LB/DON/99/05/2prot And 11

PERFORMANCE OF ROOF AND CEILING SYSTEMS IN TROPICAL THERMAL ENVIRONMENT

A Dissertation submitted to the

University of Moratuwa

As a partial fulfillment of the requirements

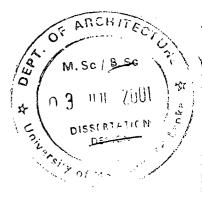
for the Degree of

Master of science in Architecture, crsity of Moratuwa, Sri Lanka.

LIBRAR UNIVERSITY OF MORATUWA, SRI LAM MORATUWA

www.lib.mrt.ac.lk

72 1:692.4 697.


TH

B.D.I. FERNANDO Department of Architecture University of Moratuwa Sri Lanka June 2001

76185

76185

CONTENT

١٧
V
v
Vit

CHAPTER ONE

Introc	ntroduction		
1.1.	Why roof is important	02	
1.2.	Problems	03	
1.3.	Objectives	05	
1.4.	Limitation	05	
1.5.	Methodology	09	

CHAPTER TWO

Back ground study

4

2 .1.	Theoretica	Theoretical back ground		
2.2.	Comfort a	nd building design	07	
	2.2.1	Concept of comfort	06	
	2.2.2	Thermal comfort and affecting factors	08	
	2.2.3	Principals in climate design for comfort in warm humid climate	12	
	2.2.4	Requirement for occupancy and comfort	13	
	2.2.5.	Quality of comfort	14	
	2.2.6.	Design for comfort	14	
	2.2.7.	Thermal properties of roof and ceiling materials	1	
		with related to thermal comfort	16	
	220	Polotionship between traditional reafing materials		

2.2.8. Relationship between traditional roofing materials in Sri Lanka and thermal comfort

16 1

07

2.3 .	Roof as th	ne most important climatic component	17
	2.3.1.	Typology of roofs	17
	2.3.2.	Variable features of roof forms.	29
	2.3.3.	How unventilated / ventilated suspended ceiling effect of roof	54
		2.3.3.1. How unventilated suspended ceiling effect roof	35
		2.3.3.2. How ventilated suspended ceiling effect roof	35
	2.3.4.	Thermal properties of roof elements	36
	2.3.5.	Required thermal performance for roof	37
	2.3.6.	Problem of roof with related to thermal performance	40
2.4.	Climate of	f Sri Lanka	41
	2.4.1.	Introduction to climate	41
	2.4.2.	Specific elements of climate	42
	2.4.3.	Characteristic features of the climate of Sri Lanka	44
	2.4.4.	Indoor climate University of Moratuwa, Sri Lanka.	48
	2.4.5.	Contribution of climate and site for performance roof system	49
	2.4.6.	Climatic condition in Colombo	50
СНАР			

Methodology			57
3.1.	Instruments and equipment		57
3.2.	Process of research		61

CHAPTER FOUR

Results

4

į

65

CHAPTER FIVE

ŧ

4

ŝ,

4

Analys	is	75	
5.1.	Thermal performance of ceiling materials under tile roof	75	
5.2.	Thermal performance of ceiling materials under Asbestos roof	75	
5.3.	Thermal performance of ceiling materials under tile on asbestos roof	76	
5.4.	Thermal performance of roof covers	77	
5.5.	Recommendation	78	
CHAP	TER SIX		
6.1.	Conclusion	78	
6.2.	Limitation	83	
6.3.	Direction for further study University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	84	
BIBLIC	IBLIOGRAPHY 8		

7<u>5</u>

ACKNOWLEDGEMENTS

I would like to record my deepest gratitude to the following whose generous contribution in numerous way enable me to make this essay a reality.

I am extremely grateful to Dr. Emmanuel, Lecture, Department of Architecture, Faculty of Architecture, University of Moratuwa, who has been a constant source of inspiration to me in the task of working this dissertation. Unless his valuable criticisms and patient guidance, I would not have been able to bring out this dissertation in this form. So, I express my heart felt gratitude to him.

My sincere thanks to Dr. Ashoka Perera, Lecture, Faculty of Engineering for giving permission To use the experiment hut.

I gratefully acknowledge the assistance rendered by Mr. Chatura, Technical Assistance, Faculty of Architecture, University of Moratuwa.

constant guidance.

University of Moratuwa, Sri Lanka,

Finally I am ever grateful to my dear parents and wife for their persistent encouragement and

LIST OF THE PLATES

.

-

1.	Plate 01	Rockey mountain Institute Colarado, One of the most energ	у
		efficient building in the world	15
2.	Plate 02	Design for climatic condition	15
3.	Plate 03	Experimental hut	60
4.	Plate 04	Data Logger	60
5.	Plate 05	The north wall is designed to assist in Cross ventilation. House in Indonisia	80
6.	Plate 06	This Hawai residence need only a breez way with the transluent roof to provide natural air conditioning .	BI
7.	Plate 07	Missonary Guest house at Dares Salaam ,close to the equator. Broad eaves and white painted roof (tanzania)	82
8.	Plate 08	A semi buried house in catalunga, Spain, harmonize with its rocky site. Deep over hangs to the windows and keep the house Pleasantly cool in summer.	82
9.	Plate 09	Traditional Ramada Papago indian nation Arizona A classic Shlter for desert survival ,also Representative of indigenous North American South west construction combines shading Ventilation and insulated(earth covered)roof Design.	82
!0.	Plate 10	Earth sheltered house ,New canan Earth covered roof provide roof garden.	83

V

LIST OF FIGUERS

.

PAGE

1.	Figure 1a	Solar geometry in low latitudes	01
2.	Figure 1b	Solar geometry in high latitudes	01
3 .	Figure 02	Thermal balance between the body and its environment	09
4.	Figure 03	Single monopitch roof.	iq-
5.	Figure 04	Double monopitch roof.	19
6.	Figure 05	Multi monopitch roof.	19
7.	Figure 06	Diagram of Vihara type , showing transition from lean	
		verandah to hipped roof.	19
8.	Figure 07	This type is found mostly among the residential buildings	19
9.	Figure 08	combined monopitch roof	19
10.	Figure 09	Butterfly roof	. 19
11.	Figure 10	Gable roof	20
12.	Figure 11	Extended Gable roof	20
13.	Figure 11a	Extended Gable roof	20
14.	Figure 12	Staggered extended Gable roof	ਮ
15.	Figure 13	Gable with monitor	ય
16.	Figure 14	Gable with lean to roofs at sides	21
17.	Figure 15	Gable with lean to roof at Gable end	21
18.	Figure 16	Gable with disconnected hip roof	22
19.	Figure 17	Janturedevale near Kandy Sri Lanka	25
20.	Figure 18	Image house, Ambulugalvihara; Sri Lanka	25
21.	Figure 19	Ambekkedevalaya ; Kandy, Srilanka.	25
22.	Figure 20	Tow story towering roof (tooth relic chamber ,Kandy)	25
23 .	Figure 21	Residential building.	26
24 .	Figure 22	Samandevalaya , Ratnapura, Sri Lanka.	27
25.	Figure 23	Paththirippuwa-"Dalada Maligawa'" ,Kandy.	28
26 .	Figure 24	Stupa temple , Attanagalla Viharaya.	28
27.	Figure 25	Basic roof shapes	30
28 .	Figure 26	A more complex roof shape.	30

29 .	Figure 27	Scale of roof	3
30 .	Figure 28	Proportion of roof	32
31.	Figure 29	Mass roof	32
32 .	Figure 30	Location of Sri Lanka in relation to the equator.	44
33 .	Figure 31	Main climate region of Sri Lanka.	45
34.	Figure 32	Thirty year trends in diurnal temperature variation during the	
		hottest month (Aprial)	51
35.	Figure 33	Thirty – year average daytime thermal comfort in the CMR	52
36.	Figure 34	Thirty year average daytime thermal comfort in the CMR &	
		Thirty year average thermal comfort trends during the hottest	
		month	53
37.	Figure 35	Thermal comfort change in the CMR daytime & nighttime	54
38.	Figure 36	Details of experimental hut	58
39 .	Figure 37	AT accuracy and resolution	61
40.	Figure 38	RH Operating range	6]
41.	Figure 39	THI differences under tile roof	65
42.	Figure 40	THI differences under corrugated asbestos sheet roof	67
43.	Figure 41	THI differences under "tile on asbestos" roof	69
44.	Figure 42	THI differences of roofing materials.	71
45.	Figure 43	Comparison of all roofing cover / ceiling combinations	72
46.	Figure 44	Average outdoor climatic condition during the study periods	74

.

LIST OF TABLES

.

۲

.

٧

1.	Table 1a	Sensation at various wind speed	н
2 ⁄.	Table 1b	Air speed at various temperatures	П
3 .	Table 02	Average climate data for dry zone	45
4.	Table 03	Average climate data for wet zone	47
5 .	Table 04	Average climate data of town in hill country	47
6 .	Table 05	Roofing materials	59
7.	Table 06	Ceiling materials	60
8 .	Table 07	THI Differences with tile roof	64
9 .	Table 08	THI Differences with asbestos roof	66
10.	Table 09	THI Differences with Tiles on asbestos roof	68
11.	Table 10	THI Differences with all roof covers	70
12.	Table 11	Average THI differences (deg. C) under different	
		roof cover / ceiling combinations.	73
13.	Table 12	Average THI differences (deg. C) under	
		different roof covers without ceiling.	75

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

