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ABSTRACT 
In Sri Lanka, currently many development projects such as major highways are being 
constructed over soft soil deposits of low bearing capacity and excessive settlement 
characteristics, mainly due to unavailability of good land and high cost involved in 
land acquisition. The Colombo Outer Circular Highway (OCH) is one such 
infrastructure development project, being constructed with the objectives of 
encouraging the development of current or future growth centers connected by radial 
routes, and diverting through traffic from the center of the city. 

Deformations, stability and time required for consolidation are major considerations 
in the design and construction of embankments over soft sub-soils. The sub-soil of 
OCH Southern section consists of peat, organic and inorganic-clay and loose sand. 
Therefore countermeasures are required to control the settlement of underlying deep 
and extensive layers of soft soil. One method adopted is to install pre-fabricated 
vertical drains (PVD) into the underlying soft soils, and place earth embankments on 
top, partly as necessary substructure of the highway, and partly as preload to 
accelerate the settlement of soft soils beneath. 

This work presents a numerical simulation of the deformation of the earth 
embankments and soft soil underlying the Colombo Outer Circular Highway. Finite 
Element analysis software Plaxis 8.2(2002) is used to model the long-term creep 
deformation behavior of soft soil loaded by embankments, with pre-fabricated 
vertical drains installed in the soft soil strata. Two constitute models are used for the 
analysis; Mohr-Coulomb Model to represent the earth embankment and Soft Soil 
Creep model to simulate the soft sub soils. 
A major effort was needed to determine appropriate material parameters for input to 
the selected constitutive models, and the final selection was made based on empirical 
considerations. The actual three-dimensional problem domain is converted to 
equivalent two-dimensional plane-strain domain. The equivalence between the plane-
strain and axi-symmetric analyses were established by a permeability matching 
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procedure. All field conditions including the load incrementing sequences are 
simulated, and coupled consolidation/creep analysis is performed to predict the 
settlement behavior. Numerical predictions are compared with observed field 
settlement records, and agreement is seen between the predicted results and the 
observed field measurements, indicating the feasibility of using the numerical model 
for predicting purposes, and the empirical method need to determine the applicable 
material parameters for the selected constitutive models. 
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