<u>User Friendly Acoustic System For Detection Of coconut Palms</u> <u>Infested By Rynchophorus Ferrugineus</u>

"Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Master of Science in Information Technology"

Declaration

We declare that this thesis is our own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Name of Student (s)

Signature of Student (s)

Date:

Supervised by

Name of Supervisor(s)

Signature of Supervisor(s)

Date:

Acknowledgements

This dissertation is made possible through the help and support from everyone, including: parents, teachers, family, friends, and in essence, all sentient beings. Especially, please allow me to dedicate my acknowledgment of gratitude toward the following significant advisors and contributors:

First and foremost, I would like to thank my advisor, Mr B.H Sudantha for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. He kindly read my paper and offered invaluable detailed advices on grammar, organization, and the theme of the paper.Second, I would like to thank Mr. Saminda Premaratne Long to read my thesis and to provide valuable advices.

I would like to thank Mr Sunil, who as a good friend, was always willing to help and give his best suggestions. My research would not have been possible without their helps.

Finally, I sincerely thank to my parents, family, and friends, who provide the advice and financial support. The product of this research paper would not be possible without all of them.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

Android Mobile Application have been developed and used to detect insects in concealed habitats. The larvae of red palm weevil, Rynchophorus ferrugineus (Olivier), a serious pest of the coconut palm, Cocos nucifera L. feed on the soft tissues inside the stem and bud region. Detection of infested coconut palms in the early stages by the conventional method of checking for external symptoms is time consuming, labour intensive and costly. This paper describes the development of Android Mobile Application and its potential in detection of infested palms in the field. The device comprises a sensor to mount on the Stem of the palm tree and to acquire the sounds of red palm weevil larvae, Android Application that processes the acquired sounds and automatically detect detected RPW and send a notification for its users. Many difficulties encountered with conventional methods could be overcome by the use of this Android Application.

Contents

			Page	
Chapter1	– Intro	duction	1	
1.1	Backg	ground and Motivation	1	
1.2	Aim a	nd objectives	5	
	1.2.1	Aim	5	
	1.2.2	Objectives	6	
1.3	Purpo	se of the document	6	
1.4	Sumn	nary	7	
Chapter 2	– Liter	cature Survey	8	
2.1		luction	8	
2.2	EXIS	TING METHODS OF RPWS DETECTION	8	
	2.2.1	Automatic acoustic detection of the red palm weevil		
		using speaker recognition	8	
	2.2.2	Portable acoustic device for detection of coconut		
		palms infested by Rynchophorus ferrugineus University of Moratuwa, Sri Lanka.		
		(Coleoptera: Curculionidae) Electronic Theses & Dissertations	10	
	2.2.3	Red palm weevil pheromone trap	12	
	2.2.4	Microwave Irradiation	12	
	2.2.5	Protection of Palms from RPW Larvae using		
		Wireless Sensor Networks	13	
2.3	Sumn	nary	14	
Chapter 3	– Techi	nologies Required For Implementation	15	
3.1		luction	15	
3.2		Web Service – PHP, JSON		
3.3		Database – MYSQL		
3.4		oid SQLite database	17	
3.5	Andro	oid Application – Eclipse, Android SDK, Logcat, DDMS	18	
3.6	Senso	Sensor		
3.7	Andro	Sensor Android (operating system)		
3.8	GPS t	echnology	19	
3.9	Audio	Processing Technologies and Analysis Tools	21	
	3.9.1	Audacity (audio editor)	21	
	3.9.2	Sonic Visualiser	22	
3.10	Speak	er recognition Technology	22	
	3.10.1	FFT (Fast Fourier Transform)	22	

	3.10.2 Speaker recognition	23
	3.10.3 General Structure of speaker recognition system	25
3.11	Summary	26
Chapter 4	-The Process of Red Palm Weevil Detection	27
4.1	Introduction	27
4.2	Outline of the Approach	27
4.3	Proposed Methodology for the System	28
	4.3.1 Development of the acoustic detector	29
	4.3.2 Inputs of the system	30
	4.3.3 Outputs of the system	31
	4.3.4 Process of the system	31
4.4	Summary	31
Chapter 5	– Analysis & Design	31
5.1	Introduction	32
5.2	Sound recordings and analysis	32
5.3	Architecture of this System	34
	5.31 Audio Processing Moduratuwa, Sri Lanka.	36
	GPS Module Theses & Dissertations	36
5.4	Summary Www.lib.mrt.ac.lk	36
Chapter 6	- Implementation	37
6.1	Introduction	37
6.2	System Configuration	37
	6.2.1 Sensor	37
	6.2.2 Android Application Implementation	39
6.3	Summary	40
Chapter 7	- Evaluation	43
7. 1	Introduction	43
7.2	Determination of a suitable position for	
	placement of the sensor	43
7.3	Determination of accuracy of the device	44
7.4 7.5	Statistical Analysis Pagulta	45
7.5	Results 7.5.1 Acoustic device	46 46
	7.5.2 Determination of a suitable position for	10
	placement of the sensor	46
	provention of the periods	. •

	7.5.3 Determination of accuracy of the device	47
7.6	Summary	48
Chapter 8 -	- Conclusion and Further Work	51
8.1	Introduction	51
8.2	Conclusion	51
8.3	Facture Developments	53
8.4	Limitations	53
References	54	
Appendices		57

List of Figures

Figure 1.1Weevil Grub inside the Cocoon	3
Figure 1.2 Red Palm Weevil(Rhynchophorus ferrugineus Olivie	er) 4
Figure 1.3Life cycle Red Palm Weevil	4
Figure 1.4:	5
Figure 1.5	5
Figure 2.1	9
Figure 2.2	11
Figure 2.3Functional block diagram of the Acoustic device [6]	11
Figure 2.4Red palm weevil pheromone trap	12
Figure 3.1 Database Location Table	17
Figure 3.2Audacity (audio editor)	21
Figure 3.3 University of Moratuwa, Sri Land	ka. 24
Figure 3.4 Electronic Theses & Dissertation	S 26
Figure 3.5 www.lib.mrt.ac.lk	26
Figure 4.1Functional block diagram of the signal processing sys	stem 30
Figure 5.1The frequency spectrum of sounds	33
Figure 5.2Context diagram of the System	34
Figure 5.3 Component diagram of the System	35
Figure 6.1Electret microphone capsule	38
Figure 6.2 Sensor Creation Process	38
Figure 6.3After assembling the sensor	39
Figure 6.4	41
Figure 6.5	42
Figure 6.6	42
Figure 6.7	43
Figure 7.1Android mobile device comprising the sensor	47
Figure 9.1Web Servises Colling Class	57
Figure 9.2sound Level meater	58