CLIMATE-SENSITIVE URBAN PUBLIC SPACE: A SUSTAINABLE APPROACH TO URBAN HEAT ISLAND MITIGATION IN COLOMBO, SRI LANKA

Narein Gerald Rajintha Perera

(03/9908)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Degree of Doctor of Philosophy

Department of Architecture

University of Moratuwa Sri Lanka

January 2015

CLIMATE-SENSITIVE URBAN PUBLIC SPACE: A SUSTAINABLE APPROACH TO URBAN HEAT ISLAND MITIGATION IN COLOMBO, SRI LANKA

Narein Gerald Rajintha Perera

(03/9908)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Thesis submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy

Department of Architecture

University of Moratuwa Sri Lanka

January 2015

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other university or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

The above candidate has carried out research for the Ph.D. thesis under my supervision.

Signature of Supervisor: Prof. P K S Mahanama

.....

Date:

i

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

dedicated to;

my children; ananya, vinaya, dhruv

my wife; pendrine

and to my parents

Acknowledgements

I wish to express my thanks to the people who in their numerous ways helped towards the successful compilation of this thesis.

Firstly, my heartfelt thanks go to my supervisors Professor. Rohinton Emmanuel and Professor. P K S Mahanama.

To Professor. Emmanuel - My 'Mentor'- who throughout these many years, has been a pillar of strength in everything I do. For his faith, steadfast generosity and for being a 'true' teacher, in the very essence of the word.

To Professor. Mahanama – as my supervisor and the Dean of the Faculty of Architecture, has supported and driven me to complete this task right throughout. His sense of fairness and honesty is much appreciated.

I would also like to thank my examiners, Professor Susan Roaf - Heriot-Watt University, Edinburgh Wonted Kingdom, Professor Ranjith Petera - Sultan Qaboos University, Organ and Otrobotana Generativa DGuparatna Associates, Colombo, for providing Valuable commentant for Crevising and improving the thesis. My appreciation is also extended to Professor Dileeka Dias. Chairperson of the Examination Committee and the Dean, Faculty of Graduate Studies.

I am grateful to the University of Moratuwa, which has granted me this opportunity to further my knowledge and for being able to return the same as a lecturer in the Department of Architecture.

I thank Professor. Rahula Attalage, who as the external examiner in the progress review process, has given me valuable, constructive guidance and support.

Special thanks go to Dr. Shaleeni Coorey, Research Coordinator, Department of Architecture, for her continued support and for teaching me the nuances of statistical analysis.

I acknowledge the valuable contribution and support of the Director of Postgraduate Studies, Faculty of Architecture - Prof. Harsha Munasinghe, Dr. Sepani Senarathne and Dr. Yasangika Sandanayake.

The Head of the Department of Architecture, for the tolerance and the support for my candidature as a part-time student, while teaching at the department – Prof. Samitha Manawadu, Prof. Harsha Munasinghe, Archt. D P Chandrasekera and Dr. Gamini Weerasinghe.

Prof. Lakshman Alwis is acknowledged for awarding me the 'CIC Scholarship for Higher Degrees' and m/s CIC Holdings PLC for the scholarship provided during the initial years of my research.

I thank the technical staff of the faculty for their sustained support throughout – Mr. Ruwan Attanayake, Mr. Jayantha Kithsiri, Mr. Alahakoon and Mr. Chathura Masakorala.

My gratitude is extended to Prof. Gerald Mills, the President, International Association of Urban Climate (IAUC) for introducing to me the concept of 'Local Climate Zones' and for providing me with continued opportunities for knowledge sharing and discussion.

The support of my teachers, Archt. Chris de Saram, Archt. Madhura Prematilake and Archt. Ashley de Vos, who have continually encouraged me to complete the research is much appreciated ity of Moratuwa, Sri Lanka.

I am gratefut to my friends and colleagues for all the support throughout – Roghithan, Shaleeni, Sanjaya, Jeba, Amishka, Ara, Dilmini, Nileeka, Susantha and Gamini.

Sincere thanks go to my juniors and students – Thanuja, Chameera, Lakmal, Rizna, Shankanath, Pubudu, Buddhimal, Amila and Lakmani.

I thank my Parents, my wife Pendrine and my children Ananya, Vinaya and Dhruv for their love, tolerance and forgiveness. It is their time with me that I have appropriated in my endeavour to complete this task.

Most importantly, I thank God – through whom "all things are possible".

Abstract

Manipulating the urban fabric is fundamental to mitigate and adapt to the warming trend in the growing high-density tropical cities. However, excessive data needs, weak analytical methods and the un-coordinated planning regimes pose barriers to achieving this aim.

The main aim of the research is to bridge the gap in urban design-climate links, being translated into guidelines for real-world applicability in a background climate affected by global warming. The study is limited to the warm humid tropical climate of Colombo, Sri Lanka, as the experimental context for the research.

The main research questions are related to; the microclimatic background condition under current and future warming scenario; sensitivity of the key urban morphology variables that will define and drive the decision making process; and the planning and policy implications that link climate and urban design. The study employs the Local Climate Zone (LCZ) system as a method of contextual analysis, together with LCZ-based morphology simulations (ENVI-met), utilising Mean Radiant Temperature (MRT) as the key dependent variable. Statistical analyses (SPSS) of the results test the applicability and sensitivity of urban morphological variables to help mitigate / adapt to local and global warming.

The findings indicate that the Sky View Factor is the most influential urban indicator of local climate. In general, night-time shows better correlation with MRT. The nature of the Pervious Surface Cover has little or no effect on reducing MRT. And, the correlation of variables with MRT is stronger in a climatic background affected by global warming.

The work contributes a 'conceptual framework' for the deeper understanding of the effect of building morphology on local level warming in the tropics. Policies that give effect to these findings are presented on a manner that requires entaimed data input. Protocols for mapping of 1902s and relative warming effects, and sensitivity analysis of key design parameters for the mitigation of UHI in the tropics are presented. The socio-economic and planning practice implications of a LCZ-based planning approach are explored.

Keywords: ENVI-met, Global warming, Local Climate Zones, MRT, Urban Heat Island, Warm Humid Tropics

Table of Contents

Declaration of the Candidate & Supervisor	i
Dedication	ii
Acknowledgements	iii
Abstract	V
Table of Content	vi
List of Figures	Х
List of Tables	xiv
List of Abbreviations	xvii
List of Appendices	xviii

1.0	Introduc	tion	1
	1.1	Research background - Urbanisation climate change and the heat island effect Electronic Theses & Dissertations	1
	1.1.1	Climate and climate change	1
	1.1.2	Public space: Spaces between buildings	1
	1.1.3	The Heat Island Effect in the Tropics	3
	1.2	Nature of the research problem	4
	1.3	Aim, Research Questions and Limitations	7
	1.4	Structure of the thesis	10

2.0	.0 Literature Review		
	2.1	Sensitivity of cities to climate variability and change	11
	2.2	Microclimate of the Urban Canopy Layer	14
	2.3	Evidence for Urban Warming in Warm, Humid Regions	17
	2.4	Urban Heat Island studies in Colombo, Sri Lanka	19
	2.5	Design strategies to ameliorate urban warming in warm, humid cities	21

	2.6	Climatic maps, developing urban climatic guidelines, and implementing mitigation, measures for local planning practices	28
	2.7	Research Gaps	35
3.0	Research	n Design	39
	3.1	Classifying, Simplifying and Understanding the Climatic Context - for Colombo, Sri Lanka	39
	3.1.1	Introduction to the research design	40
	3.1.2	Introduction to Colombo, Sri Lanka as a case study	41
`	3.2	Classifying, Simplifying and Understanding the Climatic Context - for Colombo, Sri Lanka	50
	3.2.1	Classifying "Local Climate Zones"	50
	3.2.2	Classifying "Local warming effects" of the urban fabric	56
	3.2.3	Detailed categorisation of the mapped local level urban climate characteristics effecting Colombo	59
	3.2.4	Analysis and discussion - establishing the focus for further study study study study of Moratuwa, Sri Lanka.	65
	3.3	complete somilation of climatic contexts, iexisting and modified building morphology and using ENVI-met	67
	3.3.1	ENVI-met - the model, Input variables, output possibilities, Limitations and validation	67
	3.3.2	Simulation Matrix - Site definition, existing and projected morphology	76
	3.3.3	Analysis Protocol	87
4.0	Degulta g	nd Diamaziona	02
4.0	Kesuits a	Tradi Constantina Tradi Der Nicht und 12 00hrs enclusie	92
	4.1	Total Case Series - Total, Day, Night and 13.00hrs. analysis	92
	4.1.1	Relationship between urban morphology variables and climate variables to Mean Radiant Temperature (MRT)	98
	4.1.2	Morphology variables in relation to the time of day	101
	4.1.3	Predicting the MRT urban design variables relationship for 'night-time' hours	106

	4.1	1.4	Predicting the MRT in relation to the urban morphology variables for the peak hour of the day	109
	4.2		Site Case Series	111
	4.3		Model Case series	123
	4.4		Receptor case series	130
	4.4	4.1	Individual receptor series	130
	4.4	4.2	Street orientation series	132
	4.5		Summary of findings - similarities / variations to other studies and links to LCZ classification	142
5.0	Impli	cati	ons for urban planning and policy	156
	5.1		Planning Implications	157
	5.1	1.1	Zoning Plan and Planning regulations	157
	5.1	1.2	Density Regulations	171
	5.1	1.3	Building Regulations	175
	5.1 5.2 5.2	1.4	Development Guide plans University of Moratuwa, Sri Lanka. Policy Implications Electronic Theses & Dissertations Policy implications of a Local Climate Zone based Planning Strategy	177 178 178
	5.2	2.2	Policy on socio-economic and governance mechanisms	181
6.0	Concl	lusio	ons	186
	6.1		Summary of findings	186
	6.2		Summary of contributions	188
	6.3		Methodological challenges and future research	191
	6.4		Conclusion	193

References 194

Appendie	ces	204
А	Form "C"- City of Colombo Development Plan – 1999 and 2008	204
В	Local Climate Zone – Data Sheets	206
С	Values of geometric and surface cover properties for LCZs and Values of thermal, radiative, and metabolic properties for LCZs	224
D	Weather station data for urban and rural site comparison	226
Е	Surface Heat Island Model – Typical Excel based input / output screen	242
F	Simplification and modelling of context in ENVI-met	243
G	Detailed input data for ENVI-met simulation	247
Н	ENVI-met – Previous study areas – Detailed version of Table 3.8	248
Ι	Morphology / physical details of receptor point data	250

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Fig. 1	: Summary of tools to achieve climatic objectives.	5
Fig. 2	: Flowchart showing different stages of research.	6
Fig. 3	: Interactions between urban areas and global environmental change.	11
Fig. 4	: Estimated carbon dioxide emissions in 1995 in 000's of metric tons (t) of carbon per $1^{\circ} \times 1^{\circ}$ latitude/longitude grid cell. These values are the summed emissions from fossil-fuel burning, hydraulic cement production and gas flaring. The highest value recorded is approximately 70 000 Mt.	12
Fig. 5	: Structure of the urban atmosphere.	15
Fig. 6	: The urban boundary layer - what the sensors see.	16
Fig. 7	: Geographic distribution of climates, highlighting work in (sub) tropical regions	17
Fig. 8	: Positioning of measurement equipment within urban canyons	21
Fig. 9	: An 'ideal' shadeable urban blockatuwa, Sri Lanka.	24
Fig. 10	CAnMaplantrocireThases & Dissertations	29
Fig. 11	: UC-AnMap and UC-ReMap	29
Fig. 12	: Global Survey of Urban Sustainability Tools	33
Fig. 13	: Major urban heat island mitigation measures.	34
Fig. 14	: Sri Lanka and the location of Colombo	42
Fig. 15	: Proposed Zoning Plan (2010)	43
Fig. 16	: Proposed Zoning Plan (2020)	43
Fig. 17	: Colombo Municipal Council - Land use 2013	45
Fig. 18	: North/East Monsoon T _{mean} in 2100 (A2)	48
Fig. 19	: South/West Monsoon T _{mean} in 2100 (A2)	48
Fig. 20	: Summary of annual and seasonal rainfall projections for the 21st Century	49
Fig. 21	: North/East Monsoon Rainfall in 2100 (A2)	49
Fig. 22	: South/West Monsoon Rainfall in 2100 (A2)	49

Fig. 23	: Definitions for Local Climate Zones	51
Fig. 24	: Representative sample area of the Detailed map of Colombo - demonstrating the typical urban block boundaries	53
Fig. 25	: LCZ subclasses to represent combinations of "built" and "land cover" types	55
Fig. 26	: Rural / Urban surfaces	56
Fig. 27	: Typical LCZs of Colombo - representative images	60
Fig. 28	: LCZ map of Colombo	61
Fig. 29	: Sub-Classified LCZ map of Colombo	63
Fig. 30	: Analysis of zone classification and UHI intensity	66
Fig. 31	: ENVI-met Overview	68
Fig. 32	: ENVI-met - Measured to predicted, Pettah (Colombo)	70
Fig. 33	: Positions of selected sites within representative study area	71
Fig. 34	: ENVI-met - Measured to Predicted (Air Temperature - 0 C) - Weather Station	71
Fig. 35	: ENVI-met - Measured to Predicted (Air Temperature - ⁰ C) - Scatter Plot - wsUniversity of Moratuwa, Sri Lanka.	71
Fig. 36	Electronic Theses & Dissertations -met - Measured to Predicted (Air Temperature - ^o C) - HOBO	72
Fig. 37	: ENVI-met - Measured to Predicted (Air Temperature - ⁰ C) - Scatter Plot - HOBO	72
Fig. 38	: Selected site area - shows open spaces and major roads	76
Fig. 39	: Simulation Site01 and Site02	78
Fig. 40	: Simulation Site03 and Site04	79
Fig. 41	: Existing Buildings (all sites) - m1	80
Fig. 42	: High centre (all sites) - m2	81
Fig. 43	: High edge (HE) (all sites) - m3	82
Fig. 44	: LCZ2 (all sites) - m4	83
Fig. 45	: LCZ3 (all sites) - m5	84
Fig. 46	: Shadow umbrella (all sites) - m6	85
Fig. 47	: SVF to MRT relationship	95

Fig. 48 : BSF to MRT relationship	95
Fig. 49 : ISF to MRT relationship	96
Fig. 50 : GSF to MRT relationship	96
Fig. 51 : HRE to MRT relationship	96
Fig. 52 : FAR to MRT relationship	96
Fig. 53 : All cases - MRT to Time relationship	97
Fig. 54 : All cases - time of day comparison. SVF to MRT relationship	106
Fig. 55 : case1—site series - MRT to Time relationship	114
Fig. 56 : case1—site series - MRT to SVF relationship	114
Fig. 57 : case1—site series - MRT to BSF relationship	114
Fig. 58 : case1—site series - MRT to ISF relationship	115
Fig. 59 : case1—site series - MRT to HRE relationship	115
Fig. 60 : case1—site series - MRT to FAR relationship	115
Fig. 61 : case3—site series - MRT to Time relationship	117
Fig. 62 : case 3 - site series SVF to MRT relationship Lanka.	117
Fig. 63 stel case Flour Dri Tille colations Spissertations	119
Fig. 64 : site1 cases - SVF to MRT relationship	119
Fig. 65 : site1 cases - FAR to MRT relationship	119
Fig. 66 : case1—model series - MRT to Time relationship	125
Fig. 67 : case2—model series - MRT to Time relationship	126
Fig. 68 : case1 (m1) to case4 (all models) comparison- MRT to Time relationship	129
Fig. 69 : Typical representation of 'streets' that bound a urban block	132
Fig. 70 : case1 - all streets comparison - MRT to Time relationship	136
Fig. 71 : case2 - all streets comparison - MRT to Time relationship	138
Fig. 72 : case3 - all streets comparison - MRT to Time relationship	138
Fig. 73 : case2 to case3 streets comparison - MRT to Time relationship	138
Fig. 74 : case4 - all streets comparison - MRT to Time relationship	140
Fig. 75 : case3 - case4 streets comparison - MRT to Time relationship	140

Fig. 76	: Total case series - overlapping warming and cooling zones - MRT to Time relationship	143
Fig. 77	: Sri Lanka population density	145
Fig. 78	: LCZ combinations and frequency of occurrence	154
Fig. 79	: Conceptual - Map of Colombo showing exemplar / probable zoning of precincts	164
Fig. 80	: Conceptual section along Marine drive (Coastal strip), Colombo	165
Fig. 81	: Conceptual East/West Section, Colombo	165
Fig. 82	: Conceptual North/South Artery Section, Colombo (Galle Road)	167
Fig. 83	: Conceptual North/South Artery Section, Colombo (Marine Drive)	167
Fig. 84	: Conceptual East/West Artery Section, Colombo	169
Fig. 85	: Biera Lake - Master Plan Proposal.	170
Fig. 86	: Colombo Walkability Improvement Proposal.	170
Fig. 87	: Conceptual Precinct/ Urban block specific density control options visualization	172
Fig. 88	: Conceptual Precinct/ Urban block specific density control options visualization iversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	173

List of Tables

Table	1	: Human settlements impacts, categorised by state of scientific knowledge	13
Table	2	: UHI magnitude in selected tropical Asian megacities.	19
Table	3	: Previous work using LCZ classification as the primary tool	31
Table	4	: Future Projection Studies for Sri Lanka	47
Table	5	: Mean Temperature change scenario under A2 Scenario (Annual)	48
Table	6	: Rainfall change scenario under A2 Scenario (Annual)	49
Table	7	: Urban block meta data and data collection methods	54
Table	8	: LCZ and Sub-classification patterns for Colombo	59
Table	9	: Input data for Surface Heat Island Models	64
Table	10	: Urban - Rural Temperature Difference	65
Table	11	: Previous work using ENVI-met as primary tool	74
Table	12	NVI-met Simulation Matrix Electronic Theses & Dissertations	86
Table	13	ENVI-met output variables Definitions and Description	89
Table	14	: Data Analysis Series - Description and Objectives	90
Table	15	: Total Case Series - Correlation of Variables to Mean Radiant Temperature	93
Table	16	: Regression results of the overall MRT	99
Table	17	: Stepwise Regression results of the overall MRT	100
Table	18	: Total case 'day'- Correlation of Variables to Mean Radiant Temperature	102
Table	19	: Stepwise Regression results of the overall MRT	104
Table	20	: Total case 'night'- Correlation of Variables to Mean Radiant Temperature	107
Table	21	: Stepwise Regression results of MRT - 'night'	108
Table	22	: Total case 1pm Correlation of Variables to Mean Radiant Temperature	110

Table	23	: Case3 time- Correlation of Variables to Mean Radiant Temperature	110
Table	24	: Stepwise Regression results of MRT - '1pm'	112
Table	25	: case1 site series- Correlation of Variables to Mean Radiant Temperature	113
Table	26	: Case2 site series- Correlation of Variables to Mean Radiant Temperature	113
Table	27	: Case3 site series- Correlation of Variables to Mean Radiant Temperature	116
Table	28	: Case4 site series- Correlation of Variables to Mean Radiant Temperature	116
Table	29	: Site1 cases- Correlation of Variables to Mean Radiant Temperature	118
Table	30	: Site2 cases- Correlation of Variables to Mean Radiant Temperature	118
Table	31	: Site3 cases- Correlation of Variables to Mean Radiant Temperature	120
Table	32	: Site4 cases- Correlation of Variables to Mean Radiant	120
Table	33	Case 4 Cheen, global Warning & background Scenario to individual	121
Table	34	: Case4 (green, global warming) background scenario to individual site - correlation comparison - night	122
Table	35	: case1 models- Correlation of Variables to Mean Radiant Temperature	124
Table	36	: Case1 models - Hierarchical Change in correlation to MRT	123
Table	37	: Case-2 models- Correlation of Variables to Mean Radiant Temperature	124
Table	38	: Case3 models- Correlation of Variables to Mean Radiant Temperature	127
Table	39	: Case4 models- Correlation of Variables to Mean Radiant Temperature	127
Table	40	: Case-1 receptors- Correlation of Variables to Mean Radiant Temperature	131
Table	41	: Case-2 receptors- Correlation of Variables to Mean Radiant Temperature	133

Table	42	: Case-3 receptors - Correlation of Variables to Mean Radiant Temperature	134
Table	43	: Case-4 receptors - Correlation of Variables to Mean Radiant Temperature	135
Table	44	: Case1 - Street Orientation Series - Correlation of Variables to Mean Radiant Temperature	137
Table	45	: Case2 - Street Orientation Series - Correlation of Variables to Mean Radiant Temperature	137
Table	46	: Case3 - Street Orientation Series - Correlation of Variables to Mean Radiant Temperature	139
Table	47	: Case4 - Street Orientation Series - Correlation of Variables to Mean Radiant Temperature	139

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Abbreviations

AVA	Air Ventilation Assessment
BSF	Building Surface Fraction
CASBEE	Comprehensive Assessment System For Built Environment Efficiency
CMC	Colombo Municipal Council
CMRSP	Colombo Metropolitan Region Structure Plan
DGP	Development Guide Plans
FAR	Floor Area Ratio
GIS	Geographic Information System
GSF	Green Surface Fraction
HRE	Height of Roughness Elements
IPCC	Intergovernmental Panel on Climate Change
ISF	Impervious Surface Fraction
LCZ	Local Climatic Zones
LQ	Location Quotient
MRT	Mean Radiant Temperature
PET	Physiological Equivalent Temperature
PMV	Predicted Mean Vote
PSF	Pervious Surface; Fraction/oratuwa Sri Lanka
q	Specific Humidity Theses & Discertations
q.rel 🔰	Relative Humidity
RMSE	Root Mean Square Error ^{1C.1K}
SHIM	Surface Heat Island Model
SPSS	Statistical Package for the Social Sciences
SVF	Sky View Factor
t	Temperature
UBL	Urban Boundary Layer
UCL	Urban Canopy Layer
UCMap	Urban Climate Map
UDA	Urban Development Authority
UHI	Urban Heat Island
u, v, w	Wind Velocity
wDir	Wind Direction
WMO	World Meteorological Organisation
wSpeed	Wind Speed
WUDAPT	World Urban Database And Access Portal Tools

List of Appendices

Appendix A	:	Form "C"- City of Colombo Development Plan – 1999 and 2008	204
Appendix B	:	Local Climate Zone - Data Sheets	206
Appendix C	:	Values of geometric and surface cover properties for LCZs and Values of thermal, radiative, and metabolic properties for LCZs	224
Appendix D	:	Weather Station Data for Urban and Rural site comparison	226
Appendix E	:	Surface Heat Island Model - Typical Excel Based Input / Output Screen.	242
Appendix F	:	Simplification and Modelling of context in ENVI-met.	243
Appendix G	:	Detailed input data for ENVI-met simulation	247
Appendix H	:	ENVI-met - Previous study areas – Detailed version of Unable 318y of Moratuwa, Sri Lanka.	248
Appendix	:	Electronic Theses & Dissertations Morphology / Physical Details of Receptor Point Data www.lib.mrt.ac.lk	250