ANALYSIS OF POWER QUALITY ISSUES DUE TO THE
PROPOSED SOLAR POWER PLANTS IN
HAMBANTOTA

M. Dhammika Ratnasiri

(119137G)

Department of Electrical Engineering

University of Moratuwa
Sri Lanka

December 2014
ANALYSIS OF POWER QUALITY ISSUES DUE TO THE PROPOSED SOLAR POWER PLANTS IN HAMBANTOTA

Mahadurage Dhammika Ratnasiri

(119137G)

Department of Electrical Engineering

University of Moratuwa
Sri Lanka

December 2014
DECLARATION

“I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)”.

……………………………
Signature of the candidate Date:
(M.D. Ratnasiri) University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk
The above candidate has carried out research for the Masters Dissertation under my supervision.

……………………………
Signature of the supervisor Date:
(Prof. J. P. Karunadasa)
ABSTRACT

Solar power plants, despite their high initial investment are fast spreading in Asian countries owing to the availability of higher solar radiation throughout the day time. In Sri Lanka, two grid connected small scale solar power plants of 737 kW, 500 kW are already in operation located in Baruthankanda, Hambantota.

Three private developers have made proposals for another 30 MW solar plants, (each 10 MW) near the existing plants which would be directly connected to 33kV Bus at Hambantota GSS. However, unpredictable variations in the source of energy and power electronic converters of such a large solar power plant can create a significant impact on the existing power system in power quality point of view.

This thesis describes the details of a study carried out on the probable impacts on power quality at the GSS due to random fluctuation of solar radiation level for different system-design options of the proposed 30 MW plant. Standards IEEE 519-1992 and IEEE 1547-2003 were used in the power quality check-up.
First, I pay my sincere gratitude to Prof. J.P. Karunadasa who encouraged and guided me to conduct this investigation and on preparation of final dissertation.

I extend my sincere gratitude to Prof. M. P. Dias, Head of the Department of Electrical Engineering and all the lecturers and visiting lecturers of the Department of Electrical Engineering for the support extended during the study period.

I would like to thank Dr. Sugathapala, Director General (SEA), Mr. Nadeera, and Mr. Athula from sustainable energy authority who gave me the extreme support and opportunity to gather required information & data of the existing solar power plants.

I also thank to Mr. L. D. J. Fernando, DGM (P&D)-DD4, Mr. R. S. Wimalendra, CE (P&D)-DD4 who encouraged me and provided required resources to carry out this study.

The support given by the technical staff attached to solar power plants at Baruthankanda, Hambantota and the developers of proposed power plants was remarkable.

I would like to take this opportunity to extend my sincere thanks to Mr. Chintaka Kumara Area Engineer (Hambantota), Mr. Lakshitha Wisumperuma, Electrical Engineer (Meter Lab)-DD4, Ms. Charitha Dissanayakage, EE (Maint.)-Hambantota, Ms. N.R. Ramasinghe, Electrical Engineer (Planning) –SP, Mr. Hettige, ES (Hambantota), Mr. Buddhika, ES (Hambantota) and all the colleagues of Ceylon Electricity Board who gave their cooperation to conduct my investigation work successfully.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration of the candidate & Supervisor</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of content</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xiii</td>
</tr>
</tbody>
</table>
1. Introduction 1-5
 1.1 Background 1-3
 1.2 Importance of analysis of power Quality issues due to the Solar Penetration. 3-4
 1.3 Motivation 4-5
 1.4 Objectives of the study 5
 1.5 Methodology 5
2. PV technology & characteristics 6-17
 2.1 Energy from the sun 6
 2.2 Physics of solar generation 7-12
 2.2.1 Production of p-n junction 7-9
 2.2.2 Formation of p-n junction 8
 2.2.2.1 Diffusion 8
 2.2.2.2 Depletion region 8
 2.2.2.3 Drifting 8
 2.2.2.4 Equilibrium of p-n junction 8-9
 2.2.3 Overview of a typical solar power plant 9
 2.2.4 Solar cell characteristics & PV array 9-10
 2.2.4.1 Working principle of a PV cell 10
 2.2.4.2 Main components of a solar cell 10-11
 2.2.4.3 Technology wise categorization of solar cell 11-12
 2.3 Equivalent circuit of a solar cell 12-14
 2.4 V-I characteristics & P-V characteristics 14
 2.4.1 Effect of Solar radiation on V-I characteristics & P-V characteristics 14-15
 2.4.2 Effect of cell temperature on V-I characteristics & P-V characteristics 15
 2.5 Maximum power point algorithms 16-17
3. Power quality measurements 18-48
 3.1 Overview 18-20
 3.1.1 Geographical location & grid interconnection 18
 3.1.2 Grid interconnection arrangement 19-20
 3.2 Measurements 20-22
 3.2.1 Parameters to be measured & data to be collected 20-21
 3.2.2 Point of common coupling 21-22
3.3 International standards for power quality

3.3.1 IEEE 1547-2003 23-25
 3.3.1.1 Limitations of the standard 23
 3.3.1.2 Allowable limits for voltage & frequency 23-24
 3.3.1.3 Allowable limits for voltage & current harmonics 24-25

3.3.2 IEEE 519-1992 25-26

3.3.3 Effects of harmonics 26-27

3.4 Analysis of measured data

3.4.1 General results 27-32
 3.4.1.1 Relationship between power generation & Solar irradiance 27-28
 3.4.1.2 Variation of module temperature with Solar irradiance 29

3.4.2 Results in respect of power quality 30-45
 3.4.2.1 Voltage fluctuations 30-32
 3.4.2.2 Current Harmonic distortion 33-36
 3.4.2.3 Current Harmonic Demand Distortion 36-43
 3.4.2.4 Voltage harmonics 43-45

3.4.3 Oscilloscope results 45-48
 3.4.3.1 Voltage waveform & current waveform 45-48
 3.4.3.2 Current Harmonics distortion 48

4. PSCAD Modeling 49-75

4.1 PSCAD Software 49

4.2 PV generation system of existing solar power plant at Hambantota (737 kW) 49-53
 4.2.1 Single line diagram of the solar power system 49-50
 4.2.2 Connection board & Junction box 51
 4.2.3 Power Conditioner 52-53

4.3 Modeling of existing power system in PSCAD 54-63
 4.3.1 PV model 54-56
 4.3.2 Inverter, LC filter & internal transformer 56-57
 4.3.3 Step-up transformer & 33kV equivalent system 57-58
 4.3.4 Maximum Power Point Tracking (MPPT) 59
 4.3.5 Active Power control 59-61
 4.3.6 Reactive power control 61-62
 4.3.7 Sinusoidal Pulse Width Modulation 62-63
4.3.8 Harmonics analysis 64
4.3.9 Control Panel 64-65

4.4 Simulation Results & PSCAD model validation

4.4.1 Power, Voltage & Current 65-67
 4.4.1.1 Solar irradiance at 1000 W/m² & Module temperature at 50 °C 65
 4.4.1.2 Solar irradiance at 200 W/m² & Module temperature at 28 °C 66-67

4.4.2 Current Harmonics 67-72
 4.4.2.1 Current harmonics at solar radiation, 1000 W/m² & Module temperature at 50 °C 70-71
 4.4.2.2 Current harmonics at solar radiation, 200 W/m² & Module temperature at 28 °C 71-72

4.4.3 Voltage Harmonics 73-74
 4.4.3.1 Voltage harmonics at solar radiation, 1000 W/m² & Module temperature at 50 °C 73
 4.4.3.2 Voltage harmonics at solar radiation, 200 W/m² & Module temperature at 28 °C 74

4.4.4 Simulation results under varying conditions 75

5. Power quality analysis of proposed solar plants 76-90

5.1 Overview 76

5.2 PV generation system of one 10 MW plant 76-78
 5.2.1 Single line diagram of the solar power system 76-77
 5.2.2 PV Array & Inverter characteristics 77-78
 5.2.3 LC filter 78

5.3 PSCAD Model 79-82
 5.3.1 PV array 79
 5.3.2 LC Filter 79-80
 5.3.3 Three winding step-up transformer 80-81
 5.3.4 The equivalent system 81-82

5.4 Simulation Results 83-90
 5.4.1 Power, Voltage & Current 83-84
 5.4.1.1 At Solar irradiance, 1000 W/m² & Module temperature at 50 °C 83
 5.4.1.2 Solar irradiance at 200 W/m² & Module temperature at 28 °C 84
5.4.2 Current harmonics

5.4.2.1 Current harmonics at solar radiation, 1000 W/m² & Module temperature at 50 °C
5.4.2.2 Current harmonics at solar radiation, 200 W/m² & Module temperature at 28 °C

5.4.3 Voltage Harmonics

5.4.3.1 Voltage harmonics at solar radiation, 1000 W/m² & Module temperature at 50 °C
5.4.3.2 Voltage harmonics at solar radiation, 200 W/m² & Module temperature at 28 °C

5.4.4 Analysis of results on harmonics

5.4.4.1 Voltage Harmonics
5.4.4.2 Current Harmonics

5.4.5 Voltage fluctuations at varying irradiation

6. Conclusions & Recommendations

6.1 Conclusions
6.2 Recommendations

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Appendix A- Single line diagram of a 10 MW solar power plant
Appendix B- Single line diagram of a harmonic filter
Appendix C- PSCAD model for existing Solar Power Plant
Appendix D- PSCAD model for Proposed Solar Power Plants
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Growth of installed capacity by NCRE based power plants</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Contribution to the generation by NCRE based power plants</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Overview of a typical solar power plant</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Overview of a p-n junction</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Overview of a typical solar power plant</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Building of a PV array</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Main components of a PV cell</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>PV cell categorization</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>PV cell equivalent circuit</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>V-I & P-V characteristics of a solar cell</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Effect of solar radiation on V-I & P-V characteristics</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Effect of solar radiation on V-I & P-V characteristics</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Flow Chart of the IC algorithm</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Relationship between incremental & instantaneous conductance</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Geographical Map indicating the location of existing plants</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Network Map indicating the grid interconnection of existing plants</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Detail X referred to Figure 3.2</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Point of Common Coupling of a typical power system</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>PCC of existing power plants, Node A, Node B, Node C</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Photographs taken during the measurements</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Relationship between Generation & radiation on 21/09/2013</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Relationship between Generation & radiation on 20/09/2013</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Relationship between Mod. Temp. & radiation on 21/09/2013</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Relationship between Mod. Temp. & radiation on 20/09/2013</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Variation of RMS voltage & radiation on 01/09/2013</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Average curve of variation of RMS voltage & radiation on 01/09/2013</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Variation of RMS voltage & radiation on 02/09/2013</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Averaged curve of variation of RMS voltage & radiation on 02/09/2013</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Variation of RMS voltage & radiation on 30/11/2013 at partly generation</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>Variation of current harmonics over two consecutive days</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.17</td>
<td>Variation of THD-A over five consecutive days</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.18</td>
<td>Variation of THD-A on 27/09/2013</td>
<td>34</td>
</tr>
</tbody>
</table>
Figure 3.19 Averaged curve of THD-A variation
Figure 3.20 Individual harmonics variation
Figure 3.21 TDD-A variation
Figure 3.22 2nd harmonic demand distortion variation
Figure 3.23 3rd harmonic demand distortion variation
Figure 3.24 4th harmonic demand distortion variation
Figure 3.25 5th harmonic demand distortion variation
Figure 3.26 7th harmonic demand distortion variation
Figure 3.27 Individual voltage harmonics & THD-V variation at full generation
Figure 3.28 Individual Voltage harmonics & THD-V variation at partly generation
Figure 3.29 Voltage & current waveforms at 06.43 hrs. On 13/06/2014
Figure 3.30 Voltage & current waveforms at 07.18 hrs. On 13/06/2014
Figure 3.31 Voltage & current waveforms at 08.21 hrs. On 13/06/2014
Figure 3.32 Voltage & current waveforms at 09.40 hrs. On 13/06/2014
Figure 3.33 Voltage & current waveforms at 13.07 hrs. On 24/08/2013
Figure 3.34 Spectrum of current harmonics at 16.45, 09.41 hrs. On 13/06/2014
Figure 4.1 Single line diagram of the existing solar plant
Figure 4.2 Arrangement of a connection board & junction boxes
Figure 4.3 Internal arrangement of a power conditioner
Figure 4.4 Arrangement of the inverter
Figure 4.5 LC filter
Figure 4.6 Custom library components of PV model
Figure 4.7 Custom library components of PV model
Figure 4.8 Technical parameters & respective values of the PV array
Figure 4.9 Parameters of the MPPT library component
Figure 4.10 PSCAD model for inverter, filter & internal transformer
Figure 4.11 PSCAD model for multi meter & step-up transformer
Figure 4.12 PSCAD model for 33kV equivalent system
Figure 4.13 PSCAD model for MPPT
Figure 4.14 Two port network
Figure 4.15 PSCAD model for active power control
Figure 4.16 PSCAD model for reactive power control
Figure 4.17 PSCAD model for Sinusoidal Pulse Width Modulation
Figure 4.18 PSCAD model for Harmonic analysis
Figure 4.19 Control panel
Figure 4.20 Variation of solar generation over the irradiance
Figure 4.21 Simulation results at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 4.22 Simulation results at irradiance, 200 W/m² & cell temperature 28 °C
Figure 4.23 Variation of THD-A current harmonic content with irradiance
Figure 4.24 Variation of 5th current harmonic content with irradiance
Figure 4.25 Variation of 7th current harmonic content with irradiance
Figure 4.26 Variation of 3rd current harmonic content with irradiance
Figure 4.27 Individual harmonics at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 4.28 THD-A at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 4.29 Individual harmonics at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 4.30 THD-A at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 4.31 Voltage harmonics at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 4.32 THD-V at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 4.33 Voltage harmonics at irradiance, 200 W/m² & cell temperature 28 °C
Figure 4.34 THD-V at irradiance, 200 W/m² & cell temperature 28°C
Figure 4.35 Simulation results under varying irradiance
Figure 5.1 Geographical overview of proposed power plants & interconnection
Figure 5.2 Parameters of a PV array configured in PSCAD
Figure 5.3 Harmonics filter modeled in PSCAD
Figure 5.4 Three winding transformer modeled in PSCAD
Figure 5.5 The equivalent system
Figure 5.6 Simulation results at 1000 W/m²
Figure 5.7 Simulation results at 200 W/m²
Figure 5.8 Individual harmonics at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 5.9 THD-A at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 5.10 Individual harmonics at irradiance, 200 W/m² & cell temperature 28 °C
Figure 5.11 THD-A at irradiance, 200 W/m² & cell temperature 28 °C
Figure 5.12 Voltage harmonics at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 5.13 THD-V at irradiance, 1000 W/m² & cell temperature 50 °C
Figure 5.14 Voltage harmonics at irradiance, 200 W/m² & cell temperature 28 °C
Figure 5.15 THD-V at irradiance, 200 W/m² & cell temperature 28°C
Figure 5.16 Voltage fluctuations under varying irradiation
Figure 5.17 Zoomed version of Figure 5.16
LIST OF TABLES

Table 1.1 Annual generation of existing solar plants 3
Table 3.1 Interconnection system response to abnormal voltages 24
Table 3.2 Interconnection system response to abnormal frequencies 24
Table 3.3 Harmonic distortion limits specified by IEEE 519 25
Table 3.4 Individual harmonic content variation over the critical time slots 36
Table 3.5 Calculation data sheet of maximum demand 37
Table 3.6 Maximum demand current at the PCC, Node A, B, C 38
Table 3.7 Summary of the current harmonic distortion at PCC 41
Table 3.8 Summary of the current harmonic distortion at Node A 42
Table 3.9 Summary of the current harmonic distortion at Node B 42
Table 3.10 Summary of the current harmonic distortion at Node B 43
Table 5.1 Characteristics of PV array & inverters 77
Table 5.2 Variation of voltage at PCC under varying irradiation 91

LIST OF APPENDICES

Appendix A Single line diagram of a 10 MW solar power plant 96
Appendix B Single line diagram of a harmonic filter 97
Appendix C- PSCAD model for existing Solar Power Plant 98
Appendix D- PSCAD model for Proposed Solar Power Plants 99
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEB</td>
<td>Ceylon Electricity Board</td>
</tr>
<tr>
<td>SEA</td>
<td>Sustainable Energy Authority</td>
</tr>
<tr>
<td>PSCAD</td>
<td>Power Systems Computer Aided Design</td>
</tr>
<tr>
<td>P&D</td>
<td>Planning & Development</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineer</td>
</tr>
<tr>
<td>ES</td>
<td>Electrical Superintendent</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical & Electronic Engineers</td>
</tr>
<tr>
<td>TDD</td>
<td>Total Demand Distortion</td>
</tr>
<tr>
<td>NCRE</td>
<td>Non- Conventional Renewable Energy</td>
</tr>
<tr>
<td>GSS</td>
<td>Grid Sub Station</td>
</tr>
<tr>
<td>PV</td>
<td>Photo Voltaic</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>AC</td>
<td>Alternative Current</td>
</tr>
<tr>
<td>STC</td>
<td>Standard Test Conditions</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking</td>
</tr>
<tr>
<td>IC</td>
<td>Incremental Conductance</td>
</tr>
<tr>
<td>P&O</td>
<td>Perturb & Observe</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>PCC</td>
<td>Point of Common Coupling</td>
</tr>
<tr>
<td>DR</td>
<td>Distributed Resource</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>DDLO</td>
<td>Drop Down Lift Off</td>
</tr>
<tr>
<td>ABS</td>
<td>Air Break Switch</td>
</tr>
<tr>
<td>EMTDC</td>
<td>Electro Magnetic Transients including DC</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate Bipolar Transistor</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
</tbody>
</table>