LB/DON/20/03 DCE 03/07

EFFECTS OF AXIAL SHORTENING OF COLUMNS IN TALL BUILDINGS

26 APR 2004

THESIS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN ENGINEERING

By W. M. V. P. K. Jayasena

Supervised By Dr. M. T. R. Jayasinghe

624 "02" 69 032 22 (548.7)

UM Thesis

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA 77706

December 2002

77706

DECLARATION

I, Wijesooriya Mudiyanselage Vasana Prasanthi Kumari Jayasena, hereby declare that the content of this thesis is the output of original research work carried out over a period of 15 months at the Department of Civil Engineering, University of Moratuwa. Whenever the work done by others was used, it was mentioned appropriately as a reference.

-i-

ACKNOWLEDGEMENT

First, the author wishes to acknowledge the Asian Development Bank for funding this particular research work. Author is immensely grateful to Prof (Mrs) N. Ratnayake (Director, Post Graduate Studies), Prof. Malik Ranasinhge (Dean, Faculty of Engineering, University of Moratuwa) and the Senate Research Committee for the acceptance of the research proposal as a valuable one.

Heart full gratitudes is conveyed by the author to the research supervisor, Dr. M.T.R. Jayasinghe, Associate professor, Department of Civil Engineering for his continuous supervision and support given throughout the research period.

Thanks are also due to Dr. S.A.S. Kulatilake (Research Coordinator, Department of Civil Engineering) and Dr. A.D.C. Jayanandane (Senior Lecture, Department of Civil Engineering) for their valuable ideas, which helped to make this research a success.

Special thanks to Mr. T.M.D. Fernando, fellow research student, for the support given during the period of research. The cooperation given by all other research students in the Building Science Laboratory, Department of Civil Engineering is highly acknowledged by the author. Author also wishes to thank the technical assistants Mr. D. Dishantha and C. Malnayake for their kind help in various aspects.

Whole hearted thanks to my husband for the encouragement given from the beginning of the research. The final acknowledgement is to all others helped in various ways, including the staff members of Computer Laboratory, for completing the work.

ABSTRACT

Even today, only a very few number of tall buildings are available in Sri Lanka, compared to other countries in the world. However, with the increase in population and due to the limited space availability the latest trend is to spread buildings vertically than laterally. Nowadays, there is a much greater demand for taller buildings relative to the past.

After concrete was introduced to construction world, it gained many improvements with in a short time period and because of that concrete buildings spread all over the world. Due to the higher strength ranges that can be achieved by good quality concrete, the section dimensions of members in concrete buildings have reduced drastically in the recent past. The increase in height accompanied with the reduced member sizes formed slender buildings, which require more attention focused on the lateral stability of the building. This problem was however solved by the introduction of various efficient structural forms such as shear walls, shear cores, outriggers, etc. in to the building skeleton.

Since the modern tall buildings are made up of smaller members, the vertical deformation of columns, i.e. axial shortening of columns which was considered as of with minor importance up to then, has now become more critical in high rise buildings. The total shortening contributed by creep and shrinkage of concrete and gravity loads applied on structure became more serious as the height of the structure increases. Damages can occur to structural as well as non structural elements due to differential shortening of these vertical members.

The research includes estimation of possible axial shortening of columns in buildings with selected number of storeys. Changes in estimated shortening values were observed with slight modifications to original building configurations. Finally guidelines, which can be used by design engineers at a preliminary design stage and by construction engineers at the time of construction were developed.

Keywords: Concrete buildings Axial shortening of columns

CONTENTS

•	Declaration	i
•	Acknowledgement	ii
•	Abstract	iii
•	Contents	iv
•	List of Tables	x
•	List of Figures	xv

CHAPTER 1

Introduction

1.1 General	 01
1.2 Objectives	 03
1.3 Methodology	 03
1.4 Main Findings	 04
1.5 An Overview of the Thesis	 05

CHAPTER 2

Literature Review

2.1 Analysis of Tall Buildings	 06
2.1.1 Tall Buildings	 06
2.1.1.1 Definition	 06
2.1.1.2 Construction Materials	 06
2.1.2 Lateral Stability of Tall Structures	 07
2.1.2.1 Rigid Frame Structures	 07
2.1.2.2 Shear Wall Structures	 08
2.1.2.3 Wall Frame Structures	 10
2.1.2.4 Outrigger Structures	 11
2.1.3 Computer Analysis of Structures	 13
2.1.3.1 Two Dimensional Modeling	 14
2.1.3.2 Three Dimensional Modeling	 14

2.1.3.3 Reduction Techniques	 14
2.1.3.4 The Analysis Tool – Microfeap P1	 17
2.1.4 Loads on Tall Buildings	 17
2.1.4.1 Dead Loads	 18
2.1.4.2 Live Loads	 18
2.1.4.3 Wind Loads	 18
2.1.4.4 Earthquake Loads	 19
2.2 Axial Shortening of Columns	 19
2.2.1 Contributing Factors for Axial Shortening	 20
2.2.1.1 Creep of Concrete	 20
2.2.1.2 Shrinkage of Concrete	 22
2.2.1.3 Elastic Shortening of Concrete	 23
2.2.2 Effects of Axial Shortening	 23
2.2.2.1 Absolute Shortening	 23
2.2.2.2 Differential Shortening	 24
2.2.3 Effect of Loading History and Construction Sequence on	
Axial Shortening of Columns	 26
2.2.4 Available Methods to Estimate Axial Shortening	 27
2.2.4.1 Fintel and Khan's Method	 27
2.2.4.2 Ghosh's Method	 28
2.2.4.3 Koutsoukis and Beasley's Method	 28
2.3 Summary	 29

Estimation of Axial Shortening of Columns

3.1 General	 30
3.2 Comparison of Fintel & Khan's and Ghosh's Methods	 30
3.2.1 Shortening due to Creep	 32
3.2.1.1 Creep due to Previous Load Applications	 32
3.2.1.2 Creep due to Subsequent Load Applications	 38
3.2.2 Shortening due to Shrinkage	 39
3.2.2.1 Shrinkage Strain	 39
3.2.2.2 Effect of Member Dimensions	 40

3.2.2.3 Effect of Time Since Placement	 40
3.2.2.4 Effect of Relative Humidity	 41
3.2.2.5 Effect of Reinforcement	 41
3.2.3 Elastic Shortening	 42
3.3 Selection of Creep and Shrinkage Parameters	 44
3.3.1 Method Based on BS5400- Part 4	 44
3.3.2 The Method Based on AS3600	 44
3.3.3 Recommendation of BS8110-Part 2	 45
3.3.3.1 Estimation of Ultimate Creep	 45
3.3.3.2 Estimation of Ultimate Shrinkage	 46
3.3.4 Method Selected for the Research Study	 47
3.4 Spreadsheet for Estimating Axial Shortening of Columns	 48
3.5 Summary	 52

Case Study on Tall Buildings

4.1 General	 53
4.2 Planning of Buildings	 54
4.2.1 Planning of 20 Storey Buildings	 54
4.2.1.1 Service Core Arrangement	 55
4.2.1.2 Calculation of Loads	 64
4.2.1.3 Determination of Member Sizes	 70
4.2.2 Summary of Building Data Selected for Case Study	 75
4.2.2.1 Floor Plans	 75
4.2.2.2 Arrangement of Lifts	 78
4.2.2.3 Arrangement of Sanitary Appliances	 78
4.2.2.4 Allocation of Services in the Service Core	 78
4.2.2.5 Summary of Loads	 79
4.2.2.6 Summary of Member Dimensions	 84
4.2.2.7 Arrangement of Structural Elements on Plan	 85
4.3 Two Dimensional Modeling of Buildings	 88
4.3.1 10 Storey Building	 88
4.3.1.1 Two Dimensional Model	 88
	LIBRARY
	(marked)
vi	

4.3.1.2 Material Properties	 88
4.3.2 15 Storey Building	 89
4.3.2.1 Two Dimensional Model	 89
4.3.2.2 Material Properties	 89
4.3.3 20 Storey Building	 90
4.3.3.1 Two Dimensional Model	 90
4.3.3.2 Material Properties	 91
4.3.4 25 Storey Building	 92
4.3.4.1 Two Dimensional Model	 92
4.3.4.2 Material Properties	 92
4.3.5 30 Storey Building	 93
4.3.5.1 Two Dimensional Model	 93
4.3.5.2 Material Properties	 94
4.3.6 35 Storey Building	 95
4.3.6.1 Two Dimensional Model	 95
4.3.6.2 Material Properties	 96
4.3.7 40 Storey Building	 97
4.3.7.1 Two Dimensional Model	 97
4.3.7.2 Material Properties	 98
4.4 Results of Analysis	 99
4.5 Estimation of Reinforcement	 99

Results

5.1 General	 100
5.2 Comparison Between Fintel &Khan's and Ghosh's Methods	 100
5.3 Absolute Shortening of Columns	 102
5.3.1 Absolute Shortening of Ground Floor Column	 102
5.3.2 Absolute Shortening of 5 th and 10 th Floor Columns	 104
5.4 Differential Shortening of Columns	 105
5.4.1 Differential Shortening With Grade 30 Concrete	 106
5.4.2 Differential Shortening With Grade 40 Concrete	 106
5.4.3 Differential Shortening With Grade 50 Concrete	 107

5.4.4 Average Differential Shortening		107
5.4.5 Average Differential Shortening – Complete Results of Case S	Study	108
5.4.5.1 Average Differential Shortening Values - Selection	1	108
5.4.5.2 Average Differential Shortening Values - Selection 2	2	108
5.4.5.3 Average Differential Shortening Values – Selection	3	108
5.5 Effect of Relative Humidity		109
5.5.1 Absolute Shortening		109
5.5.2 Differential Shortening		111
5.6 Effect of Construction Rate		113
5.6.1 Shortening of 10 th Floor Supports		113
5.6.2 Shortening of 15 th Floor Supports		113
5.6.3 Combined Effect of Construction Rate and Relative Humidity	·····	114
5.7 Effect of Construction Sequence		115
5.7.1 Wall Leading the Frame		115
5.7.1.1 Differential Shortening With Grade 30 Concrete		116
5.7.1.2 Differential Shortening With Grade 40 Concrete		116
5.7.1.3 Differential Shortening With Grade 50 Concrete		116
5.7.1.4 Average Differential Shortening		117
5.7.2 Frame Leading the Wall		117
5.7.2.1 Differential Shortening With Grade 30 Concrete		117
5.7.2.2 Differential Shortening With Grade 40 Concrete		118
5.7.2.3 Differential Shortening With Grade 50 Concrete		118
5.7.2.4 Average Differential Shortening		118
5.8 Effects of Axial Shortening		119
5.8.1 Axial Stresses in Masonry Walls		119
5.8.2 Additional Moments in Beams		120

Discussion of Results

6.1 General		122
6.2 Absolute Shortening of Columns		122
6.2.1 Effect of Grade of Concrete on Absolute Shortening		122
6.2.2 Effect of Cross Sectional Area of Column on Absolute Shortening		124

6.2.3 Effect of Number of Storeys in the Building on Absolute Shortening		ortening	126
	6.2.4 Effect of Delay in Partition Construction		128
	6.2.5 Problems due to Absolute Shortening		128
	6.2.6 Solutions for Absolute Shortening		129
6.3 Di	fferential Shortening between Adjacent Members		129
	6.3.1 Effect of Grade of Concrete		129
	6.3.2 Effect of Number of Storeys in the Building		130
	6.3.3 Problems due to Differential Shortening		134
	6.3.4 Solutions for Differential Shortening		134
6.4 Effect of Relative Humidity			135
	6.4.1 Absolute Shortening		135
	6.4.2 Differential Shortening		136
6.5 Ef	fect of Construction Rate		138
6.6 Ef	fect of Construction Sequence		139
	6.6.1 Simultaneous Construction of Wall and Frame		139
	6.6.2 Wall Leading the Frame by 5 Storeys		140
	6.6.3 Frame Leading the Wall by 5 Storeys		140
6.7 Summary			142

Conclusions and Guidelines

7.1 Conclusions	 143
7.1.1 Absolute Shortening	 143
7.1.2 Differential Shortening	 144
7.1.3 Construction Rate	 145
7.1.4 Construction Sequence	 145
7.2 Guidelines	 145
7.3 Future Work	 146
• References	 147
• Appendix A	 149
• Appendix B	 166

LIST OF TABLES

CHAPTER 3

3.1 Comparison of specific creep of concrete

CHAPTER 4

- 4.1 Wind forces along the height of the 20 storey building
- 4.2 Arrangement of lifts in the building selected for the case study
- 4.3 Arrangement of sanitary appliances in the building selected for the case study
- 4.4 Space allocation for services in the service core
- 4.5 Wind loads along the height of each building
- 4.6 Bending moment at the base of each building due to wind loads
- 4.7 Earthquake loads on buildings selected for the case study
- 4.8 Comparison of wind and earthquake loads on buildings
- 4.9 Shear force distribution from bottom to top of each building due to earthquake loads
- 4.10 Bending moment at the base of each building due to earthquake loads
- 4.11 Base moments in each building due to wind and earthquake loads
- 4.12 Dimensions of members selected for buildings
- 4.13 Material properties adopted in the analysis of 10 storey building
- 4.14 Material properties adopted in the analysis of 15 storey building
- 4.15 Material properties adopted in the analysis of 20 storey building
- 4.16 Material properties adopted in the analysis of 25 storey building
- 4.17 Material properties adopted in the analysis of 30 storey building
- 4.18 Material properties adopted in the analysis of 35 storey building
- 4.19 Material properties adopted in the analysis of 40 storey building
- 4.20 Section variation of columns from top to bottom of each building

CHAPTER 5

- 5.1 Comparison of shortening of 5th, 10th and 15th storey supports in the 20 storey building
- 5.2 Comparison of shortening of 5th, 10th and 15th storey supports in the 40 storey building
- 5.3 Shortening of ground floor column after certain time periods

-X-

- 5.4 Shortening of 5th floor column after certain time periods
- 5.5 Shortening of 10th floor column after certain time periods
- 5.6 Differential shortening between a column and a wall in different buildings (Grade
 30 concrete simultaneous construction)
- 5.7 Differential shortening between a column and a wall in different buildings (Grade
 40 concrete simultaneous construction)
- 5.8 Differential shortening between a column and a wall in different buildings (Grade50 concrete simultaneous construction)
- 5.9 Average differential shortening between a column and a wall in different buildings (simultaneous construction)
- 5.10 Average differential shortening between a column and a wall (Selection 1)
- 5.11 Average differential shortening between a column and a wall (Selection 2)
- 5.12 Average differential shortening between a column and a wall (Selection 3)
- 5.13 Absolute shortening of ground floor column from the moment of casting
- 5.14 Absolute shortening of ground floor column three months after casting
- 5.15 Absolute shortening of ground floor column six months after casting
- 5.16 Differential shortening along the height of each building with 40% relative humidity
- 5.17 Differential shortening along the height of each building with 60% relative humidity
- 5.18 Differential shortening along the height of each building with 80% relative humidity
- 5.19 Shortening of 10th floor support with different construction rates
- 5.20 Shortening of 15th floor support with different construction rates
- 5.21 Percentage reduction in shortening with rate of construction at different relative humidities
- 5.22 Differential shortening between a column and a wall in different buildings (Grade 30 concrete wall leading frame)
- 5.23 Differential shortening between a column and a wall in different buildings (Grade 40 concrete wall leading frame)
- 5.24 Differential shortening between a column and a wall in different buildings (Grade
 50 concrete wall leading frame)
- 5.25 Average differential shortening between a column and a wall in different buildings (wall leading frame)

- 5.26 Differential shortening between a column and a wall in different buildings (Grade 30 concrete frame leading wall)
- 5.27 Differential shortening between a column and a wall in different buildings (Grade 40 concrete frame leading wall)
- 5.28 Differential shortening between a column and a wall in different buildings (Grade
 50 concrete frame leading wall)
- 5.29 Average differential shortening between a column and a wall in different buildings (frame leading wall)
- 5.30 Stresses in masonry walls in ground floor
- 5.31 Additional moments in beams due to differential shortening between wall and column (simultaneous construction)
- 5.32 Additional moments in beams due to differential shortening between wall and column (wall leading frame)
- 5.33 Additional moments in beams due to differential shortening between wall and column (frame leading wall)

- 6.1 Variation of absolute shortening with grade of concrete
- 6.2 Variation of absolute shortening with column cross sectional area
- 6.3 Variation of absolute shortening with number of storeys in the building
- 6.4 Variation of differential shortening between a wall and an adjacent column with grade of concrete
- 6.5 M/bh² due to additional moments generated in connecting beams (simultaneous construction)
- 6.6 M/bh² due to additional moments generated in connecting beams (wall leading the frame)
- 6.7 M/bh² due to additional moments generated in connecting beams (frame leading wall)
- 6.8 Differential shortening between wall and frame at different storey levels (simultaneous construction)
- 6.9 Differential shortening between wall and frame at different storey levels (wall leading the frame)
- 6.10 Differential shortening between wall and frame at different storey levels (frame leading wall)

APPENDIX A

Member forces in a selected column in the 10 storey building A-1 A-2 Member forces in a selected column in the 15 storey building A-3 Member forces in a selected column in the 20 storey building A-4 Member forces in a selected column in the 25 storey building Member forces in a selected column in the 30 storey building A-5 A-6 Member forces in a selected column in the 35 storey building Member forces in a selected column in the 40 storey building A-7 Member forces in a selected wall in the 10 storey building A-8 A-9 Member forces in a selected wall in the 15 storey building A-10 Member forces in a selected wall in the 20 storey building Member forces in a selected wall in the 25 storey building A-11 Member forces in a selected wall in the 30 storey building A-12 A-13 Member forces in a selected wall in the 35 storey building Member forces in a selected wall in the 40 storey building A-14

APPENDIX B

Reinforcement for the selected column in the 10 storey building (Selection 1) B-1 Reinforcement for the selected column in the 10 storey building (Selection 2) B-2 B-3 Reinforcement for the selected column in the 10 storey building (Selection 3) Reinforcement for the selected column in the 15 storey building (Selection 1) B-4 B-5 Reinforcement for the selected column in the 15 storey building (Selection 2) Reinforcement for the selected column in the 15 storey building (Selection 3) B-6 Reinforcement for the selected column in the 20 storey building (Selection 1) B-7 Reinforcement for the selected column in the 20 storey building (Selection 2) B-8 Reinforcement for the selected column in the 20 storey building (Selection 3) B-9 Reinforcement for the selected column in the 25 storey building (Selection 1) B-10 Reinforcement for the selected column in the 25 storey building (Selection 2) B-11 Reinforcement for the selected column in the 25 storey building (Selection 3) B-12 Reinforcement for the selected column in the 30 storey building (Selection 1) B-13 Reinforcement for the selected column in the 30 storey building (Selection 2) B-14 Reinforcement for the selected column in the 30 storey building (Selection 3) B-15 Reinforcement for the selected column in the 35 storey building (Selection 1) B-16 Reinforcement for the selected column in the 35 storey building (Selection 2) B-17

B-18 Reinforcement for the selected column in the 35 storey building (Selection 3) B-19 Reinforcement for the selected column in the 40 storey building (Selection 1) B-20 Reinforcement for the selected column in the 40 storey building (Selection 2) B-21 Reinforcement for the selected column in the 40 storey building (Selection 3) B-22 Reinforcement for the selected wall in the 10 storey building (Selection 1) B-23 Reinforcement for the selected wall in the 10 storey building (Selection 2) B-24 Reinforcement for the selected wall in the 10 storey building (Selection 3) B-25 Reinforcement for the selected wall in the 15 storey building (Selection 1) B-26 Reinforcement for the selected wall in the 15 storey building (Selection 2) B-27 Reinforcement for the selected wall in the 15 storey building (Selection 3) Reinforcement for the selected wall in the 20 storey building (Selection 1) **B-28** B-29 Reinforcement for the selected wall in the 20 storey building (Selection 2) B-30 Reinforcement for the selected wall in the 20 storey building (Selection 3) B-31 Reinforcement for the selected wall in the 25 storey building (Selection 1) B-32 Reinforcement for the selected wall in the 25 storey building (Selection 2) Reinforcement for the selected wall in the 25 storey building (Selection 3) B-33 B-34 Reinforcement for the selected wall in the 30 storey building (Selection 1) B-35 Reinforcement for the selected wall in the 30 storey building (Selection 2) B-36 Reinforcement for the selected wall in the 30 storey building (Selection 3) Reinforcement for the selected wall in the 35 storey building (Selection 1) B-37 B-38 Reinforcement for the selected wall in the 35 storey building (Selection 2) B-39 Reinforcement for the selected wall in the 35 storey building (Selection 3) Reinforcement for the selected wall in the 40 storey building (Selection 1) **B-40** Reinforcement for the selected wall in the 40 storey building (Selection 2) B-41 Reinforcement for the selected wall in the 40 storey building (Selection 3) B-42

LIST OF FIGURES

CHAPTER 2

- 2.1 Deflected shape of a rigid frame structure
- 2.2 Shear wall structures
- 2.3 Deflected shape of wall frame structures
- 2.4 Variation of horizontal deflection, bending moment & shear force along the height of a wall frame structure
- 2.5 Outrigger structures
- 2.6 Outrigger structure with belt girders
- 2.7 Symmetric and asymmetric structures
- 2.8 Horizontally lumped equivalent model
- 2.9 Vertically lumped equivalent model
- 2.10 Creep and shrinkage of concrete
- 2.11 Chart proposed by Hickey (1968) to predict specific creep of concrete
- 2.12 Rotated partition due to differential shortening of adjacent members
- 2.13 Flexible partition details
- 2.14 Buckling of cladding skin
- 2.15 Potation of shelf angles

- 3.1 Schematic diagram of a tall building
- 3.2 Chart proposed by Hickey (1968) to predict specific creep of concrete
- 3.3 Variation of λ_a with age at loading (Khan's method)
- 3.4 Variation of CR_{LA} with age at loading (Ghosh's method)
- 3.5 Variation of λ_c with volume to surface area ratio
- 3.6 Variation of creep coefficient with time
- 3.7 Variation of λ_s with volume to surface area ratio
- 3.8 Variation of shrinkage with relative humidity
- 3.9 Effect of relative humidity, age of loading and section thickness upon creep factor
- 3.10 Drying shrinkage of normal weight concrete
- 3.11 Spread sheet used for calculations

- 3.12 Input data for estimating shortening of ground floor column, as displayed in the spreadsheet
- 3.13 Output sheet1- contribution of ground floor column to total shortening of 5th floor support
- 3.14 Output sheet2- contribution of ground floor column to total shortening of 5th floor (with the effect of reinforcement)
- 3.15 Output sheet 1- Contribution of columns 1 to 5, to total shortening of 5th floor support
- 3.16 Output sheet 2- Contribution of each column to total shortening of 5th floor (with the effect of reinforcement)

- 4.1 Proposed floor plan for 20 storey building
- 4.2 Arrangement of lifts in 20 storey building
- 4.3 Beam and column layout of 20 storey building
- 4.4 Arrangement of service core from 1st to 12th storey
- 4.5 Arrangement of service core from 13th to 20th storey
- 4.6 Arrangement of structural elements in the 20 storey building
- 4.7 Exaggerated view at A (load transfer from slab to beam)
- 4.8 Proposed floor plan for 10 storey building
- 4.9 Proposed floor plan for 15 storey building
- 4.10 Proposed floor plan for 25 storey building
- 4.11 Proposed floor plan for 30 storey building
- 4.12 Proposed floor plan for 35 storey building
- 4.13 Proposed floor plan for 40 storey building
- 4.14 Earthquake force distribution along a building
- 4.15 Arrangement of structural elements in the 10 storey building
- 4.16 Arrangement of structural elements in the 15 storey building
- 4.17 Arrangement of structural elements in the 25 storey building
- 4.18 Arrangement of structural elements in the 30 storey building
- 4.19 Arrangement of structural elements in the 35 storey building
- 4.20 Arrangement of structural elements in the 40 storey building
- 4.21 Two dimensional model of 10 storey building
- 4.22 Two dimensional model of 15 storey building

4.23 Two dimensional model of 20 storey building
4.24 Two dimensional model of 25 storey building
4.25 Two dimensional model of 30 storey building
4.26 Two dimensional model of 35 storey building
4.27 Two dimensional model of 40 storey building

CHAPTER 5

- 5.1 Shortening of 5th, 10th and 15th storey supports in the 20 storey building
- 5.2 Shortening of 5th, 10th and 15th storey supports in the 40 storey building
- 5.3 Graph of percentage reduction of shortening of slab supports with construction rate

- 6.1 Effect of grade of concrete on absolute shortening
- 6.2 Effect of column dimensions on absolute shortening
- 6.3 Rate of change in absolute shortening with the number of storeys
- 6.4 Differential shortening at 5th floor level (RH=60%)
- 6.5 Differential shortening at 10th floor level (RH=60%)
- 6.6 Differential shortening at 15th floor level (RH=60%)
- 6.7 Differential shortening at 20th floor level (RH=60%)
- 6.8 Differential shortening at 25th floor level (RH=60%)
- 6.9 Differential shortening at 30th floor level (RH=60%)
- 6.10 Differential shortening at different floor levels (RH=60%)
- 6.11 Differential shortening at 5th floor level
- 6.12 Differential shortening at 10th floor level
- 6.13 Differential shortening at 15th floor level
- 6.14 Differential shortening at 20th floor level
- 6.15 Differential shortening at 25th floor level
- 6.16 Differential shortening at 30th floor level
- 6.17 Variation of percentage reduction of shortening with different construction rates