

 

 

 

 

 

 

 

 

 

 



iv 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

Acknowledgement 

Immeasurable appreciation and deepest gratitude for help and support extended to the 

following persons who is one way or another have contributed in make this research 

success. 

Mr. Saminda Premarathne, Senior Lecturer,  University of Moratuwa as supervisor for 

his support, guidance ,valuable comments and suggestions  to conduct this research 

successfully. Rather than being research adviser he helped all the students to develop 

knowledge in many ways. 

I would also like to thank all the lecturers and staff of the faculty of Information 

technology, University of Moratuwa for their support and assistance through-out the 

course. 

I would also like to thank head of the department and staff  members  of  Information 

technology department in Hutchison Telecommunication Lanka (pvt) Ltd  for their 

valuable support for completed my research. 

I would like to express many thanks to all the colleagues and others for the each and 

every support given to make this a success. 

 

 

 

 

 

 

 



v 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

                              Abstract 

 

Most embedded mobile databases are customized to perform requirement of the 

application. Considering embedded databases due to it doesn’t have database 

administrator they are really robust and failing percentage is very less. Performance 

characteristics of the embedded database is need to match exactly with the 

performance characteristics of the application it’s resides in, there can be no poverty. 

Hence embedded database in android mobile phones and tablets has vast responsibility 

to cater high performance to end users without disappointing their expectations. 

Therefore aim and objective of this research is evaluated which embedded database is 

perform well in mobile environment. 

Analyzing current available embedded databases in mobile devices it can observe 

Relational databases management systems are ruling at the top. However recent huge 

popularity of NoSQL databases for cloud computing has inspired initiative non-

relational data types the essence of big data flooding in organizations and large 

datacenters.  

To evaluate performance of mobile embedded database locally installed SQLite and 

CouchDB on android environment and integrate android application to which may 

interact with both databases. I have designed the database which may suitable for both 

databases and schema will be populated by a FeildGenerator class that used an 

Xorshift random number generator and arrays of predefined data to generate 

reasonable tables as efficiency as possible large datasets.  

While executing predefined benchmarking queries, benchmark matrices have been 

evaluated. Once the benchmark metrics calculate , able to demonstrate from RDBMS 

vs NoSQL which database is performing well on mobile embedded environment. 

 

 

 



vi 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Table of Contents 

         Page 

Chapter 1 – Introduction          01 

1.1 Introduction          01 

1.2 Background and Motivation       01 

1.3 Aim and Objective                              02 

1.4 Structure of dissertation                  03 

Chapter 2 – Literature Review                                            04 

2.1 Introduction          04 

2.2 Prominent databases trends and benchmarking      04 

2.3 Summary          07 

Chapter 3 – Technology adapted        08 

3.1 Introduction          08 

3.2 RDBMS vs NoSQL DB        10 

3.3 Embedded Android Databases       12 

3.4 Summary          13 

Chapter 4 – Approach         14 

4.1 Introduction          14 

4.2 Proposed Experiment        14 

4.3 Android testing environment       15 

4.4 Android Interface to interact with both database     16 

4.5 Summary           16 

Chapter 5 – Analysis and Design        17 

5.1 Introduction          17 

5.2 Android application database design      17 

5.3 Benchmark Database        18 



vii 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

5.4 Benchmark Data Set                    19 

5.5 Bench mark Queries         20 

5.6 Benchmark Metrics         21 

5.7 Summary            21 

Chapter 6 – Implementation          22 

6.1 Introduction                      22 

6.2 Setting up Android Developer Tools                  23 

            6.3 Setting up SQLlite                                                                                      23 

            6.4 Setting up Couchbase Lite                                                                          24 

            6.5 Interface                                                                                                      25 

            6.6 Constructing SQLite Database on Android                                                26 

            6.7 Constructing Couchbase Lite Codes on Android                                       27 

            6.8 Bench Mark Data Set                                                                                 28 

           6.9 Testing Specification                                                        29 

           6.10 Summary                                 30 

Chapter 7 – Evaluation                     31 

7.1 Introduction           31 

7.2 Average DB Creation Time                   31 

7.3 Insertion to DB and average insertion per second     32 

7.4 Data fetch and average data fetch per second with an index    34 

7.5 Data Fetch and Average Data Fetch Per Second  

       with Non Index Lookup                               36 

           7.6 Data Fetch and Average Data Fetch Per Second  

                  When Range Selected.                                                                           38 

7.7 Inner join with index                                                     39 

7.8 Aggregate Sum          40 

 



viii 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Chapter 8 – Conclusion and Future Work                                                    42 

8.1 Introduction           42 

 8.2 Conclusion          42 

 8.3 Future works          43  

 8.4 Summary           44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 



ix 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

List of Tables 

                                                                                      Page 

Table 3.1   Comparisson of RDBMS vs NoSQL DB     10          

Table 3.2  Android supportive RDBMS and NoSQL databases      12 

Table 4.1 Android test environment details      15 

Table 8:1 Overall time consuming in both DBs in performance test   41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

List of Figures 

 

Figure 5.1 Android application and database installation design     17 

Figure 5.2   Relationship of University DB        19 

Figure 6:1 University Database App                                                                            25 

Figure 6:2 SQLite DB creation and table creation codes      26 

Figure 6:3 Creating Coudhbase Lite database       27 

Figure 6:4 Sample data set of ‘Student Profile’ table       28 

Figure 6:5 Sample data set of ‘Course_Profile’ table       29 

Figure 7:1 Average DB creation time in seconds       31 

Figure 7:2 Data insertion to databases        32 

Figure 7:3 Average insertions per seconds for databases.      33 

Figure 7:4 Data fetch from table with an index.       34 

Figure 7:5 Average data fetch per second - with an index.      35 

Figure 7:6 Data fetch from table –Non index lookup       36 

Figure 7:7 Average data fetch per second –Non index lookup     37 

Figure 7:8 Data fetch –Range Selection        38 

Figure 7:9 Average Data Fetch Per Seconds – Range Selection     39 

 Figure 7:10 Inner Join with Index         39 

Figure 7:11 Aggregate Sum                     40



1 

Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc(IT)                      2015 

 

 

                                                                         Chapter 01 

Introduction  

1.1 Introduction 

Considering most demanding and fast growing technological devices in present world 

without any debating android mobile phones and tablets are in the top rank. Along with 

evolution of telecommunication technology from 2G, 3G to 4G mobile devices 

technology also been rapidly growing up.  Due to the fact of android is open source it 

has massive advantage of integrate with open source embedded databases and bring 

market share high. 

Mobile phones and tablets are well capable to do a large amount of processing without 

influencing of cloud services. Most mobile applications are data driven and their 

performance mostly depends on data availability. With rapidly development of the 

devices and systems support for mobile computing, the embedded database 

management system becomes more and more important.   

 

1.2 Background and Motivation  

 

As more users adopt Wi-Fi enabled laptops with increasingly capable mobile devices, 

the need for mobile application is increasing. Applications like Email, Navigation, 

CRM (Customer Relationship Management) are already targeted mobile devices. 

Middleware infrastructure like application server and workflow services are becoming 

mobile-aware. According to Microsoft Cooperation’s Nori [1] reasons for such 

mobility trends are: 

 More employees are mobile. Email and offline access is becoming 

pervasive. 

 



2 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 Mobile usage is broadening. Mobile usage is already prevalent in certain 

vertical domain like E Commerce, Healthcare, Insurance and Field 

Services. 

 Mobile applications are more than just browser windows – more and more 

applications now run natively on mobile devices. 

Data management and access on mobile devices is central to mobile applications. As 

mobile applications achieve widespread adoption in the enterprise, mobile and 

embedded DBMS need to support such applications become an important part of the 

IT infrastructure. And as these applications grow more discounted and sophisticated 

with increasing data sizes the need for rich data processing capability increases. 

Analyzing current available embedded databases in mobile devices it can observe 

Relational databases management systems are ruling at the top. However recent huge 

popularity of NoSQL databases for cloud computing has inspired initiative non-

relational data types the essence of big data flooding in organizations and large 

datacenters. NoSQL databases claim to deliver fast performance than legacy RDBMS 

system in various use cases, most notably those involving big data. While this is 

oftentimes the case but not all NoSQL db are created alike where performance is 

concerned [2]. 

However there are very less research has been done testing how a NoSQL databases 

performs on the limited hardware like mobile devices. 

 

1.3 Aim and Objective 

Aim: 

 

Aim of this research is identify most suitable embedded mobile database by 

considering performance evaluation of RDBMS Vs NoSQL DB. Mainly performance 

evaluate by comparing locally installed NoSQL DB and RDBMS.   

 

 

 

 



3 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Objectives: 

 

Study seeks answers for following research questions  

 

1. What is the proper approach for performance evaluation of mobile embedded 

database? 

2. What tool and techniques are appropriate for the select approach? 

3. What aspects giving better performance comparing RDBMS Vs NoSQL DB? 

4. Which mobile embedded database is performing well? 

 

 

1.4 Structure of dissertation 

 

Chapter 02 describes the Present tendency of the mobile embedded databases. Chapter 

03 on technology enrichment of embedded mobile db. Chapter 04 on Approach to 

benchmark the mobile embedded db. Design of benchmarking mobile embedded db 

will preset on chapter 05. Chapter 06 on Implementation process of experiment and 

chapter 07 will present the evaluation. Final conclusion may can obtain from chapter 

08. 

 

 

                                                                                   

 

 

 

 

 

 

 



4 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

                                                                                                        

                                                                      Chapter 02 

Literature Review 

 

2.1 Introduction 

Thorough out the IT industry there are several stranded benchmarks available for 

databases, mobile devises and embedded databases. Some of these benchmarks are 

according to IEEE stranded and advocate to benchmarking. We may obtain several 

bench marks for RDBMS, NoSQL databases.  However theses benchmarks are 

available and targeting only individual component at a time such as benchmarking 

databases, mobile devices and embedded databases separately. 

In general, there are no standard bench marks for mobile based data stores. There is 

some recent work in proposing evaluation of SQL based embedded databases on 

mobile phones. However, there is very less research has done to which compares 

locally installed NoSQL databases vs RDBMS.  

 

2.2 Prominent databases trends and benchmarking. 

Currently there are more than 190 different types of databases available in the world 

wide [3]. There are lots of new good designed database are en t er ing to  the  

indus t r y providing  good  horizontal  scalability  for simple read/write database 

operations distributed over many servers. According to  Cat tell  [4]  i n contrast, 

traditional database products have comparatively little or no ability to scale 

horizontally on these applications. One of the famous trends in new designed 

databases is “NoSQL” data stores. The definition of NoSQL, which stands for “Not 

O n l y  SQL” or “Not Relational”. 



5 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

A key feature for NoSQL system is “ shared nothing” horizontal scaling – replicating 

and partitioniing data over many server. This allows them to support a large number of 

simple read/write operations per second.This simple operation load is traditionally 

called OLTP (online transcation processing), but it is also common in modern web 

application.  

 Since Relational databases are dominant in exposed databases it has been hugely 

influence in embedded databases in mobile devices. NoSQL databases are finding 

significant and growing industry use in big data and real-time web applications. 

 

For database evaluations there are some stranded benchmarks currently available such 

as follows 

 Benchmark for large data center level systems : Online Transaction Processing 

(OLTP) and Online Analytical Processing (OLAP) style benchmarks[4][5] 

 Benchmark for SQL based enterprise applications : Transaction processing 

performance council ( TPC) [6] 

 Benchmark for NoSQL based cloud serving system : Yahoo Cloud Serving 

Benchmark (YCSB)[8] 

 

In year 2013 Difallah etc all [5] have been conducted OLTP bench mark for relational 

databases to contribute to better repeatability and easier comparison of results for 

evaluating RDBMS performance. They present OLTP –Bench, an extensible, open 

source testbed for benchmarking DBMSs using a diverse set of workloads. The testbed 

was capable of driving relational DBMSs via standard interfaces, tightly controlling 

the transaction mixture, request rate and access distribution of the work load and 

automatically gathering a rich set of performance and resource statistics. In addition to 

testbed they have implemented 15 bench marks in OLTP -Bench. In this research they 

have introduced an automated and extensible framework to setup, run an alyze the 

results of RDBMS performance experiments with controlled and repeatable settings. 

Also introduced real datasets and synthetic generators, along with their accompanying 

workloads, that span OLTP/Web applications, all implemented in the same framework 

.But in this research they have not touch the embedded RDBMS. 

 



6 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

One of the most siginificant research conduct about scalable SQL and  NoSQL 

Datastores by Cattle in 2011 [4]. He examine  a number  of SQL and NoSQL  data 

stores  designed  to scale simple OLTP-style application loads over many servers 

and these systems are designed to scale to thousands or millions of users doing 

updates as well as reads, in contrast to traditional  DBMSs  and data warehouses.  He 

contrasts the new systems on their data model, consistency mechanisms, storage 

mechanisms, durability guarantees, availability, query support, and other 

dimensions.   These systems typically sacrifice some of these dimensions, e.g. 

database-wide transaction consistency, in order to achieve others, e.g. higher 

availability and scalability. However in his research he has individually compare 

RDBMS and NoSQL databases but not performance comparison both databases. 

There is some recent work in proposing evaluate of SQL based  relational embedded 

databases on mobile phones by McObject. [7].They have taken two quite different 

embedded database systems that have emerged for use on Google’s Android are 

SQLite, a relational embedded database that supports the SQL application 

programming interface (API), and Perset, an object-oriented embedded database that 

works directly with Java objects. To compare Android databases in an “applets to 

applets” test, they developed the Test Index benchmark application, which measures 

performance along the insert, search, scan and delete parameter for 10,000 records. 

According to their experiment results SQLite performance was quite good at android 

environment. However in this research too they have not tested NoSQL database on 

Android environment. 

Yahoo! Cloud serving benchmark (YCSB) is the one of the best known NoSQL 

benchmarking application [8]. YCSB framework, with the goal of facilitating 

performance comparisons of the new generation of cloud data serving systems. It 

define a core set of benchmarks and report results for four widely used systems YCSB 

uses data gathered from statistical distribution of data instead of real data. YCSB 

mainly focus on read, write, scan, update performance of the database. YCSB results 

are for elasticity is not conclusive. However YCSB only focus on NoSQL databases on 

cloud environment and it may not addressing the performance compression with 

RDBMS. 

 



7 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

2.3 Summary 

 

There are several database benchmarks available worldwide. Some of them are OLTP, 

TPC and YCSB. However above benchmarks are focusing individually on RDBMS or 

NoSQL databases. 

 Most of database performance evaluation conducted on locally installed operating 

system and there are only limited number of research conducted  in mobile 

environment. Comparing with RDBMS there are very less research has been done 

testing how a NoSQL databases performs on the limited hardware like mobile devices. 

 In general, there are no standard benchmarks for embedded mobile databases. Hence 

conduct performance evaluation of mobile embedded database type RDBMS Vs 

NoSQL is worth to conduct. 

                                          

 

 

 

 

                                   

 

 

 

                                                                         



8 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

                                                                         Chapter 03 

Technology Adapted 

  

3.1Introduction 

Mobile technology is one of the rapidly growing up technology. In 2003 with the 

introduction of Android operating system it has been vastly developed.  Android 

powers hundreds of millions mobile devices in more than 190 countries around the 

world. It’s the largest installed base of any platform and growing fast every day 

another million of users. 

3.2 Android Environment. 

 

Android is a mobile operating system based on the Linux kernel and currently 

developed by Google. With a interface based on direct manipulation, Android is 

designed primarily for touch screen mobile devices such as smartphones and tablet 

computers, with specialized user interfaces for televisions (Android TV), cars (Android 

Auto), and wrist watches (Android Wear). The OS uses touch inputs that loosely 

correspond to real-world actions, like swiping, tapping, pinching, and reverse pinching 

to manipulate on-screen objects, and a virtual keyboard. Despite being primarily 

designed for touch screen input, it also has been used in game consoles, digital 

cameras, and other electronics.[9] 

 

Android's source code is released by Google under open source licenses, although most 

Android devices ultimately ship with a combination of open source and proprietary 

software. Currently available android versions are 

 Alpha (1.0) 

 Beta (1.1) 

 Cupcake (1.5) 

 Donut (1.6) 

 Eclair (2.0–2.1) 



9 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 Froyo (2.2–2.2.3) 

 Gingerbread (2.3–2.3.7) 

 Honeycomb (3.0–3.2.6) 

 Ice Cream Sandwich (4.0–4.0.4) 

 Jelly Bean (4.1–4.3.1) 

 KitKat (4.4–4.4.4) 

 

Android's default user interface is based on direct manipulation using touch inputs, that 

loosely correspond to real-world actions, like swiping, tapping, pinching, and reverse 

pinching to manipulate on-screen objects, and a virtual keyboard. The response to user 

input is designed to be immediate and provides a fluid touch interface, often using the 

vibration capabilities of the device to provide feedback to the users. Internal hardware 

such as accelerometers, gyroscopes and proximity sensors are used by some 

applications to respond to additional user actions, for example adjusting the screen 

from portrait to landscape depending on how the device is oriented, or allowing the 

user to steer a vehicle in a racing game by rotating the device, simulating control of 

a steering wheel. 

Android has a growing selection of third party applications, which can be acquired by 

users either through an app store such as Google Play or the Amazon Appstore, or by 

downloading and installing the application's APK file from a third-party site.[61Google 

Play Store allows users to browse, download and update applications published by 

Google and third-party developers, and the Play Store client application is pre-installed 

on devices that comply with Google's compatibility requirements and license the 

Google Mobile Services software. 

 

Applications (apps) that extend the functionality of devices, are developed primarily in 

the Java programming language  using the Android software development kit (SDK). 

The SDK includes a comprehensive set of development tools, including 

a debugger, software libraries, a handset emulator based on QEMU, documentation, 

sample code, and tutorials. The officially supported integrated development 

environment (IDE) is Eclipse using the Android Development Tools (ADT) plugin. 

Other development tools are available, including a Native Development Kit for 



10 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

applications or extensions in C or C++, Google App Inventor, a visual environment for 

novice programmers, and various cross platform mobile web applications frameworks. 

 

3.2 RDBMS vs NoSQL DB 

 

A relational database management system (RDBMS) is a database management 

system (DBMS) that is based on the relational model .RDBMSs have become a 

predominant choice for the storage of information in new databases used for financial 

records, manufacturing and logistical information, personnel data, and much more 

since the 1980s. Relational databases have often replaced legacy hierarchical 

databases and network databases because they are easier to understand and use.  

NoSQL or Not Only SQL database is next generation databases mostly addressing 

some of the points, being non-relational, distributed, open-source and horizontally 

scalable. It’s original intention has been modern web-scale databases. The movement 

began early 2009 and is growing rapidly. Currently there are around 150 NoSQL 

databases available.[10] 

 Below table 3.1 provide thecComparisson of  RDBMS vs NoSQL DB 

                           Table 3.1   Comparisson of RDBMS vs NoSQL DB 

 RDBMS NoSQL 

Development 

History 

Developed in 1970s to deal with first 

wave of data storage applications 

Developed in 2000s to deal with limitations 

of SQL databases, particularly concerning 

scale, replication and unstructured data 

storage 

Examples MySQL, Oracle, db2,SQLite 
MongoDB, CouchDB, Cassandra, HBase, 

Neo4j 

Data Storage 

Model 

Individual records  are stored as rows 

in tables, with each column storing a 

specific piece of data about that, 

much like a spreadsheet. Separate 

data types are stored in separate 

Varies based on database type. For example, 

key-value stores function similarly to SQL 

databases. Document databases do away 

with the table-and-row model altogether, 

storing all relevant data together in single 



11 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

tables, and then joined together when 

more complex queries are executed. 

"document" in JSON, XML, or another 

format, which can nest values 

hierarchically. 

Schemas 

Structure and data types are fixed in 

advance. To store information about a 

new data item, the entire database 

must be altered, during which time 

the database must be taken offline. 

Typically dynamic. Records can add new 

information on the fly, and unlike SQL table 

rows, dissimilar data can be stored together 

as necessary. For some databases (e.g., 

wide-column stores), it is somewhat more 

challenging to add new fields dynamically. 

Scaling 

Vertically, meaning a single server 

must be made increasingly powerful 

in order to deal with increased 

demand. It is possible to spread SQL 

databases over many servers, but 

significant additional engineering is 

generally required. 

Horizontally, meaning that to add capacity, 

a database administrator can simply add 

more commodity servers or cloud instances. 

The database automatically spreads data 

across servers as necessary 

Development 

Model 

Mix of open-source (e.g., Postgres, 

MySQL) and closed source (e.g., 

Oracle Database) 

Open-source 

Supports 

Transactions 

Updates can be configured to 

complete entirely or not at all 

In certain circumstances and at certain 

levels (e.g., document level vs. database 

level) 

Data 

Manipulation 

Specific language using Select, 

Insert, and Update statements, e.g. 

SELECT fields FROM table 

WHERE… 

Through object-oriented APIs 

 

 

 



12 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

3.4 Embedded Android Databases 

 

Android supportive RDBMS and NoSQL databases are given by table 3.2 

 

RDBMS NoSQL 

SQLite CouchDB 

Interbase Couchbase Lite 

 

 

 

Table 3.2 Android supportive RDBMS and NoSQL databases 

 

One of the popular choice embedded RDBMS in local and cloud is SQLite. SQLite is 

an Open Source database. SQLite supports standard relational database features like 

SQL syntax, transactions and prepared statements. The database requires limited 

memory at runtime hence it’s really famous. It’s defining the SQL statements for 

creating and updating the database. Afterwards the database is automatically managed 

in the operating system. Access to SQLite database involves accessing the file system 

 

One of the famous NoSQL db is CouchDB It is an open Source database 

uses JSON (JavaScript Object Notation) to store data, JavaScript as its query language 

using Map Reduce, and HTTP for an API. Unlike in a relational database, CouchDB 

does not store data and relationships in tables. Instead, each database is a collection of 

independent documents. Each document maintains its own data and self-contained 

schema. An application may access multiple databases, such as one stored on a user's 

mobile phone and another on a server. Document metadata contains revision 

information, making it possible to merge any differences that may have occurred while 

the databases were disconnected. 

 

 

 



13 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

3.5 Summary 

With the introduction of Android operating system, mobile industry was widely 

increased. Android's source code is released by Google under open source licenses, 

although most Android devices ultimately ship with a combination of open source and 

proprietary software. 

Comparing RDBMS and NoSQL databases there are many advantages and 

disadvantages appear in both databases. Analyzing current available databases it can 

observe Relational databases management systems are ruling at the top. However 

recent huge popularity of NoSQL databases for cloud computing has inspired initiative 

non-relational data types the essence of big data flooding in organizations and large 

datacenters.  

However there is very limited number of RDBMS and NoSQL databases support 

Android environment. They are SQLite,  

                                                                 

 

 

 

 

 

 

 

 



14 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

                                                                         Chapter 04 

Approach  

4.1 Introduction 

Conduct the performance evaluation of mobile embedded database as initial step we 

may have to first derive   the experiment plan. Since it is a comparison of two mobile 

embedded databases, mobile environment which is databases going to be install has a 

very big liability.  

Experiment has to be design for keeping the mobile environment as constant 

parameter. It’s really important to get the accurate database results. 

 

4.2 Proposed Experiment 

 

 

1. Install databases locally in chosen Android environment 

I. Open source db Apache CouchDB consider as NoSQL database  

II. Open source db SQLite consider as Relational database. 

 

2. Create Android interface to each database which these two embedded databases 

that could be driven by benchmark test attach. 

 

3. Benchmark Data set   

I. Create suitable schema for experiment. 

II. Using benchmarking tool YCSB create large datasets based on a 

created schema and fill them with random data.  

 

4. Benchmark Queries  

I. Setup queries for both databases covering by  all CRUD operation 

 

 

5. Benchmark Metrics 



15 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

I. Identify a set of metrics for the benchmarking system to record. It will 

represent the important factors with respect to an application 

performance on time base such as 

a) Queries per seconds 

b) Average Query execution time. 

c) Overall runtime. 

 

6. Evaluate benchmark metrics for each test against in both databases.  

 

I. Evaluate the performance in a light load data set 

II. Evaluate the performance in a heavy load data set 

 

4.3 Android testing environment 

Table 4.1 provides the Android testing environment details which may databases 

install. 

Table 4.1 Android test environment details 

Equipment Huawei MediaPad 7 Lite 

OS Android OS, v4.0.4 (Ice Cream Sandwich) 

CPU 1.2 GHz Cortex-A8 

Browser HTML5, Adobe Flash 

RAM  1 GB 

Internal Memory 8 GB 

Java  Java MIDP emulator 

Data Speed HSDPA, 3.6 Mbps; HSUPA 

GPRS Class 12 (4+1/3+2/2+3/1+4 slots), 32 - 48 kbps 

 

 

 

 



16 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

4.4 Android Interface to interact with both databases. 

Design android interface to which both SQLite and couchdb can be interact with. To 

design interface we may use following. 

 JDK 1.7 

 Eclipse 4.2 Juno 

 Android SKD 4.2 

 

4.5 Summary 

To approach the benchmarking mobile embedded databases, we may first have to 

choose mobile environment which is databases going to install. It may have to constant 

for both databases. 

Then create a android interface where it can interact with both installed databases. 

Conducting the proposed experiment   by installing databases and benchmarking 

databases.                                                                       

 

 

 

 

 

 

 

 

 

 



17 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

                                                                        Chapter 05 

Analysis and Design 

5.1 Introduction  

Design the process of benchmarking mobile embedded databases is very crucial task 

coz it may interact with many layers. Design should be capable to get the outcome of 

the main experiment.  

As initial step need to be design how the android application will may interact with 

two databases. Then have to design how two databases will be created and then the 

datasets. It should not be bias to any database and equivalent to both. Then need to 

benchmark queries and the matrices.  

5.2 Android application database design 

Figure 5.1 will illustrate the android application and database installation design 

 

 

                                                        Application 

 

 

Application frame work(window & packages) 

 

Libraries 

 

SQLite/CoudbDB ,OpenGL, SSL 

 

Runtime 

 

Dalvik VM, Core libs 

 

Linux Kernel 

 

Figure 5.1 Android application and database installation design 

 



18 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 Applications - The Android Open Source Project contains several default 

application, like the Browser, Camera, Gallery, Music, Phone and more. 

 Application framework - An API which allows high-level interactions with 

the Android system from Android applications. 

 Libraries and runtime - The libraries for many common functions (e.g.: 

graphic rendering, data storage, web browsing, etc.) of the Application 

Framework and the Dalvik runtime, as well as the core Java libraries for 

running Android applications. 

 Linux kernel - Communication layer for the underlying hardware. 

 

5.3 Benchmark Database 

 

To standardized tests, benchmarking tools usually crated large database on predefined 

schema and fill them with random data. Generated data sets enable benchmark to 

increase the size and complexity of test while maintaining a consistent standard for 

comparison. 

Designing  ‘University’ database where two schema ‘Student’ and ‘Course’ . 

Student schema has tables ‘StudentProfile’ and ‘StudentResults’ . 

 Course  schema has ‘CourseProfile’ and ‘CourseTaken’ tables  

 Student ID will be foreign key from ‘StudentProfile’ table to ‘CourseTaken’ table. 

Student. SutdentProfile (Student_ID, Name, Gender, Birthday, Age, Address, Major) 

Course.CourseProfile (Course_ID, Course_Name ,Lecture_Name, prerequisite ) 

Course. CourseTaken (Student_ID, Course_ID, Year_taken, Results) 

 

 



19 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

 

Figure 5.2   Relationship of University DB 

 

 

5.4 Benchmark Data Set 

When creating tables number of ‘CourseTaken’ will be always three times the 

‘StudentProfile’ 

This schema will be populated by a FeildGenerator class that used an Xorshift random 

number generator and arrays of predefined data to generate reasonable tables as 

efficiency as possible. Using the FeildGenerator we could easily scale the size of the 

databases to compare how each database system performed on large datasets.  

 

 



20 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

5.5 Bench mark Queries 

The benchmark queries will be created test all CRUD operations of the databases and 

will be breakdown operations into the following benchmark sets.  

Create Benchmark : This comprises of database initialization with defined 

tables/structures 

Create Table SutdentProfile (Student_ID INTEGER  primary key, Name TEXT, 

Gender TEXT , Birthday INTEGER, Age INTEGER, Address TEXT, Major TEXT) 

Create Table CourseTaken (Student_ID INTEGER, Course_ID INTEGER , 

Year_taken INTEGER , Results INTEGER) 

Note :  SQLite supports the data types TEXT (similar to String in 

Java), INTEGER (similar to long in Java) and REAL (similar to double in Java). All 

other types must be converted into one of these fields before getting saved in the 

database. SQLite itself does not validate if the types written to the columns are actually 

of the defined type, e.g. can write an integer into a string column and vice versa. 

Insert Benchmark: This comprises of all queries to load the data into the data 

management system and inserts an arbitrary number of tuples into the schema. 

Insert into SutdentProfile (Student_ID, Name, Gender, Birthday, Age, Address, Major) 

Values (*  ,* , * ,* ,* , *, *) 

Insert into CourseTaken (Student_ID, Course_ID, Year_taken, Results) 

Values (*  ,* , * ,* ) 

Data Fetch: Queries which retrieve tuples based on specific value of indexed and non-

indexed attributes. 

Test 1: Select * from SutdentProfile where Student_ID=* (Indexed Attribute) 

Test 2: Select * from SutdentProfile where Name=* (Non -Indexed Attribute) 

 

 



21 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Range Query: Queries which retrieves tuples within some range.  

Test 3: Select * from SutdentProfile where Age >=* and Age <=* 

Aggregation: Queries which return tuples with some computation like count average 

over a set of group based on some attributes. 

Test 4: select age ,count(*) from SutdentProfile group by age 

Test 5: select course_ID, count(student_ID) from  CourseTaken  group by course_ID 

Join : Join query which fetch data by joining two tables on specific attributes 

Test 6: select S.Student_ID, S.Age , C.Course_ID  from SutdentProfile S , 

CourseTaken Cwhere S.student_ID= C.student_ID and S.age <=* 

 

5.6 Benchmark Metrics  

Identify a set of metrics for the benchmarking system to record. It will represent the 

important factors with respect to an application performance on time base such as 

a) Queries per seconds: Average number of Queries per second will be evaluate 

for each category. This will determine the throughput for each DBMS. 

 

b) Average Query execution time: Average time for execution an individual query 

of particular query category as defined above. Against each category, ten 

queries with different parameters will be executed. 

 

c) Overall runtime: The total time for all benchmark to run for each DBMS. 

 

 

 

 

 



22 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

5.7 Summary  

As an initial step designed the resistant of android application. Then designed database 

structure along with schema and tables which may suitable for both SQLite and 

CouchDB. 

Then schema will be populated by a FeildGenerator class that used an Xorshift random 

number generator and arrays of predefined data to generate reasonable tables as 

efficiency as possible. Using the FeildGenerator we could easily scale the size of the 

databases to compare how each database system performed on large datasets.  

After data set is designed the benchmarking queries which may run throughout the 

experiment. During the experiment benchmarking matrices will be evaluated and 

results will be obtained for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

                                                                                                     Chapter 06 

Implementation  

 

6.1 Introduction 

In implementation first have to setup the android development tool s and make android 

environment suitable for build the application. 

Once the Android developer tool sets up, can install application which may interact 

with two databases. 

Then have to setup SQLite and CouchDB individually.  

 6.2 Setting up Android Developer Tools 

 

First step is download packaged Android Developer Tools. Google provides a 

packaged and configured Android development environment based on the Eclipse IDE 

called ‘Android Developer Tool’s. Then install Stand-alone ADT. Finally update an 

existing Eclipse IDE. 

The Android SDK contains an Android device emulator. This emulator can be used to 

run an Android Virtual Device (AVD), which emulates a real Android phone. AVDs 

allow to test Android applications on different Android versions and configurations 

without access to the real hardware. 

6.3 Setting up SQLlite  

SQLite database more convenient to setup on Android environment because SQLite is 

embedded into every Android device. Using SQLite database in Android does not 

require a setup procedure or administration of the database. Only have to define the 

SQL statements for creating and updating the database. Afterwards the database is 

automatically managed for you by the Android platform. [11] 



24 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Android SDK comes preloaded with libraries to crate and interface with SQLite files. 

Access to SQLite database involves accessing the file system. This can be slow. 

Therefore it is recommended to perform database operations asynchronously. 

To create and upgrade a database in Android application that will create a subclass of 

the SQLiteOpenHelper class. In the constructor subclass call the super() method 

of SQLiteOpenHelper, specifying the database name and the current database version. 

The android.database package contains all necessary classes for working with 

databases. The android.database.sqlite package contains the SQLite specific classes. 

SQLite database is the base class for working with a SQLite database in Android and 

provides methods to open, query, update and close the database. 

6.4 Setting up Couchbase Lite 

 CouchDB is contacted through a REST (Representational state transfer) API and the 

main tool for viewing the database is a web application call Futon. Futon is to 

CouchDB what phpMyAdmin is to MySQL. There is an Android application called 

Mobile Futon which brings CouchDB to an Android environment but the only method 

of accessing is it through the REST API. 

Since requiring all data access for CouchDB to go through the network stack is not the 

proposed research method and SQLite not required the network, have to consider 

constant environment for both databases. 

Couch has introduced, Couchbase Server to IOS and Android called as Couchbase Lite 

[12]. This turned out to be perfect implementation of couch to test since like SQLite 

Couchbase Lite act as an embedded DBMS. The documentation for Couchbase Lite 

say it is analogous to CouchDB in the same way SQLite is analogues to mySQL [12]. 

By using Couchbase Lite would be more similar to comparing SQLite. 

For setting up Couchbase Lite have downloaded setup files from official Couchbase 

site where Couchbase Lite to android [13] .After that it was easy to embed Couchbase 

Lite source files to Eclipse IDE. 

                   

6.5 Interface  



25 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Before initiate database performance testing I have developed simple android 

application that will outline the structure of the testing. 

This application has been help for visualize the scenarios that will be testing. 

Figure 6.1 is providing  sample screenshots of the application that I have created 

‘University Database’ 

 

 

 

 

 

 

 

 

 

 

 

 

                                        Figure 6:1 University Database App 

While conducting database performance test, it’s not simply dealing with 10 or 20 

tuples. It’s recommended to get a sample of more than 100 tuples for conducting 

database performance. Hence manually conducting CURD operation through 

application is not practical and recommended.  Therefore all testing has been 

conducted by scripting on backend of the application.  

 

6.6 Constructing SQLite Database on Android. 



26 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Constructing SQLite database was much easier than CouchdbLite because SQLite 

syntaxes were more similar to mySQL syntax and Android comes in with built in 

SQLite database implementation. 

Figure 6.2 is providing sample codes for CREATE database and CREATE tables in 

SQLite . 

 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:2 SQLite DB creation and table creation codes 

 

6.7 Constructing Couchbase Lite Codes on Android. 

public class DatabaseHelper extends SQLiteOpenHelper { 
 
 static final String dbName="universityDB"; 
 static final String studentTable="Students"; 
 static final String colID="StudentID"; 
 static final String colName="StudentName"; 
 static final String colAge="Age"; 
 static final String colMajor="Major"; 
  
 static final String majorTable="Major"; 
 static final String colMajorID="MajorID"; 
 static final String colMajorName="MajorName"; 
  
 static final String viewStud="ViewStud"; 
  
  
 public DatabaseHelper(Context context) { 
  super(context, dbName, null,33); 
   
  // TODO Auto-generated constructor stub 
 } 
 
 @Override 
 public void onCreate(SQLiteDatabase db) { 
  // TODO Auto-generated method stub 
   
  db.execSQL("CREATE TABLE "+majorTable+" ("+colMajorID+ " 
INTEGER PRIMARY KEY , "+ 
    colMajorName+ " TEXT)"); 
   
  db.execSQL("CREATE TABLE "+studentTable+" ("+colID+" INTEGER 
PRIMARY KEY AUTOINCREMENT, "+ 
    colName+" TEXT, "+colAge+" Integer, "+colMajor+" 
INTEGER NOT NULL ,FOREIGN KEY ("+colMajor+") REFERENCES "+majorTable+" 
("+colMajorID+"));"); 

 



27 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Comparing with SQLite it’s difficult to constructing Couchbase Lite because it’s using 

JSON structure to store data.Figure 6.2 is providing sample codes for CREATE 

database of Couchbase Lite  

// create a name for the db and make sure the name is legal 

       String dbname = "UniversityDB"; 

        if (!Manager.isValidDatabaseName(dbname)) { 

            Log.e(TAG, "Bad database name"); 

            return;  } 

        // create a new database 

        Database database; 

        try { 

            database = manager.getDatabase(dbname); 

            Log.d (TAG, "Database created"); 

        } catch (Couchbase LiteException e) { 

            Log.e(TAG, "Cannot get database"); 

            return;  }       

// add array of documents to Couchbase Lite 

function couchbase_bulkAdd() { 

  var max = 10000; 

  var data = generate(max); 

  console.time('Couchbase lite - bulk add'); 

  $.ajax({ 

    type: 'POST', 

    url: globalUrl + 'performance/_bulk_docs', 

    data: JSON.stringify({'docs': data}), 

    contentType : 'application/json'}) 

  .done(function(res) { 

    console.timeEnd('Couchbase lite - bulk add'); 

    dummyId = res[5000].id; 

  });}  

                       Figure 6:3 Creating CoudhbaseLite database  

6.8 Bench Mark Data Set 



28 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Same unique data set that has been used for benchmark two databases performances. 

According to table structures, data has been populated. 

‘Student_Profile’ table considered as main parent table. For main benchmarking 

queries ,100 tuples used as minimum, 10,000 tuples used as maximum and as average 

used 1000 tuples.  

Figure 6:4 shows the sample data set of ‘Student_Profile’ table.  

ID Name Gender Age Bday Major 

1011247I Justus Oconnor Male 20 1993/6/11 IT 

1070633C Edwin Hagins Male 21 1992/7/26 IS 

1089701C Cecil Tinajero Male 21 1992/6/28 CE 

1100406C Rahel Schneck Female 21 1992/4/7 IT 

1282273I Thera Sine Female 22 1991/3/2 IT 

1312154C Nabendu Janis Male 22 1991/2/12 CS 

1346548C Dollie Bayes Female 22 1991/8/16 IS 

1450667I Etta Overbey Female 21 1991/11/3 IS 

1480473I Yervant Deppe Male 21 1992/4/16 IT 

1490789I Vitale Schafer Male 20 1993/11/6 IT 

1530924C Sorano Mohn Female 21 1991/6/5 IS 

1533865C Onawa McGee Female 20 1993/9/28 IT 

1542434I Ekachakra Bourdeau Male 20 1993/5/23 CE 

1557059C Volumnia Riddick Female 22 1992/12/6 IS 

1558675C Nerhim Oberlin Male 22 1991/11/23 CS 

Figure 6:4 Sample data set of ‘Student Profile’ table 

Figure 6:5 shows sample data set of ‘Course_Profile’ table 



29 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

Major Course ID Cours Name Lecture Name Pre requisits 

CE CS3310 Artificial Intelligence     Curtis Fancher   

CS CS2110 

Calculus & Statistical 

Distributions   Rebekah Vance CS1110 

IT IT1320 Computer Organization     

Cadman 

Pasquale   

CE CE2110 

Data Structures and 

Algorithms   Rebekah Vance IT1400 

IT IT1310 

Digital Systems and 

Computer Hardware  Zoe Diego IT1320 

IT IT1400 

Fundamentals of 

Databases and Database 

Design 

Suffield 

Paramore   

CS CS1110 

Fundamentals of 

Mathematics & Statistics  

Suffield 

Paramore   

CS CS3320 

Logic Programming & 

Artificial Cognitive 

Systems 

Hanford 

Templeton CS3310 

IT IT1610 Multimedia Technologies     

Francesca 

Siefert   

CE CE2100 

Object Oriented 

Programming    Curtis Fancher IT1100 

CE CE2210 Operating Systems     Curtis Fancher IT1320 

 

Figure 6:5 Sample data set of ‘Course_Profile’ table 

 

 

 

 



30 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

6.9 Testing Specification                           

A full trial for each benchmark consists of following 

1. Creating the database files. 

2.  Setting up necessary schemas  

3. Running each of the six queries three times and average time is 

displayed in results. 

4. Recorded the time it took for each part of the benchmark complete. 

5. Test the scalability of the two databases, ran all benchmark three times 

and increased the number of tuples on each run. 

 

6.10 Summary 

Initially set up Android Developer Tools (ADT) which includes eclipse IDE, Android 

SDK and Android virtual devised ( AVD) which helps to develop android in virtual 

environment.  

On top of Android SDK , Android SQLite was easily setup. Couchbase Lite was 

downloaded from official couchbase site and source files were embedded in Eclipse 

IDE. It was bit difficult rather than SQLite. 

Simple android application created that will outline the structure of the database 

testing. According to application SQLite and Couchbase Lite databases set up on 

android environment. That was a time consuming task because for SQLite its Java and 

for Couchbase Lite it was JSON. After setting up databases generated benchmark data 

set that related for each tables.  Finally created generic test specification steps that 

where two database fallow for conducted the performance test. 

 

 

 



31 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

                                                                         Chapter 07 

Evaluation 

7.1 Introduction 

After implemented two databases on android, using predefined dataset I have 

conducted the experiments according to the test specification above given on section 

6:9. Below presenting series of charts and tables showing experiment results.  

 

7.2 Average DB Creation Time  

Figure 7:1 showing the average time to create all files associated with the embedded 

databases.  

 

Figure 7:1 Average DB creation time in seconds 

0.50

1.43

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Average DB Creation Time
Seconds

SQLite CouchbaseLite



32 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

According to the above figures Couchbase Kite was nearly three times slower than 

SQLite. However at one second this is not a considerable overhead considering each 

database is only created once as initial creation.  

 

7.3 Insertion to DB and average insertion per second.  

 

In this test scenario I have segregated to three instant and insert into main table in db as 

100, 1000 and 10,000 tuples. Figure 7:2 shows average insertion for table while 

increasing number of tuples. 

 

Figure 7:2 Data insertion to databases 

 

According to the test results it clearly shows while increasing number of tuples the 

insertion time is increasing according to same. However SQLite is much faster than 

Couchbase Lite and Couchbase Lite is two times slower than SQLite while inserting 

data.  

2.22
22.48

222.56

4.34 43.78

434.78

0

50

100

150

200

250

300

350

400

450

500

100 Tuples 1000 Tuples 10000 Tuples

Insertion To DB

SQLite

CouchLite

Seconds



33 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

Figure 7:3 Average insertions per seconds for databases. 

 

Figure 7:3 shows the average number of insert per second for each database. There is 

no significant difference in insert speed as the number of inserts increase from hundred 

to ten thousand. In a second SQLite inserts nearly 45 tuples and CouchLite inserts 

nearly 23tuples.  On average SQLite can insert twice as may tuples per seconds as 

CouchLite. This is a significant difference and in ten thousand inserts SQLite took 3.7 

minutes while CouchLite took 7.2 minutes. 

 

 

 

 

 

44.89

22.99

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

SQLite CouchLite

Average Insert Per Seconds

No of Tuples



34 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

7.4 Data fetch and average data fetch per second with an index 

Figure 7: 4 shows the time spent executing Test 1 (Select * from Sutdent_Profile 

where Student_ID=* (Indexed Attribute)) which is a simple indexed table lookup.  

 

 

Figure 7:4 Data fetch from table with an index. 

Not surprisingly there is little correlation between the number of tuples being searched 

and the time it takes for an indexed lookup since two databases are highly optimized 

for indexed searches. However SQLite consistently performed three to five times faster 

than CouchLite. 

 

 

0.02
0.23

2.45

0.04 0.48

4.86

0.00

1.00

2.00

3.00

4.00

5.00

6.00

100 Tuples 1000 Tuples 10000 Tuples

Data Fetch From Table -With An Index

SQLite

CouchLite

Seconds



35 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

Figure 7:5 shows the average data fetch per second while index using. 

 

 

Figure 7:5 Average data fetch per second - with an index. 

 

Looking at experiment results, it was so gleaming that SQLite fetching data super fast 

rather than Couchlite while index using. 4,106 tuples fetch per second is magnificent 

performance in SQLite. 

 

4,106.55

2,063.20

0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

3,000.00

3,500.00

4,000.00

4,500.00

SQLite CouchLite

Average Data Fetch Per Second 
- With an Index

Tuples



36 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

7.5 Data Fetch and Average Data Fetch Per Second with Non Index Lookup 

Figure 7.6 shows the time spent executing Test 02 ( Select * from Sutdent_Profile 

where Name=* (Non -Indexed Attribute) )  where data fetch from with non  indexed 

lookup on a string field. 

 

 

 

Figure 7:6 Data fetch from table –Non index lookup 

 

Unlike data fetch from indexed lookup , this test scenario time an increase in execution 

time as the number of tuples increases is easily observed. 

For CouchLite this increase is clearly exponential, while the increase for SQLite is not 

as dramatic. 

0.5
3.45

5.34

3 6

60

0

10

20

30

40

50

60

70

100 Tuples 1000 Tuples 10000 Tuples

Data Fetch From Table -Non Index Lookup 

SQLite

CouchLite

Seconds



37 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Figure 7.7 shows the average data fetch per second when non index lookup. 

 

 

 

Figure 7:7 Average data fetch per second –Non index lookup 

 

According to test results average data fetch per second while non-index lookup in 

SQLite was nearly 251 tuples and Couchlite was 166. When comparing with data 

fetching with indexed lookup, both databases are absolutely very slow. 

 

 

 

250.62

165.67

0.00

50.00

100.00

150.00

200.00

250.00

300.00

SQLite CouchLite

Average Data Fetch Per Second 
- Non Index Lookup



38 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

7.6 Data Fetch and Average Data Fetch Per Second When Range Selected. 

Figure 7:8 shows the test 03 ( Select * from SutdentProfile where Age >=* and Age 

<=*)  where data fetching speed while range defining . 

 

Figure 7:8 Data fetch –Range Selection 

 

There is little correlation between the number of tuples being searched and the time it 

takes for data fetch while selecting range.  Both databases are highly optimized for 

data fetch in selected range while indexed using and other hand when non –indexed 

look up both databases not vastly optimized. However comparing other test results in 

range selection both databases spend substantial   amount of time. 

 

 Figure 7:9 illustrate the average data fetch per seconds when range selection provided. 

 

0.03
0.34

3.45

0.05 0.58

5.86

0

1

2

3

4

5

6

7

100 Tuples 1000 Tuples 10000 Tuples

Data Fetech -Range Selection

SQLite

CouchLite



39 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Figure 7:9 Average Data Fetch Per Seconds – Range Selection 

According to the test results average data fetch per second is higher in SQLite rather 

comparing with CouchLite.   

7.7 Inner join with index. 

Figure 7:10 illustrate the consumed time when fetch data by joining two tables on 

specific attributes 

 

                                 Figure 7:10 Inner Join with Index 

2,905.76

447.73
0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

3,000.00

3,500.00

SQLite CouchLite

Average Data Fetch Per Seconds - Range 
Selection

2

15

0

2

4

6

8

10

12

14

16

SQLite CouchLite

Inner Join with Index



40 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

According to test results average amount for fetch data by joining two tables on 

specific attributes in SQLite was two seconds and for same in Couchlite it was 15 

seconds. When comparing two databases Couchbase Lite was 7 times slower than 

SQLite when fetching data by joining two tables. 

 

7.8 Aggregate Sum 

Figure 7:11 illustrate the computation   average time over a set of group based on some 

attributes. 

 

 

Figure 7:11 Aggregate Sum 

Figure 7:11 shows the time spent executing test 5 which is aggregate sum. At ten 

thousand touples it took three hundred seconds which mean s five minutes and 

CouchLite took 5490 seconds which means almost 91 minutes .This was the highest 

amount of consuming time spent in entire test. This query groups by a non-indexed 

field and sum over a floating point values. CouchLite is not optimized for this type of 

query. 

3.00
30.37 300.00

60 600

5490.32

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

100 Tuples 1000 Tuples 10000 Tuples

Aggregate Sum

SQLite

CouchLite



41 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Calculate overall time consumed for each database for stranded test cases and 100 

tuples shows in Table 8:1.  All time calculation are in unit seconds 

 

Category SQLite Couchbase Lite 

Average DB creation time 0.05 1.43 

1000 tuples insert to DB 22.48 43.78 

1000 tuples fetch from db- 

with  index lookup 

0.23 0.48 

1000 tuples fetch from db- 

with non index lookup 

3.45 6 

1000 tuples fetch – range 

selection 

0.34 0.58 

1000 tuples aggregate sum 3.37 600 

Inner join with index 2 15 

TOTAL 31.92 667.27 

 

  

Table 8:1 Overall time consuming in both DBs in performance test 

 

 

 

 

 

 

 

 

 



42 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

Chapter 08 

Conclusion and Future Work 

8.1 Introduction 

Previous chapter (Chapter seven) demonstrates on the evaluation of experiment results 

on SQLite and CouchLite performance in same test scenarios. Main objective of this 

research was out current available embedded databases identifying most suitable 

embedded database for mobile enviornment. This chapter concludes what embedded 

database is more suitable for mobile environment.  

8:2 Conclusion 

 

By conducting performance evaluation of SQLite and CouchLite databases would 

excel at some parts of each benchmark and do poorly on others and that based on the 

results that can recommended a different embedded databases for different tasks. 

According to the test results it clearly shows while increasing number of tuples the 

insertion time is increasing according to same. However SQLite is much faster than 

Couchbase Lite and Couchbase Lite is two times slower than SQLite while inserting 

data.  

There is little correlation between the number of tuples being searched and the time it 

takes for an indexed lookup since two databases are highly optimized for indexed 

searches. However SQLite consistently performed three to five times faster than 

CouchLite. 

Comparing other test cases both databases took substantial amount of time to fetch 

data from database when non-indexed lookup. 

Correlation noted between the number of tuples being searched and the time it takes 

for data fetch while selecting range.  Both databases are highly optimized for data fetch 

in selected range while indexed using and other hand when non –indexed look up both 

databases not vastly optimized. 

According to test results average amount for fetch data by joining two tables on 

specific attributes in SQLite was faster than  Couchbase Lite. When comparing two 



43 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

databases Couchbase Lite was 7 times slower than SQLite when fetching data by 

joining two tables. 

 In entire test cases the highest amount of consuming time spent test case is aggregate 

sum. This query groups by a non-indexed field and sum over a floating point values. 

CouchLite is not optimized for this type of query. 

SQLite performed very well under high load and the most complicated queries that 

included in benchmarks. 

CouchLite did perform adequately on indexed lookup and queries requiring only 

simple map function, however, it did not scale very well. This makes sense since one 

of the primary use cases for NoSQL database like CouchLite is in embarrassingly 

parallel environments where map/reduce views can be executed and cashed for quick 

key based lookup. On a mobile device the views have to be calculated at runtime. 

Based on the results of my research SQLite is the best embedded database for mobile. 

Therefore it can illustrate RDBMS is better than NoSQL databases on mobile  

Environment. 

Due to popularity of NoSQL databases for cloud computing has inspired initiatives to 

conduct this research to verify is NoSQL is suitable for mobile devices. However final 

conclusion is NoSQL databases are not suitable for mobile environment. 

 

8:3 Future Works. 

In this research I have obtained only one database from RDBMS and one database 

from NoSQL. In future it’s better to compare performance elevation for RDBMS and 

NoSQL by obtaining   more databases from each category.  

Also this research can be expand by inserting more tuples in to databases and see the 

performance in very high loaded tuples. 

 

 



44 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

8:4 Summary 

By evaluating each test results presented in chapter 07, I have concluded which type of 

embedded database is more suitable for mobile environment. According to my research 

experiment out of SQLite and Couchbase Lite , SQLite performed well in mobile environment. 

Therefore I concluded beast database type for mobile embedded database is RDBMS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

References 

[1]  Noris, A .K (2007) ,Mobile and embedded databases, In Proceedings of the 2007 

ACM SIGMOD international conference on Management of data, pp 1175-1177, New 

York, USA . 

 

[2] DATASTAX Cooperation (2013), Benchmarking Top NoSQL Databases - A 

Performance Comparison for Architects and IT Managers, White 

Paper,California,USA. 

[3]TPC –Transaction Processing Performance Council  

http://db-engines.com/en/ranking 

[4] Cattell, R. (2011) Scalable SQL and NoSQL Data Stores, ACM SIGMOD Record, 

v 39.4, pp 12-27 ,Chicago, USA. 

[5] Difallah D. E. , Pavlo A. ,Curino C. , Mauroux P. C.(2013) ,An Extensible Testbed 

for Benchmarking Relational Databases, At 40th International Conference on Very 

Large Data Bases 2014, In Proceeding of the VLDB Endowment, v 7.4 , pp 277 -288, 

Hangzhou, China. 

[6] http://www.tpc.org/information/benchmarks.asp 

 [7] McObject Benchmarks Embedded Databases on Android Smartphone 

 http://www.mcobject.com/march9/2009  

[8]Cooper B. F., Silberstein A.  , Tam E., Ramakrishnan R., Sears R.(2010), 

Benchmarking Cloud Serving Systems with YCSB, Proceeding of  1st ACM Symposium 

on cloud computing , pp. 143-154,Indiana ,USA. 

[9]Satyanarayanan M. (1996),Fundemental challenges in mobile computing, 

Proceeding of the 15th annual ACM symposium on Principles of distributed 

computing, pp1-7,Pennsylvania,United States. 

[10] Turbyfill, C. , Orji C.U. ,Bitton D. (1993), ASAP-an ANSI SQL standard saleable 

and portable benchmark for relational database systems,in J.Gray(Ed.) , The 

Benchmark Handbook, second ed. , California,USA. 

http://db-engines.com/en/ranking
http://www.tpc.org/information/benchmarks.asp
http://www.mcobject.com/march9/2009


46 
 
Performance evaluation of embedded mobile databases: RDBMS Vs NoSQL               MSc (IT)                      2015 

 

[11] http://www.android.com/ 

[12]http://nosql-database.org/ 

[13] http://www.sqlite.org/ 

[14] http://www.couchbase.com/nosql-databases/couchbase-mobile 

[15] http://www.couchbase.com/nosql-databases/downloads#cb-mobile 

 

http://www.android.com/
http://nosql-database.org/
http://www.sqlite.org/
http://www.couchbase.com/nosql-databases/couchbase-mobile
http://www.couchbase.com/nosql-databases/downloads#cb-mobile

