LB/DON/65/03

INTEGRATED DSS FOR CONSTRUCTION COST MANAGEMENT USING RELATIONAL DBMS AND FUZZY LOGIC

By

K.IMRIYAS

MERSITY OF MORATUS

Thesis submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfilment of the requirement for the Degree of

Master of Philosophy

624<u>03</u> 69.003:002.0

Supervised by

DR. A A D A J. PERERA

Department of Civil Engineering University of Moratuwa, Sri Lanka.

78475

July 2003

University of Moratuwa

78475

Dedication

20

٠.

To My Parents

For their continuous dedication and encouragement for all the endeavours towards my advancement.

 $\overline{)}$

Declaration

This thesis is a report on the research work carried out in the Department of Civil Engineering, University of Moratuwa, Sri Lanka, during July 2001 to July 2003. This submission is original and does not have any materials previously published or written by any others anywhere, except where citing is made.

K.Imriyas Department of Civil Engineering University of Moratuwa, Sri Lanka.

1

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

i

Abstract

Construction Cost Management encompasses and embraces estimating, scheduling, cost control, resource costing, and interim billing, which are highly interconnected to each other, and share data. Also produces very large quantity of information thus necessitates an integrated information system for effective management. Additionally, data related to progress control exhibits imprecision, vagueness and subjectivity, that demands some sophisticated approach to be introduced in the system for predictions and corrective acting in progress control. Advanced systems using current state-of-the-art could be developed to address the problems. But, construction organizations cannot afford to procure such system due to high cost involvement, therefore expects a cost effective solution.

Through an extensive literature review Schedule activity as the denominator, relational DBMS, and Fuzzy logic were identified as suitable method and tools for data integration and vagueness handling. MS AccessTM, MS projectTM, and MATLABTM also identified as cost effective software for physical design. Then, an integrated Decision Support System (DSS) complementing a common database, a scheduler, and a knowledge base was supposed to solve the problem.

Interviews, documentary surveys, and questionnaire surveys were adopted as research techniques. By analyzing the survey data and information, terms and references of the proposed DSS, system architecture, process models, data models and logical models of common database, knowledge representation model for knowledgebase, and dynamic data exchange model for data transfer and conversation were designed. Then MS AccessTM, MS projectTM, and MATLABTM were used to develop the proposed DSS. Finally the developed system was tested for its feasibility in terms of technique and function, and accuracy. Data transfer between database, scheduler, and knowledgebase was very successful. The output produced by the DBMS, and Scheduler had an accuracy of 100 % while Knowledge Based System (KBS) had 80%.

It is proved that general software like MS Access[™] and MS project[™] have potential for advanced integrated system development with higher technical, functional, and cost feasibilities using relational database concept. They can also be integrated with KBS for heuristic decision making.

Key Words: Cost Management ,Integration, Relational DBMS, Fuzzy Logic, Information System

ii

Acknowledgement

A special thank is due for the Vice Chancellor, Dean-Faculty of Engineering, Director-Postgraduate studies, and the Chairman and the members of the Senate Research Committee of the University of Moratuwa for providing me a placement, and the Asian Development Bank for entitling me for a scholarship to undertake this research study. I also wish to thank Head, Department of Civil Engineering, who provided me with all the necessary resources and supports for successfully carrying out the study.

I am grateful to the departmental research coordinator and the examination panel for their continuous assessments and advices.

I am greatly indebted to my research supervisor Dr. Asoka Perera of Department of Civil Engineering, University of Moratuwa for introducing me to the world of Construction Information Technology. He dedicated himself for guiding and advising the work at anytime without any reluctant. The advices and knowledge given by Dr. Nalim Wickramarachchi of Department of Electrical Engineering, University of Moratuwa is also greatly appreciated.

I would like to extend my thanks to the Faculty and Staff of Construction Engineering and Management division of Department of Civil Engineering for their support in carrying out this research work.

The help provided by people from the construction industry, and overseas is much appreciated.

Finally, I also wish to thank all others who have helped this research work.

iii

Table of Contents

Declarati	on	i
Abstract		ii
Acknowl	edgement	iii
Table of	Contents	iv
List of Fi	gures	viii
List of Ta	ables	x
Abbreviations		xi
1 Intro	oduction	1
1.1	Background	1
1.2	Research objectives	6
1.3	Research methodology	7
1.4	Research outputs	8
1.5	Plan of the thesis	9
2 Integ	grated Construction Cost Management and Information Systems:	
An (Dverview	12
2.1	Introduction	12
2.2	Nature of Construction Cost Management and available software	12
2.3	Previous work on integrating Cost and Time for contractors	16
2.3.3	Teicholz's Model	16
2.3.2	2 Hendrickson's Model	17
2.3.3	Ibbs and Kim's Model	18
2.3.4	Work-Packaging model	19
2.3.5	Kang's model	20
2.3.6	Kim and Kim's Model	22
2.3.7	Project Breakdown Structures	23
2.3.8	Fayek's Model	23
2.3.9	Common problems for previous work	26
2.4	State-of-the-art for Integration	27
2.4.1	Structure and Development lifecycle of Integrated DSS	29
2.5	Conclusion	33

3 Sy	stem Investigation and Data Analysis	34
3.1	Introduction	34
3.2	Existing system review and Data analysis	34
3.2	2.1 Scheduling and Progress monitoring	34
3.2	2.2 Material management	35
3.2	2.3 Plant Costing	36
3.2	2.4 Labour Costing	37
3.2	2.5 Interim billing	37
3.2	2.6 Cost Control	38
3.2	2.7 Shortcomings of the system	39
3.3	Features of an Integrated Cost Management System	40
3.3	3.1 Integrated Estimating and Scheduling	40
3.3	3.2 Integrated Cost Budgeting and Control	41
3.3	3.3 Integrated Resource Monitoring	46
3.3	3.4 Integrated Billing	47
3.3	S.5 System Architecture	49
3.4	System Analysis	51
3.5	Conclusion Sector Conclusion Conclusion Conclusion	59
4. De	signing of Integrated database and DBMS platform	60
4.1	Introduction	60
4.2	Conceptual design	60
4.3	Logical design	62
4.3	.1 Cost budgeting and control	62
4.3	.2 Material Cost Management	63
4.3	.3 Plant Costing	68
4.3	.4 Labour costing	71
2	4.3.4.1 Permanent labour tables	71
2	4.3.4.2 Permanent labour queries	71
2	4.3.4.3 Casual labours	72
4	1.3.4.4 Labour sub contractor	73
4.3	.5 Interim billing	75
4	A.3.5.1 BOQ work done	75
4	4.3.5.2 Variation orders	76

.

v

4	4.3.5.3 Daywork	77
4	4.3.5.4 Indirect cost calculation	78
2	4.3.5.5 Price fluctuation calculation	79
4	4.3.5.6 Other expenses	80
4	4.3.5.7 Final summary	81
4.4	Physical Design	81
4.5	System Description	83
4.6	Functionality of the system	86
4.7	Conclusion	87
5 Fuz	zzy Knowledge based System for Integrated Cost and	Time Control 88
5.1	Introduction	88
5.2	Fuzzy Logic and Controlling	88
5.3	Fuzzy control Variables for activity cost and time	90
5.4	Fuzzification of variables	91
5.4	4.1 Normalisation of Fuzzy control variables	92
5.4	4.2 Quantifying fuzzy variables	93
5.4	4.3 Formulation of fuzzy membership graph	94
5.5	Fuzzy rule-base	96
5.6	Inference by the system	98
5.7	De-fuzzification	99
5.8	System development	101
5.8	3.1 FIS Editor	102
5.8	3.2 The Membership Function Editor	103
5.8	3.3 The Rule Editor	105
5.8	3.4 The rule viewer	105
5.8	3.5 The Surface viewer	106
5.9	Testing the system	107
5.10	Simulating cost and time overrun with the system	109
5.11	Advantages of the system	109
5.12	Limitations of the system	110
5.13	Combining DBMS platform and Fuzzy KBS	111
5.14	Conclusion	113

6	Con	clusion and Recommendations	115
	6.1	Summary and Conclusions	115
	6.2	Recommendations	118
	6.3	The Way forward	118

References

Appendices

- Appendix A
- Appendix B
- Appendix C
- Appendix D

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

vii

List of Figures

Figure 1.1: Research Methodology	8
Figure 1.2: Plan of the Thesis	10
Figure 2.1: Construction Management Subsystems	15
Figure 2.2: Teicholz's model	17
Figure 2.3: Hendrickson's Model	18
Figure 2.4: Ibbs'& Kim's model	18
Figure 2.5: Work Package model	19
Figure 2.6: Information Categories and Planning	21
Figure 2.7: Integration between Cost and Schedule	21
Figure 2.8: Kims' Model	22
Figure 2.9: Project Break down structure	24
Figure 2.10: Structure of DSS	29
Figure 2.11: System Development Phases	30
Figure 3.1: Portrayal of Integrated Cost System	40
Figure 3.2: Integrated Control Work flow	42
Figure 3.3: New Integration Model	44
Figure 3.4: System Architecture	50
Figure 3.5: Context Diagram	52
Figure 3.6: Data Flow Diagram	53
Figure 3.7: Expanded DFD – Estimating	54
Figure 3.8: Expanded DFD - Cost Control	55
Figure 3.9: Expanded DFD - Material Costing	56
Figure 3.10: Expanded DFD - Labour Costing	56
Figure 3.11: Expanded DFD - Plant Costing	57
Figure 3.12: Expanded DFD- Interim Billing	58
Figure 4.1: Entity-Relationship Diagram	61
Figure 4.2: Flow Chart - Material Stock Analysis	66
Figure 4.3 : Flow Chart -Material Wastage Monitoring	67
Figure 4.4: Flow Chart - Plant Stock Analysis	69
Figure 4.5: Plant Hour Monitoring	70 -
Figure 4.6: Main Window	82
Figure 4.7: Workflow Diagram	85

viii

Figure 5.1: Basic configuration of Fuzzy control system	88
Figure 5.2: Fuzzy reasoning process	89
Figure 5.3: Fuzzy Membership Function development steps	92
Figure 5.4: Typical Fuzzy membership functions	95
Figure 5.5: Inference by the system	100
Figure 5.6: De-fuzzification	101
Figure 5.7: Fuzzy Inference System	102
Figure 5.8: FIS Editor	103
Figure 5.9: Membership Function Editor	103
Figure 5.10: Rule Editor	105
Figure 5.11: Rule Viewer	106
Figure 5.12: Surface view- cost overrun	106
Figure 5.13: Surface view-Time overrun	107
Figure 5.14: Test result of cost overrun	108
Figure 5.15: Test result of time overrun	108
Figure 5.16: Simulating with the system	110
Figure 5.17: Knowledgebase-Database Integration	111
Figure 5.18: Mechanism of Integrated DBMS and KBS	112
Figure 5.19: DBMS Interface to KBS	113

List of Tables

Table 1.1: Past integration efforts	2
Table 2.1: Construction Project Management Functions	12
Table 2.2: Activity-Based Costing	25
Table 2.3: System Development Methodology	31
Table 3.1: Categorisation of Site overhead	48
Table 5-1: Agents of Activity cost and time overrun	90
Table 5-2: Normalisation of Fuzzy variables	92
Table 5-3 : Mean numeric Values for Linguistic values of variables	94
Table 5-4: Importance index	96

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

х

ľ

Abbreviations

- DSS Decision Support System
- DBMS Database Management System
- KBS Knowledge-Based System
- BOQ Bill Of Quantities
- WBS Work Breakdown Structure
- CBS Cost Breakdown Structure
- OBS Organisation Breakdown Structure
- DCBS Design Component Breakdown Structure
- WABS Work Area Breakdown Structure
- BOD Basic Construction Operation required by Design object
- WP Work Package
- PEC Primitive Elements of Construction
- PBS Project Breakdown Structure
- ABC Activity-Based Costing
- CICA The Construction Industry Computer Association
- IT Information Technology iversity of Moratuwa, Sri Lanka.
- Electronic Theses & Dissertations
- CAD Computer Aided Designing
- DFD Data Flow Diagram
- ERD Entity Relationship Diagram
- DDE Dynamic Data Exchange
- OLE Object Embedding and Linking
- AI Artificial Intelligence
- GUI Graphical User Interface
- FIS Fuzzy Inference System