
LB/DON/106/02/DeprofME-US:

IMPROVED ROTOR DESIGN FOR A SMALL SCALE HORIZONTAL AXIS WIND TURBINE SUITABLE FOR LOW WIND POTENTIAL

By

Mahinsasa Narayana

UDIVERSITY CE MORATUWA, SRI LANKA

This Thesis was Submitted to the Department of Mechanical Engineering of the University of Moratuwa, Sri Lanka in Fulfilment of the Requirements for the Degree of Master of Philosophy

76275

Department of Mechanical Engineering. Faculty of Engineering University of Moratruwa Sri Lanka

August 2002

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other academic qualification of a university or other institution of higher learning except where acknowledgment is made in the text.

UOM Verified Signature

..... Mahinsasa Narayana

I certified that the above statement is correct alway. Sri Lanka

 \bigcirc

. UOM Verified Signature

Supervisor

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to the supervisor Dr. A.G.T.Sugathapala, for his invaluable assistance, guidance, advice and encouragement throughout the course of this research study and without which, I would never succeed.

My thanks are extended to the former chairman Mr. M. Victor Mendis and former General manager Mr. P.A.S. Fernando of the National Engineering Research & Development Centre of Sri Lanka for providing the required funds and facilities throughout the research study.

My thanks are also extended to University of Moratuwa for providing me with the necessary laboratory and library facilities and I would like express thanks to the Energy Unit of the Ceylon Electricity Board for providing some wind data.

I would like to take this opportunity to thank the staff of the Renewable energy department and workshop of the National Engineering Research & development centre of Sri Lanka for their invaluable assistance towards the manufacture of wind rotor models for this research study.

CONTENTS

3

Â

A1

	Page	
Abstract	VI	
ist of figures		
List of tables		
Nomenclature		
1. Introduction	1	
1.1.Current global status of energy generation	1	
1.2.Wind as a source of energy		
1.3. Wind Energy application in Sri Lanka	6	
1.3.1. Wind energy for water pumping in Sri Lanka	6	
1.3.2. Rural electrification	7	
1.3.3. Grid connected wind turbines in Sri Lanka	9	
1.4.100W NERDC wind turbine for off-grid power generation in Sri		
Lanka 1.5.Objectives 👗 University of Moratuwa, Sri Lanka.		
1.6.Outline of thesis	11	
2. Performances analysis of wind rotors	13	
2.1.Introduction	13	
2.2. Aerodynamic behaviour of a wind rotor	14	
2.2.1. Ideal performance of a wind rotor	14	
2.2.2. Performance of a wind rotor with wake rotation effect	16	
2.2.3. Performance of a wind rotor with effect of wake rotation		
and blade resistance 2.2.4. Vortex system of the rotor	21 25	
2.3.Performances of the wind rotor developed by NERD Centre	27	
3. Electrical generators used for wind turbines	32	
3.1.Generators used for the grid connected applications	32	
3.1.1 Introduction	32	
3.1.2 Wind turbine with asynchronous (induction) generators	32	
3.1.3 Wind turbine with multi-pole permanent magnet generators.	33	
	(Sol	

			Page
	3.1.4	Wind turbine with synchronous generators	34
3	3.2.Generators used for small scale off - grid wind turbines		
3	3.3.Performances of the permanent magnet generator developed by NERDC		
	3.3.1 3.3.2	Development of a suitable electrical generator for micro scale power generation Design parameters of PMG	36 37
	3.3.3	Characteristics of the permanent magnet generator	41
N	VERD	performance of the battery-charging wind turbine of the centre roduction	44 44
4	4.2.Co	mbined characteristics of NERDC wind rotor and generator	44
4	4.3.Per	formance of the system at different sites	48
	4.3.1	Design wind speed	48
	4.3.2	Energy indices of the wind turbine	49
	4.3.3		49
	4.3.4	Performance of the wind turbine at a high wind potential site	52
	4.3.5	Comparison of performance of the wind turbine at two different sites	54
4	I.4.End	ergy requirement of a rural community	55
5. E	Design	of a wind rotor suitable for low wind potential	56
5.1	l Sel	ection of operation parameters	56
5.2 5.3	the	dification on increasing diameter together with same solidity of existing wind rotor ial torque of the wind rotor and the permanent magnet	56
5.5	gen	erator	60
5.4	4 Des	sign of a high solidity wind rotor	61
5.5	5 Per	form of the high solidity wind rotor in low wind potential site	66
6 V	/alidat	ion by model testing	74
6.1	l Intr	oduction	74
6.2	2 Dir	nensional analysis and physical modelling	74
(6.1.1	Governing parameters	74

•

.

Ť

	Page
6.1.2 Scale down models of wind rotors	76
6.3 Experimental set up	77
6.4 Comparison of the performance of the models of existing rotor and high solidity rotor6.4.1 Experimental investigation	81 81
7 Discussion and Conclusions	88
7.1 Wind rotor performance	88
7.2 Energy options	89
7.3 Concluding remarks: cost of energy production	90
7.3.1 Cost of energy at Makewita low wind potential site	90
7.3.2 Cost of energy at Mirijivila good wind potential site	91
7.3.3 Cost of energy from 100W solar panel7.3.4 Comparison of cost of energy production and amount of energy generation by solar and wind power systems	
Appendix I Electronic Theses & Dissertations	
Appendix II	
Appendix III Appendix IV	
Appendix VI	107

V

ŧ,

ABSTRACT

The design wind speeds of most of the existing wind turbine rotors are in the range of 6 to 15 m/s with cut-in wind speed of 3.5 m/s. The performance of such a wind turbine in Sri Lanka is not satisfactory, where the wind velocities are relatively low. This is due to low initial torque, which leads to difficulty in starting, as well as due to poor running efficiencies. This makes wind turbines less attractive for areas with low wind speeds.

The main objectives of this study were to predict the performance of the existing NERDC wind turbine system and identify the main causes for its poor running performance at low wind speed and thereby design a rotor with improved performance. When improve the performance of the rotor to extract more energy from low wind-speeds, cut-in wind speed and design wind speed of wind turbine should be reduced. Low starting torque of wind rotors was identified as a main restriction against the reduction of cut-in wind speed of wind turbines. This study intends to analyse the aerodynamics of wind rotors theoretically and thereby introduces appropriate changes to the geometrical parameters of the blades. Especially, possibility of increase of solidity of the rotor, without effecting adversely on its aerodynamic efficiency was analysed.

The blade elementary theory and the momentum theory were used to analyse the aerodynamic performance of rotors theoretically and these results were validated by wind tunnel model testing.

The results of this study indicate that the permanent magnet generator and rotor of the NERDC system were not matched properly, which resulted in low overall system efficiency. In addition, the design parameters of the rotor were not appropriate for sites with low wind potential. Other finding of this study was suitable wind rotor for extract more energy from low wind potential, should be with higher diameter and higher solidity.

LIST OF FIGURES

			Page
1	Figure 1.1	Global primary energy requirements, 1850 - 2100	3
2	Figure 1.2	Global carbon emissions from fossil fuel use, 1850 – 2100	3
3	Figure 1.3	Development of the wind energy use wordwide	5
4	Figure 1.4	Wind energy use by continents in percentage at the end of 2000	6
5	Figure 1.5	Basic configuration of NERDC wind turbine	10
6	Figure 2.1	Control volume used for a wind turbine	15
7	Figure 2.2	Flow behind the rotor with "Wake Rotation" effect	17
8	Figure 2.3	Velocity diagram of a blade element	17
9	Figure 2.4	Maximum power coefficient of ideal wind rotor with wake effect	20
10	Figure 2.5	Forces diagram of a blade element	21
11	Figure 2.6	Power coefficient Vs tip speed ratio (λ_0), for different C_{l}/C_d	24
12	Figure 2.7	Vortices due to tip of the blade	25
13	Figure 2.8	Simplified vortex system of a wind rotor	26
14	Figure 2.9	Existing 2-bladed wind rotor of the NERDC	28
15	Figure 2.10	Power coefficient curve of the existing NERDC wind rotor	29
16	Figure 2.11	Power performance of the existing NERDC wind rotor with	- 0
17	Figure 2.12	different wind speeds Torque performance of the existing NERDC wind rotor with different wind speeds	30 31
18	Figure 3.1	Combine characteristics of wind rotor and induction generator	33
19	Figure 3.2	at different wind speed Combine characteristics of wind rotor and multi-pole PMG at different wind speed	34
20	Figure 3.3	Combine characteristics of wind rotor and synchronous	25
21	Figure 3.4	generator Section of rotor showing magnetic circuit	35 39
22	Figure 3.5	Rotor of the permanent magnet generator (PMG)	40
23	Figure 3.6	NERDC permanent magnet generator	40
24	Figure 3.7	Experimental set-up to find ou the performance of permanent magnet generator	41
25	Figure 3.8	Characteristic performance of permanent magnet generator (PMG) with 24V battery bank	42
26	Figure 4.1	Generator and rotor performance curves of NERDC wind-	
27	Figure 4.2	turbine Combine performance of the generator and the rotor	45 46
		The second s	

LADE

VII

		Page
Figure 4.3	100W NERDC wind turbine	47
Figure 4.4	Output power characteristics of NERDC wind turbine	48
Figure 4.5	Wind speed and energy distribution at Makewita, Ja-Ela, height 20m	50
Figure 4.6	Wind speed and Energy, frequency distribution at Mirijivila,	52
Figure 5.1	Generator and rotor performance curves of the modified	57
Figure 5.2	Performance of modified wind turbine	58
Figure 5.3	Initial torque of modified wind rotor with different wind	61
Figure 5.4	speeds Optimum incidence angle at the section r=0.9R=1980 mm	61 61
Figure 5.5	Optimum incidence angle at the section r=0.4R=880 mm	64
Figure 5.6	Linearized blade angles of high solidity rotor	65
Figure 5.7	High-solidity 4-bladed wind rotor	66
Figure 5.8	Power coefficient curve of 4-bladed high solidity wind rotor model	67
Figure 5.9	Combine performance of 4-bladed rotor and PMG (with 1:5 gear box)	67
Figure 5.10	Initial torque of high solidity wind rotor with different wind speeds	68
Figure 5.11	Performance of high-solidity 4-bladed wind turbine	69
Figure 5.12	Overall efficiency of wind turbines	72
Figure 6.1	Configuration of the set-up and air velocity data points	78
Figure 6.2	Friction pulley arrangement of break dynamometer	7 9
Figure 6.3	Wind tunnel and experimental set-up	80
Figure 6.4	Power characteristics of the manufactured 2- bladed model	82
Figure 6.5	Torque characteristics of the manufactured 2-bladed model	83
Figure 6.6	Power characteristics of the manufactured 4-bladed model	85
Figure 6.7	Torque characteristics of the manufactured 4-bladed model	85
Figure 6.8	Typical rotor curves and load curves of friction pulley	86
	Figure 4.4 Figure 4.5 Figure 4.6 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 5.7 Figure 5.8 Figure 5.10 Figure 5.11 Figure 5.12 Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6 Figure 6.7	Figure 4.4Output power characteristics of NERDC wind turbineFigure 4.5Wind speed and energy distribution at Makewita, Ja-Ela, height 20mFigure 4.6Wind speed and Energy, frequency distribution at Mirijivila, height 20 mFigure 5.1Generator and rotor performance curves of the modified NERDC wind turbine (with 1:3 gear box)Figure 5.2Performance of modified wind turbineFigure 5.3Initial torque of modified wind rotor with different wind speedsFigure 5.4Optimum incidence angle at the section r=0.9R=1980 mmFigure 5.5Optimum incidence angle at the section r=0.4R=880 mmFigure 5.6Linearized blade angles of high solidity rotorFigure 5.7High-solidity 4-bladed wind rotorFigure 5.8Power coefficient curve of 4-bladed high solidity wind rotor modelFigure 5.10Initial torque of high-solidity 4-bladed wind rotor with different wind speedsFigure 5.10Initial torque of high-solidity wind rotor with different wind

¥

LIST OF TABLES

>

1

			Page
1	Table 1.1	World Energy Use by Source in 1900 and 1997	1
2	Table 1.2	CO ₂ -Emissions of commonly used fuels	2
3	Table 1.3	Forecast of renewable energy electricity generation capacity	
		(MWe)	4
4	Table 1.4	Top five nations in wind energy usage at the end of year 2000	5
5	Table 2.1	Maximum C_p with λ_0 of an ideal wind rotor with wake effect	20
6	Table 2.2	Geometrical parameters of existing 2-bladed wind rotor at NERDC	28
7	Table 2.3	Theoretically calculated performance of the wind rotor	29
8	Table 3.1	Stator details	38
9	Table 3.2	Windings details	38
10	Table 3.3	Characteristic performance of permanent magnet generator	
		(PMG) with 24V battery bank	42
11	Table 4.1	Performance of NERDC wind turbine	47
12	Table 4.2	The energy calculation indices of NERDC wind turbine at	
		Makewita site	51
13	Table 4.3	Energy indices of high solidity wind turbine at Makewita site	51
14	Table 4.4	The energy calculation indices of NERDC wind turbine at	
		Mirijivila site	53
15	Table 4.5	Energy indices of high solidity wind turbine at Mirijivila site	53
16	Table 4.6	Comparison of energy indexes of Makewita and Mirivila sites	54
17	Table 4.7	The daily energy demand for a typical rural house in Sri Lanka	55
18	Table 4.8	Efficiency of electrical equipment used in wind power generation	55
19	Table 5.1	Performance of modified wind turbine by increasing diameter of	
		rotor together with same solidity of the existing wind rotor	58
20	Table 5.2	The energy calculation indices of NERDC modified wind turbine	
		at Makewita site	59
21	Table 5.3	Performance comparison of existing and modified wind turbines	59
22	Table 5.4	Selected solidity of wind rotor to obtain the required higher	
		torque coefficient (C _m)	62

23	Table 5.5	Optimum incidence angles, blade angles and chord lengths at the	
		section r=0.4R and r=0.9R of the designed wind rotor	65
24	Table 5.6	Geometrical parameters of high solidity wind rotor	65
25	Table 5.7	Performance of high solidity wind turbine	69
26	Table 5.8	The energy calculation indexes of high solidity 4-bladed wind	
		turbines at Makewita site	70
27	Table 5.9	Energy indices of high solidity wind turbine at Makewita site	70
30	Table 5.10	Comparison of performance existing, modified and designed	
		wind turbines	71
31	Table 5.11	Overall efficiency η_{ove} % of wind turbines	71
32	Table 6.1	Parameters of existing wind rotor Model	77
33	Table 6.2	Parameters of high solidity wind rotor	77
34	Table 6.3	Geometrical parameters of the 2-bladed rotor model	81
35	Table 6.4	Geometrical parameters of the 4-bladed rotor model	81
36	Table 6.5	Experimental $C_p \& C_m$ values of 2-bladed low solidity wind rotor	82
37	Table 6.6	Experimental $C_p \& C_m$ values of 4-bladed high solidity wind rotor	
		model	84
38	Table 7.1	Capital cost, cost of energy production and amount of energy	
		generation by each wind turbines and 100W solar panel	92

4

Page

Х

NOMENCLATURE

- Q Flow rate of air
- η_p Tip loss of the wind rotor
- α Angle of attack
- ω Angular speed of the rotor
- β Blade angle
- **Γ** Circulation
- ρ Density of air
- μ Viscosity of air
- Ω Rotational speed of the air in the rotor wake
- λ_0 Tip speed ratio
- ϕ_0 Incidence flow angle
- ϕ_g Magnetic flux at the air gap of the generator
- λ_r Local speed ratio
- A Swept area of the wind rotor
- b No. of blades
- C_d- Drag coefficient
- C₁ Lift coefficient
- C_m Coefficient of moment
- C_p Coefficient of power

C_{Pmax}- Maximum power coefficient

- C_{Pr} Local power coefficient
- D Drag
- F Axial thrust
- K_d Distribution factor
- K_f Pitch factor
- L Lift
- 1 Chord of the blade
- M Moment
- MTOE- Million tons of oil equivalent
- N Rotational speed of generator

- n_b Hub ratio of wind rotor
- P Number of poles
- P₀ Energy content in the undisturbed wind
- P_u Rotor power
- R Radius of the rotor
- r₀ Hub radius
- Re Reynolds No
- T Torque
- V₁ Undisturbed velocity of air
- V_2 Axial velocity of air at down stream wake
- W Velocity of wind relative to the rotor blade
- Z_n Number of conductors

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

