USE OF WSP CONCEPTS IN RISK MITIGATION OF DISTRIBUTION SYSTEMS AT UNDER CAPACITY OPERATION - A CASE STUDY ON KANDY SOUTH WATER DISTRIBUTION SYSTEM

(118751B)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

October 2015

USE OF WSP CONCEPTS IN RISK MITIGATION OF DISTRIBUTION SYSTEMS AT UNDER CAPACITY OPERATION - A CASE STUDY ON KANDY SOUTH WATER DISTRIBUTION SYSTEM

Abeykoon Mayadunnage Harsha Kumara Abeykoon

(118751B)

Dissertation is submitted in partial fulfillment of the requirements for the degree

Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

October 2015

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters Dissertation under my supervision.

i

.....

Date

Prof.(Mrs.) Niranjanie Ratnayake Senior Professor Department of Civil Engineering University of Moratuwa Moratuwa

Use of Water Safety Plan concepts in risk mitigation of distribution systems at under capacity operation - A case study on Kandy South Water Distribution System

ABSTRACT

A Water Safety Plan is one of the most effective ways of ensuring that a water supply is safe and reliable for human consumption and that it meets the health and demand based standards and other regulatory requirements. WSP is based on a comprehensive risk assessment and risk management approach to all the steps in a water supply chain from source to consumer. Recently introduced WSP for distribution systems is a new concept to NWSDB. However, the NWSDB, being the authority directly responsible for treatment and delivery of drinking water to the consumer, has commenced implementation of the WSP approach to the distribution system as a first step.

Numerous studies were found in literature for assessing the formation and behavior of disinfection by products, residual chlorine and other hydraulic parameters in water distribution systems. Yet the studies related to WSP for distribution system approach were not frequently found.

The risk assessment of an under capacity operating system is carried out throughout this study and the recommendations were made to mitigate those in future. Maligathenna scheme, which is a sub-scheme coming under Kandy-South Region was analyzed in detail. The main parameters concerned were Trihalomethane, Residual Chlorine, Pressure, Water Age, Total Organic Carbon, Turbidity and Conductivitieses & Dissertations

Water quality parameters were tested at site or in the laboratory. A hydraulic model was built using Water GEMs software to determine the hydraulic parameters such as pressure, water age. A special water quality model was developed to assess the performance of the distribution network and predict the parameter values for the future.

General conclusions along with the specific recommendations were made based on the results and observations met throughout the study. WSP hazard identification and assessment approach is followed throughout the study. Some alarming findings were listed with respect to TTHM and RCl. However clear and significant relationships among the parameters could not be found. Most of the recommendations which were made at the end of the study are expected to be implemented either in design stage or during operation and maintenance period.

Key words: Water safety plan, Water quality parameters, Hydraulic parameters, Pipe distribution system, Risk assessment

ACKNOWLEDGEMENTS

First my special gratitude goes to Senior Professor Mrs. Niranjanie Ratnayake, the research supervisor, for her precious guidance and kind support with patience and encouragement provided throughout the research.

In addition my sincere thanks are also for the Co-supervisor Dr.S.K.Weragoda, Chief Engineer (NWSDB) who has initialized this research topic and for the guidance, encouragement and critical comments throughout the research period.

Further my grateful thanks are expressed to Dr. Jagath Manatunga, the Course Coordinator of Master of Science in Environmental Engineering and Management Degree for giving the opportunity to undergo through the dissertation and for knowledge gained. Further thanks go to Dr. Mahesh Jayaweera and all the academic and non-academic staff of the Department of Civil Engineering, University of Moratuwa for their kind help given to make this piece of work a success.

University of Moratuwa, Sri Lanka.

ectronic Theses & Dissertations my grateful appreciation to Eng.C.R.Perera, Deputy General www.lib.mrt.ac.lk I would like to extend Eng.(Mrs.)M.K.Bandara, Manager(NWSDB), Deputy General Manager (NWSDB), Eng.K.W.Premasiri, Deputy General Manager(NWSDB), Eng.B.U.J.Perera, Chief Engineer (NWSDB) who were my superiors at work for providing this opportunity to continue my higher studies.

My appreciation is incomplete if I do not mention the enormous support and help extended by Mr.Gayan Amarasekara, National Research Council and University of Peradeniya for water quality testing work. Further I should convey my gratitude to Greater Kandy Laboratory staff, Mr.R.G.S.Pushpakumara, OIC, Kandy South Water Treatment Plant and his staff and Kandy RSC staff for their for their support during various parts of the study.

Above all, I wish to thank my wife Hasanthi, son Randeera, mother, father and sister for their never-ending moral support and encouragement throughout the study period without which I will never be able to complete this study.

TABLE OF CONTENTS

DEC	LARATION	OF THE CANDIDATE AND SUPERVISOR	i
ACK	NOWLEDGI	EMENTS	ii
ABS	FRACT		iii
LIST	OF FIGURE	S	vii
LIST	OF TABLES	5	ix
LIST	OF ABBRE	VIATIONS	х
LIST	OF APPENI	DICES	xi
1. I	NTRODUCT	ION	1
	1.1 Backgrou	und to research	1
	Ũ	objectives of the research	3
		work and limitations	5
	Ĩ		
2. L	LITERATURI	E REVIEW	6
	2.1 Introduct	Electronic Theses & Dissertations	6
	2.1.1	Background to the literature review.	6
	2.1.2	Waterborne diseases and epidemics	6
	2.1.3	Requirements for safe drinking water	7
	2.1.4	Water treatment technology and distribution networks	8
	2.2 Disinfect	ion	9
	2.2.1	Disinfection modes	9
	2.2.2	Importance of disinfection	9
	2.2.3	Different chemicals and methods used in disinfection	10
	2.3 Chlorinat	ion	12
	2.3.1	Introduction to Chlorination	12
	2.3.2	Chemistry of Chlorination	12
	2.3.3	Different techniques used in chlorination	15
	2.3.4	Formation of disinfection by-products	16
	2.3.5	Importance of chlorination against other disinfection methods	21
	2.3.6	Factors affecting the rate of chlorine decay	21

	2.4 H	Evolution of Water Safety Plan Approach	22	
	2.5 \$	Studies on relationships between THM formation and other parameters		
	i	n the distribution system	23	
		2.5.1 Clark, 1998	23	
		2.5.2 Xin Li et al., 2005	25	
		2.5.3 Damien Mouly et al., 2005	26	
		2.5.4 Manuel J.Rodriguez et al., 2001	28	
		2.5.5 Shafy et al., 2000	28	
		2.5.6 Jianrong Wei et al., 2010	29	
		2.5.7 Bixiong Ye et al., 2009	30	
		2.5.8 Richard J. Summerhayes et al., 2011	30	
		2.5.9 Rafael J.Garcia et al., 1996.	31	
3.	RESE	EARCH METHODOLOGY	32	
	3.1	Flow diagram of Methodology	32	
	3.2	Selecting a suitable scheme for the analysis. University of Moratuwa, Sri Lanka.	33	
	3.3	Selection of sampling points Electronic Theses & Dissertations	33	
	3.4		34	
	3.5	Pipeline distribution network modelling	35	
		3.5.1 Developing Hydraulic Model, calibration and analysis	35	
		3.5.2 Water Quality Model Analysis	37	
	3.6	Sample Collection and Analysis for RCl, THM, TOC, Turbidity and		
		Conductivity	38	
	3.7	Applying Water Safety Plan concepts	40	
4.	ANA	LYSIS, RESULTS AND DISCUSSION	41	
	4.1	Introduction		
	4.2	System Assessment		
	4.3	Results, Analysis and discussion of field data, model data and laboratory		
		investigated data	44	
		4.3.1 Residual Chlorine	44	
		4.3.2 Total Trihalomethane	53	
		4.3.3 Total Organic Carbon, Turbidity, Conductivity	58	

	4.3	.4 Results of hydraulic model	64
	4.3	.5 TTHM and RCl data comparison of Kandy South region reservoirs	s 72
5.	CONC	LUSIONS AND RECOMMENDATIONS	76
	5.1	Conclusions	76
	5.2	Recommendations	77
RE	FEREN	CES	80
AP	PENDI	CES	.83
	Apper	ndix A - Determination of THM in drinking water by Headspace technique	83
	Apper	ndix B - Model Calibration as illustrated in WaterGEMS V8i Help	84

LIST OF FIGURES

=

Figure 2.1: Epidemics of waterborne diseases	Page 6
	0
Figure 2.2: Common pathogens and relevant diseases that could be found in	0
drinking water	8
Figure 2.3: Factors affecting on Chlorine decay	14
Figure 2.4: Different types of chlorination	16
Figure 2.5: Relationship among THM, FA and Cl ₂ concentrations	19
Figure 3.1: Peak factors used to calculate hourly demand of the system	36
Figure 4.1: Pipe network system of Maligathenna Scheme	42
Figure 4.2: Population density map of Kandy South Region	43
Figure 4.3: RCl variation in Maligathenna Scheme	46
Figure 4.4: Residual Chlorine variation with Water Age	47
Figure 4.5: Water Quality model for Maligathenna scheme under present demand-	
Figure 4.6 Water Quality model for Maligathenna scheme under future demand-	50
Residual Chlorine mrt. ac. lk	51
Figure 4.7: Plot of field RCl vs Model RCl for present demand	53
Figure 4.8: TTHM variation in Maligathenna scheme	56
Figure 4.9: Co-relation between TTHM and RCl	57
Figure 4.10: Total organic carbon variation in Maligathenna scheme	61
Figure 4.11: Turbidity variation in Maligathenna scheme	62
Figure 4.12: Conductivity variation in Maligathenna scheme	63
Figure 4.13: Pressure variation of Maligathenna scheme at 1000 hours under presen	nt
Demand	65
Figure 4.14: Water Ages of Maligathenna scheme at 1000 hours under present	
demand	66
Figure 4.15: Water Ages of Maligathenna scheme at 1000 hours under present den	nand
Optimized Model	69
Figure 4.16: Pressure variation of Maligathenna Scheme under future demand	70
Figure 4.17: Age variation of Maligathenna Scheme under future demand	71
Figure 4.18: Graph of TTHM vs Per connection capacity	73

Page

- Figure 4.19: Water age variation of Maligathenna Reservoir under present demand 75
- Figure 4.20: Water age variation of Maligathenna Reservoir under future demand 75

LIST OF TABLES

	Page
Table 3.1: Hydraulic model calibration data	36
Table 4.1: RCl values of different sampling locations in Kandy South Region	44
Table 4.2: Sampling points with higher TTHM and higher RCl	48
Table 4.3: Regional laboratory microbiological test data	49
Table 4.4: Field RCl values and model RCl values	52
Table 4.5: TTHM values of different sampling locations in Kandy South Region	53
Table 4.6: TOC, Turbidity, Conductivity values of different sampling locations i	n
Kandy South Region	58
Table 4.7: Pressure and age values of Maligathenna scheme	64
Table 4.8: Water quality comparison of reservoirs	72

LIST OF ABBREVIATIONS

Abbreviation		Description
TTHM	-	Total Trihalomethane
RCl	-	Residual Chlorine
TOC	-	Total Organic Carbon
DBP	-	Disinfection by Products
OIC	-	Officer in Charge
NWSDB	-	National Water Supply and Drainage Board
DI	-	Ductile Iron
GI	-	Galvanized Iron
СТ	-	Contact Time
SLS	-	Sri Lanka Standards
WHO	-	World Health Organization
WSP	-	University of Woratuwa, Sri Lanka.
UV 🧃		Elettrivialet Theses & Dissertations
WTP		wWateriFreatment Plant
DEM	-	Digital Elevation Model
SACDA	-	Supervisory Control And Data Acquisition
NRW	-	Non Revenue Water
WTP	-	Water Treatment Plant
O&M	-	Operation and Maintenance
USEPA	-	United States Environmental Protection Agency
NOM	-	Natural Organic Matter
DOC	-	Dissolved Organic Carbon
GIS	-	Geographical Information System

LIST OF APPENDICES

_

Appendix	Description	Page
APPENDIX - A	Determination of THM in drinking water by Headspace	
	Technique	83
APPENDIX – B N	Aodel Calibration as illustrated in Water GEMS V8i Help	84

