M. Dhammika Ratnasiri

ANALYSIS OF POWER QUALITY ISSUES DUE TO THE PROPOSED SOLAR POWER PLANTS IN HAMBANTOTA

M. Dhammika Ratnasiri

(119137G)

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2014

ANALYSIS OF POWER QUALITY ISSUES DUE TO THE PROPOSED SOLAR POWER PLANTS IN HAMBANTOTA

Mahadurage Dhammika Ratnasiri

(119137G)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations ubmitted in partial fulfillment of the requirements for the degree of WWW.ID.mrt.ac.lk Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2014

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)".

Signature of the candidate

Date:

(M.D. Ratnasiri)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Dissertation under my supervision.

.....

Signature of the supervisor (Prof. J. P. Karunadasa) Date:

ABSTRACT

Solar power plants, despite their high initial investment are fast spreading in Asian countries owing to the availability of higher solar radiation throughout the day time. In Sri Lanka, two grid connected small scale solar power plants of 737 kW, 500 kW are already in operation located in Baruthankanda, Hambantota.

Three private developers have made proposals for another 30 MW solar plants, (each 10 MW) near the existing plants which would be directly connected to 33kV Bus at Hambantota GSS. However, unpredictable variations in the source of energy and power electronic converters of such a large solar power plant can create a significant impact on the existing power system in power quality point of view.

This thesis describes the details of a study carried out on the probable impacts on power quality at the GSS due to random fluctuation of solar radiation level for different systemdesign options of the proposed 30 MW plant. Standards IEEE 519-1992 and IEEE 1547-

2003 were used in the power quality check-op atuwa, Sri Lanka.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

First, I pay my sincere gratitude to Prof. J.P. Karunadasa who encouraged and guided me to conduct this investigation and on preparation of final dissertation.

I extend my sincere gratitude to Prof. M. P. Dias, Head of the Department of Electrical Engineering and all the lecturers and visiting lecturers of the Department of Electrical Engineering for the support extended during the study period.

I would like to thank Dr. Sugathapala, Director General (SEA), Mr. Nadeera, and Mr. Athula from sustainable energy authority who gave me the extreme support and opportunity to gather required information & data of the existing solar power plants.

I also thank to Mr. L. D. J. Fernando, DGM (P&D)-DD4, Mr. R. S. Wimalendra, CE (P&D)-DD4 who encouraged me and provided required resources to carry out this study.

University of Moratuwa, Sri Lanka. The support given by the decenical staff attached to isolar power plants at Baruthankanda, Hambantota and the developers of proposed power plants was remarkable.

I would like to take this opportunity to extend my sincere thanks to Mr. Chintaka Kumara Area Engineer (Hambantota), Mr. Lakshitha Wisumperuma, Electrical Engineer (Meter Lab)-DD4, Ms. Charitha Dissanayakage, EE (Maint.)-Hambantota, Ms. N.R. Ramasinghe, Electrical Engineer (Planning) –SP, Mr. Hettige, ES (Hambantota), Mr. Buddhika, ES (Hambantota) and all the colleagues of Ceylon Electricity Board who gave their co-operation to conduct my investigation work successfully.

TABLE OF CONTENTS

Declaration of the candidate & Supervisor	i
Abstract	ii
Acknowledgements	iii
Table of content	V
List of Figures	ix
List of Tables	xii
List of Appendices	xii
List of Abbreviations	xiii

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

1. Introd	duction	1-5
1.1 B	ackground	1-3
1.2 Ir	nportance of analysis of power Quality issues due	
to	the Solar Penetration.	3-4
1.3 M	lotivation	4-5
1.4 O	bjectives of the study	5
1.5 N	Iethodology	5
2. PV te	echnology & characteristics	6-17
2.1 E	nergy from the sun	6
2.2 P	hysics of solar generation	7-12
2.	.2.1 Production of p-n junction	7-9
2.	.2.2 Formation of p-n junction	8
	2.2.2.1 Diffusion	8
	2.2.2.2 Depletion region	8
	2.2.2.3 Drifting	8
	2.2.2.4 Equilibrium of p-n junction	8-9
2.	.2.3 Overview of a typical solar power plant	9
2	2.4 Solar cell characteristics & PV array	9-10
	2.2.4.1 Working principle of a PV cell	10
	2.2.4.2 Main components of a solar cell	10-11
	2.2.4.3 Technology wise categorization of solar cell	11-12
2.3 E	quivalent circuit of a solar cell	12-14
2.4 V	Y-I characteristics & P-V characteristics	14
2.	.4.1 Effect of Solar radiation on V-I characteristics &	
	P-V characteristics	14-15
2.	.4.2 Effect of cell temperature on V-I characteristics & P-V	
	characteristics	15
2.5 N	faximum power point algorithms	16-17
3. Powe	er quality measurements	18-48
3.1 0	Overview	18-20
3.	.1.1 Geographical location & grid interconnection	18
3.	.1.2 Grid interconnection arrangement	19-20
3.2 N	leasurements	20-22
3.	2.1 Parameters to be measured & data to be collected	20-21
3.	.2.2 Point of common coupling	21-22

	3.3 Intern	ational standards for power quality	
3.3.1 IEEE 1547-2003 23-2			
	3.3	3.1.1 Limitations of the standard	23
	3.3	3.1.2 Allowable limits for voltage & frequency	23-24
	3.3	3.1.3 Allowable limits for voltage & current harmonics	24-25
	3.3.2	IEEE 519-1992	25-26
	3.3.3	Effects of harmonics	26-27
	3.4 Analy	sis of measured data	
	3.4.1	General results	27-32
	3.4	4.1.1 Relationship between power generation &	
		Solar irradiance	27-28
	3.4	4.1.2 Variation of module temperature with	
		Solar irradiance	29
	3.4.2	Results in respect of power quality	30-45
	3.4	4.2.1 Voltage fluctuations	30-32
	3.4	4.2.2 Current Harmonic distortion	33-36
	3.4	4.2.3 Current Harmonic Demand Distortion	36-43
	3.4	4.2.4: Voltage harmonics ratuwa. Sri Lanka.	43-45
	4.3	Elscillescope resultses & Dissertations	45-48
	3.4	4.3.1 Woltage waveform & current waveform	45-48
	3.4	4.3.2 Current Harmonics distortion	48
4.	PSCAD N	Aodeling	49-75
	4.1 PSCA	D Software	49
	4.2 PV ge	eneration system of existing solar power plant at	
	Hamb	antota (737 kW)	49-53
	4.2.1	Single line diagram of the solar power system	49-50
	4.2.2	Connection board & Junction box	51
	4.2.3	Power Conditioner	52-53
	4.3 Model	ling of existing power system in PSCAD	
	4.3.1	PV model	54-56
	4.3.2	Inverter, LC filter & internal transformer	56-57
	4.3.3	Step-up transformer & 33kV equivalent system	57-58
	4.3.4	Maximum Power Point Tracking (MPPT)	59
	4.3.5	Active Power control	59-61
	4.3.6	Reactive power control	61-62
	4.3.7	Sinusoidal Pulse Width Modulation	62-63

4.3.8	Harmonics analysis	64
4.3.9	Control Panel	64-65
4.4 Simul	ation Results & PSCAD model validation	
4.4.1	Power, Voltage & Current	65-67
4.4	4.1.1 Solar irradiance at 1000 W/m ² & Module	
	temperature at 50 °C	65
4.4	4.1.2 Solar irradiance at 200 W/m ² & Module	
	temperature at 28 °C	66-67
4.4.2	Current Harmonics	67-72
4.4	4.2.1 Current harmonics at solar radiation, 1000 W/m ² &	
	Module temperature at 50 °C	70-71
4.4	4.2.2 Current harmonics at solar radiation, 200 $W/m^2 \&$	
	Module temperature at 28 °C	71-72
4.4.3	Voltage Harmonics	73-74
4.4	4.3.1 Voltage harmonics at solar radiation, $1000 \text{ W/m}^2 \&$	
	Module temperature at 50 °C	73
4.4	4.3.2 Voltage harmonics at solar radiation, 200 W/m ² &	
1000	University of Murratuse at 28°C, Sri Lanka.	74
4.4 \$	simulation results undersvæying sonditionsons	75
5. Power qua	tity analysis of proposed solar plants	76-90
5.1 Overv	iew	76
5.2 PV ge	neration system of one 10 MW plant	76-78
5.2.1	Single line diagram of the solar power system	76-77
5.2.2	PV Array & Inverter characteristics	77-78
5.2.3	LC filter	78
5.3 PSCA	D Model	79-82
5.3.1	PV array	79
5.3.2	LC Filter	79-80
5.3.3	Three winding step-up transformer	80-81
5.3.4	The equivalent system	81-82
5.4 Simul	ation Results	83-90
5.4.1	Power, Voltage & Current	83-84
5.4	1.1 At Solar irradiance, 1000 W/m ² &	
	Module temperature at 50 °C	83
5.4	.1.2 Solar irradiance at 200 W/m ² & Module	
	temperature at 28 °C	84
	vii	

5.4.2 Current harmonics	84-86
5.4.2.1 Current harmonics at solar radiation, 1000 W/m^2 &	
Module temperature at 50 °C	84-85
5.4.2.2 Current harmonics at solar radiation, 200 W/m^2 &	
Module temperature at 28 °C	86
5.4.3 Voltage Harmonics	87-88
5.4.3.1 Voltage harmonics at solar radiation, 1000 W/m^2 &	
Module temperature at 50 °C	87
5.4.3.2 Voltage harmonics at solar radiation, 200 W/m^2 &	
Module temperature at 28 °C	88
5.4.4 Analysis of results on harmonics	89-90
5.4.4.1 Voltage Harmonics	89
5.4.4.2 Current Harmonics	89-90
5.4.5 Voltage fluctuations at varying irradiation	90-92
6. Conclusions & Recommendations	93-94
6.1 Conclusions	93
6.2 Recommendations	94
University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	
Reference Listwww.lib.mrt.ac.lk	95
Appendix A- Single line diagram of a 10 MW solar power plant	96
Appendix B- Single line diagram of a harmonic filter	97
Appendix C- PSCAD model for existing Solar Power Plant	98
Appendix D- PSCAD model for Proposed Solar Power Plants	

LIST OF FIGURES

		Page
Figure 1.1	Growth of installed capacity by NCRE based power plants	2
Figure 1.2	Contribution to the generation by NCRE based power plants	2
Figure 2.1	Overview of a typical solar power plant	6
Figure 2.2	Overview of a p-n junction	7
Figure 2.3	Overview of a typical solar power plant	9
Figure 2.4	Building of a PV array	10
Figure 2.5	Main components of a PV cell	11
Figure 2.6	PV cell categorization	12
Figure 2.7	PV cell equivalent circuit	13
Figure 2.8	V-I & P-V characteristics of a solar cell	13
Figure 2.9	Effect of solar radiation on V-I & P-V characteristics	15
Figure 2.10	Effect of solar radiation on V-I & P-V characteristics	15
Figure 2.11	Flow Chart of the IC algorithm	17
Figure 2.12	Relationship between incremental & instantaneous conductance	17
Figure 3.1	Geographica Wap in death of the location of existing plants	18
Figure 3.2	twoFk Map maisating the griden biosmet along existing plants	19
Figure 3.3	Detail X referred to Figure 3.2	20
Figure 3.4	Point of Common Coupling of a typical power system	21
Figure 3.5	PCC of existing power plants, Node A, Node B, Node C	22
Figure 3.6	Photographs taken during the measurements	22
Figure 3.7	Relationship between Generation & radiation on 21/09/2013	28
Figure 3.8	Relationship between Generation & radiation on 20/09/2013	28
Figure 3.9	Relationship between Mod. Temp. & radiation on 21/09/2013	29
Figure 3.10	Relationship between Mod. Temp. & radiation on 20/09/2013	29
Figure 3.11	Variation of RMS voltage & radiation on 01/09/2013	30
Figure 3.12	Average curve of variation of RMS voltage & radiation on 01/09/2013	31
Figure 3.13	Variation of RMS voltage & radiation on 02/09/2013	31
Figure 3.14	Averaged curve of variation of RMS voltage & radiation on 02/09/2013	32
Figure 3.15	Variation of RMS voltage & radiation on 30/11/2013 at partly generation	32
Figure 3.16	Variation of current harmonics over two consecutive days	33
Figure 3.17	Variation of THD-A over five consecutive days	34
Figure 3.18	Variation of THD-A on 27/09/2013	34

Figure 3.19	Averaged curve of THD-A variation	35
Figure 3.20	Individual harmonics variation	36
Figure 3.21	TDD-A variation	38
Figure 3.22	2 nd harmonic demand distortion variation	39
Figure 3.23	3 rd harmonic demand distortion variation	39
Figure 3.24	4 th harmonic demand distortion variation	40
Figure 3.25	5 th harmonic demand distortion variation	40
Figure 3.26	7 th harmonic demand distortion variation	41
Figure 3.27	Individual voltage harmonics & THD-V variation at full generation	44
Figure 3.28	Individual Voltage harmonics & THD-V variation at partly generation	45
Figure 3.29	Voltage & current waveforms at 06.43 hrs. On 13/06/2014	46
Figure 3.30	Voltage & current waveforms at 07.18 hrs. On 13/06/2014	46
Figure 3.31	Voltage & current waveforms at 08.21 hrs. On 13/06/2014	47
Figure 3.32	Voltage & current waveforms at 09.40 hrs. On 13/06/2014	47
Figure 3.33	Voltage & current waveforms at 13.07 hrs. On 24/08/2013	48
Figure 3.34	Spectrum of current harmonics at 16.45, 09.41 hrs. On 13/06/2014	48
Figure 4.1	Single line diagram of the existing solar plant	50
Figure 4.2	Arrangement of a connection board & junction boxes	51
Figure 4.3	Diternal arrangement of apower & orditionertations	52
Figure 4.4	Arrangement of the inverter 1k	53
Figure 4.5	LC filter	53
Figure 4.6	Custom library components of PV model	54
Figure 4.7	Custom library components of PV model	55
Figure 4.8	Technical parameters & respective values of the PV array	55
Figure 4.9	Parameters of the MPPT library component	56
Figure 4.10	PSCAD model for inverter, filter & internal transformer	58
Figure 4.11	PSCAD model for multi meter & step-up transformer	58
Figure 4.12	PSCAD model for 33kV equivalent system	58
Figure 4.13	PSCAD model for MPPT	59
Figure 4.14	Two port network	60
Figure 4.15	PSCAD model for active power control	61
Figure 4.16	PSCAD model for reactive power control	62
Figure 4.17	PSCAD model for Sinusoidal Pulse Width Modulation	63
Figure 4.18	PSCAD model for Harmonic analysis	64
Figure 4.19	Control panel	65
Figure 4.20	Variation of solar generation over the irradiance	65

Figure 4.21	Simulation results at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}$ C	66
Figure 4.22	Simulation results at irradiance, 200 W/m^2 & cell temperature 28 °C	
Figure 4.23	Variation of THD-A current harmonic content with irradiance	
Figure 4.24	Variation of 5 th current harmonic content with irradiance	68
Figure 4.25	Variation of 7 th current harmonic content with irradiance	69
Figure 4.26	Variation of 3 rd current harmonic content with irradiance	69
Figure 4.27	Individual harmonics at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}C$	70
Figure 4.28	THD-A at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}$ C	71
Figure 4.29	Individual harmonics at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}C$	72
Figure 4.30	THD-A at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}$ C	72
Figure 4.31	Voltage harmonics at irradiance, 1000 W/m^2 & cell temperature 50 °C	73
Figure 4.32	THD-V at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}$ C	73
Figure 4.33	Voltage harmonics at irradiance, 200 W/m^2 & cell temperature 28 °C	74
Figure 4.34	THD-V at irradiance, 200 W/m ² & cell temperature 28° C	74
Figure 4.35	Simulation results under varying irradiance	75
Figure 5.1	Geographical overview of proposed power plants & interconnection	76
Figure 5.2	Parameters of a PV array configured in PSCAD	79
Figure 5.3	Harmonics filter modeled in PSCAD	80
Figure 5.4	Three winding transformer modeled in PSCAD	81
Figure 5.5	The equivalent system	82
Figure 5.6	Simulation results at 1000 W/m ²	83
Figure 5.7	Simulation results at 200 W/m ²	84
Figure 5.8	Individual harmonics at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}C$	85
Figure 5.9	THD-A at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}$ C	85
Figure 5.10	Individual harmonics at irradiance, 200 W/m^2 & cell temperature 28 °C	86
Figure 5.11	THD-A at irradiance, 200 W/m ² & cell temperature 28 $^{\circ}$ C	86
Figure 5.12	Voltage harmonics at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}$ C	87
Figure 5.13	THD-V at irradiance, 1000 W/m ² & cell temperature 50 $^{\circ}$ C	87
Figure 5.14	Voltage harmonics at irradiance, 200 W/m^2 & cell temperature 28 °C	88
Figure 5.15	THD-V at irradiance, 200 W/m^2 & cell temperature 28°C	88
Figure 5.16	Voltage fluctuations under varying irradiation	91
Figure 5.17	Zoomed version of Figure 5.16	92

LIST OF TABLES

Table 1.1	Annual generation of existing solar plants	3	
Table 3.1	Interconnection system response to abnormal voltages	24	
Table 3.2	Interconnection system response to abnormal frequencies	24	
Table 3.3	Harmonic distortion limits specified by IEEE 519	25	
Table 3.4	Individual harmonic content variation over the critical time slots 36		
Table 3.5	Calculation data sheet of maximum demand 3'		
Table 3.6	Maximum demand current at the PCC, Node A, B, C 38		
Table 3.7	Summary of the current harmonic distortion at PCC 4		
Table 3.8	Summary of the current harmonic distortion at Node A 42		
Table 3.9	Summary of the current harmonic distortion at Node B 4		
Table 3.10	Summary of the current harmonic distortion at Node B	43	
Table 5.1	Characteristics of PV array & inverters	77	
Table 5.2	Variation of veltage at PC Ander varying gradiation a. Electronic Theses & Dissertations	91	
	www.lib.mrt.ac.lk		

Page

LIST OF APPENDICIES

		Page
Appendix A	Single line diagram of a 10 MW solar power plant	96
Appendix B	Single line diagram of a harmonic filter	97
Appendix C-	PSCAD model for existing Solar Power Plant	98
Appendix D-	PSCAD model for Proposed Solar Power Plants	99

LIST OF ABBREVIATIONS

Abbreviation	Description
CEB	Ceylon Electricity Board
SEA	Sustainable Energy Authority
PSCAD	Power Systems Computer Aided Design
P&D	Planning & Development
EE	Electrical Engineer
ES	Electrical Superintendent
IEEE	Institute of Electrical & Electronic Engineers
TDD	Total Demand Distortion
NCRE	Non- Conventional Renewable Energy
GSS	Grid Sub Station
PV	Photo Voltaic
DC	Direct Current f Moratuwa Sri Lanka
AC (O)	EAsternative Confestes & Dissertations
STC	vStandardTest Conditions
MPPT	Maximum Power Point Tracking
IC	Incremental Conductance
P&O	Perturb & Observe
THD	Total Harmonic Distortion
PCC	Point of Common Coupling
DR	Distributed Resource
RMS	Root Mean Square
DDLO	Drop Down Lift Off
ABS	Air Break Switch
EMTDC	Electro Magnetic Transients including DC
IGBT	Insulated gate Bipolar Transistor
PWM	Pulse Width Modulation