OPTIMUM REACTIVE POWER COMPENSATION & VOLTAGE CONTROL USING STATIC VAR COMPENSATOR FOR GRID SUBSTATIONS

Senadeerage Chaminda Deshapriya Kumarasinghe

(119129J)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

October 2015

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the Candidate

(S.C.D Kumarasinghe) 26th October 2015 Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters dissertation under our supervision.

Signature of the Supervisor (Dr. Asanka Rodrigo)

26th October, 2015

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Asanka Rodrigo for the continuous support given for the research and for the motivation, enthusiasm and immense knowledge. Also, I would like to express my sincere gratitude to Eng. K.P Kusum Shanthi, Deputy General Manager (TD & E), and Eng. D.S.R Alahakoon, Chief Engineer (Operation Planning) of Ceylon Electricity Board for their great support and encouragement given during the study period.

I would like to take this opportunity to extend my sincere thanks to Mrs. Dammika Thilakasena, Deputy General Manager (Asset Management-Transmission) Eng. Vajira Priyantha, Chief Engineer (Maintenance Planning), Ceylon Electricity Board for co-operation and encouragement to conduct my research work successfully and Eng. Eranga Kudahewa, Electrical Engineer (System Control) who gave me extreme support and valuable instructions during the simulations and preparation of final dissertation.

University of Moratuwa, Sri Lanka.

Further, I unst thank all the lecturers engaged in the MSC course sessions for making our vision broader providing us with the opportunity to improve knowledge in various fields.

It is a great pleasure to remember the kind cooperation of all my colleagues who helped me in this Post Graduate programme by extending their support during the research period.

My special thanks go to my parents, my wife and my brothers for supporting me spiritually throughout my life and helping me to continue the studies from start to end.

S.C.D Kumarasinghe

ABSTRACT

As the volume of power transmitted in transmission lines increases, maintaining high quality and reliable power supply is required. Modern power systems sometimes operate with heavily loaded lines resulting in power system to work under condition of higher power loss and higher voltage deviation. Sometimes, it may lead to voltage instability or system collapse.

The emergence of power electronic based FACTS technology such as Static Var Compensator (SVC) has been of great help in improving the operation of power systems as it reduces the power system instability problem, power losses and voltage deviation. Placing FACTS devices at proper locations can serve the purpose of improving voltage levels and reducing losses in the system. Due to huge investments associated with SVC, a proper analysis and planning is required before the

installation.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

The objective of the windy is to the optimization technique for minimization of power loss and voltage deviation along with installation cost calculation for the selection of SVCs for grid substations. Whole Sri Lankan power system has been modeled using the PSS/E (Power System Simulator for Engineers) software. The voltage deviation of all the buses in the network and the total active power loss in all the transmission lines are analyzed with SVCs and without SVCs using PSS®E software. Further, single line outages are considered as contingencies for optimal placement of SVC. Finally, optimum combinations of SVCs are selected to minimize the system voltage deviations and active power loss of transmission lines.

TABLE OF CONTENTS

Decl	aration	of the candidate and supervisors	ii	
Acknowledgement				
Abstract				
Contents				
List of figures				
List o	of tables	3	ix	
List o	of abbre	eviations	Х	
List o	of apper	ndices	xi	
1.	Intro	Introduction		
	1.1	Background	1	
	1.2	Motivation	5	
	1.3	Objective of the Study	6	
	1.4	Outcomes of the Study	6	
	1.5	Scope of the work	6	
2.		War Compensation (SVIC) Moratuwa, Sri Lanka.		
	0.000	Theses & Dissertations	8	
	2.2	Basic operation of SVC. lk	9	
	2.3	SVCs for Sri Lanka Transmission System	11	
3.	Existing Transmission System of Sri Lanka			
	3.1	Existing reactive power compensation methodology	14	
	3.2	Reactive power requirement	15	
	3.3	Voltage Drops	16	
	3.4	.4 Details of thermal power plants running for controlling the voltage		
		3.4.1 Kelanitissa Power Plant	17	
		3.4.2 Sapugaskanda Power Plant	18	
	3.5	Losses due to running thermal power plants		
		3.5.1 Kelanitissa Gas Turbine	19	
		3.5.2 Kelanitissa combined cycle power plant	19	
		3.5.3 Asia Power Plant	20	

		3.5.4 Sapugaskanda Power Plant	20
4.	Methodology, Simulation and Analysis of SVC selection		22
	4.1	Function of Voltage deviation, Power loss and SVC Cost	22
		4.1.1 Active power loss	22
		4.1.2 Voltage deviation	23
		4.1.3 SVC Cost	24
	4.2	Analysis using PSS/E software	24
		4.2.1 Selected SVC Combination	24
		4.2.2 Generation & load details for Hydro Maximum	
		night peak and Capacitor banks details	25
	4.3	Results	26
		4.3.1 Relationship between Voltage deviation, Power	
		loss and SVC cost	27
		4.3.2 Linear Combination between Power Loss and Voltage	
	4.4 4.5	Deviation University of Moratuwa Sri Lanka Results for Hydro Maximum Day Peak condition Electronic Theses & Dissertations Reduction of Myar generation with SVC for Hydro Maximum www.lib.mrt.ac.lk night peak	30 34 35
	4.6	Voltage deviation under single contingency condition for	
		hydro maximum night peak.	36
	4.7	Actual Voltage deviation for Hydro Maximum night peak	37
		4.7.1 Voltage deviation of selected buses	38
	4.8	Reduction of power loss	40
5.	Discussion & Conclusion		42
	5.1	Discussion	42
	5.2	Conclusion	44
	Refe	rences	46

LIST OF FIGURES

Page

Figure 2.1: Control concept of SVC	10
Figure 2.2: Graphical solution of SVC operating point for given system	10
Figure 2.3: Fixed Capacitor and TCR combination of SVC	11
Figure 2.4: SVC arrangement for Pannipitiya GS .	12
Figure 2.5: SVC control diagram	13
Figure 3.1: Reactive power & power factor curve in Biyagama GS	15
Figure 3.2: Reactive power flow in Kothamle line 1 at Biyagama GS in August 2013 - Night Peak	16
Figure 3.3: 220kV Bus Voltages of Biygama, Pannipitiya, Kelanitissa GIS on 05.08.2013, (Maximum Hydro Situation)	16
Figure 3.4: 132kV Bus Voltages of Ampara and Trinco GS on 05.08.2014, Maximum Hydroi Situafion Oratuwa, Sri Lanka.	17
Figure 4.1 Relationship between Voltage Deviation & SVC Cost	28
Figure 4.2 : Relationship between Power loss & SVC Cost	28
Figure 4.3 : Voltage Deviation, Power Loss for each SVC Combination	29
Figure 4.4: F(x) value for each SVC Combination	31
Figure 4.5: F(x) value and SVC cost for each SVC Combination	31
Figure 4.6 : Voltage of Galle 132kV bus in Hydro maximum night peak without SVC	33
Figure 4.7: Voltage of Galle 132kV bus in Hydro maximum night peak with Embilipitiya 36Mvar & Galle 27Mvar SVC	33

LIST OF TABLES

		Page
Table	3.1: Existing installed capacitor banks	14
Table	3.2: Kelantissa Power station Day time Generation data	18
Table	3.3: Kelantissa Power station night time Generation data	18
Table	3.4: Sapugaskanda Power station Generation data (05.08.2013)	19
Table	4.1: Selected SVC combinations	24
Table	4.2: Generation Details	25
Table	4.3: Load Details	25
Table	4.4: Capacitor banks in operation during the analysis	26
Table	4.5: PSS/E results for voltage deviation, power loss and SVC cost	27
	for Hydro maximum night peak	
Table	4.6: Weighted sum of Voltage Deviation Power Loss for each SVC	30
Table	4.7 Optimum SVC combinations for Hydro Maximum night peak	32
Table	4.8: PSS/E results for voltage deviation, power loss and SVC cost for	34
	Hydro maximum day peak	
Table	4.9: Optimum SVC combinations for Hydro Maximum day peak	35
Table	4.10: Reactive power generation with and without SVCs	36
Table	4.11: Voltage deviation under single contingency situation	37
Table	4.12: Actual Voltage deviation for hydro maximum night	
	peak in all buses	38
Table	4.13: Actual Voltage deviation in selected buses in Colombo	
	region GSS for hydro maximum night peak.	39
Table	4.14: Reduction of power loss for each SVC combination.	40

LIST OF ABBREVIATIONS

FACTS	Flexible AC Transmission System
SVC	Static Var Compensator
TSC	Thyristor Switched Capacitor
TCR	Thyristor Controlled Reactor
FC	Fixed Capacitor
PS	Power Station
PSS/E	Power System Simulator for Engineers

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF APPENDICES

Appendix 1: Sri Lanka Transmission System

- Appendix 2: PSS/E simulation of power flow of Transmission system without SVC
- Appendix 3: PSS/E simulation of power flow of Transmission system with SVC
- Appendix 4: Voltage deviation of all the buses of the system with SVCs

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk