DEVELOPMENT OF A 46 STOREY APARTMENT BUILDING IN RAJAGIRIYA

GROUP 2

Department of Civil Engineering
University of Moratuwa
Moratuwa
Sri Lanka
PREFACE

Colombo city is the business capital in Sri Lanka. The growth of businesses in the city is increasing day by day. As a result of this situation, many urban dwellers those living outside the capital are attracted to the city. The traffic conditions, environmental pollution around Colombo district is getting higher due to these unavoidable movements of vehicles, etc. Solutions for the situation are being implemented as part of the master plan for development of the city. Most of the suburban population who travel to Colombo daily cannot afford to build their own houses within city limits as the cost of land and cost of construction are not within their means. Purchasing an apartment on payment in instalments is an ideal alternative especially to private sector executives who travel to Colombo daily with their whole family as most such children attend prestigious schools in Colombo. The Sky Residencies high-rise building project was planned to cater to this sector of population with availability of state of the art apartments priced reasonably leading to improvement of quality of life.

The Sky Residencies will be located in Buthgamuwa road Rajagiriya very close to the city of Colombo. The land area is approximately 180 perches. Sky Residencies is is planned for a height of 165m and consist of 46 stories including 5 parking floors, 40 apartment floors and a recreational floor. This is designed to facilitate 160 apartments with the choice of 2 bedroom and 3 bedroom apartment. Sky Residencies is designed according to the green concept to achieve sustainable development. It will become one of the most sustainable buildings in Sri Lanka and will be unique in its architecture and structural features. Facilitation of obtaining a soft loan from a reputed bank to the purchaser is planned to attract buyers.

According to the Sri Lanka real estate market brief, KPMG condominium property developments are having average pre-construction sale ratio of around 50% while high more prestige development like empire emperor lumiere and trillium tend to have about 80% preconstruction sale ratio. Therefore there is a huge condominium market in Colombo. Sky residencies will be at the top of the market when it’s initiated because of its unique features.

There are eleven Chapters in this report. This final report is prepared to give the reader a detail and complete intuition to the Project. Project. Vision, mission, objectives and goals of the project were described here. Feasibility study, Competitive advantage of this project and detail design of this project is described in this report.

Social, financial and technical feasibility studies were also considered. Since some environmental issues can arise due to this project, it is very important to do an Initial Environment Examination (IEE). On the other hand a Traffic Impact Assessment (TIA) is needed in order to visualize the traffic impact to the surrounding area due to this project. Therefore a detailed IEE and a detailed TIA were included in this report. The architectural design was done to accommodate topographical variations. The services arrangement for lift, supply water, waste treatment methods are included in this project. The computer analysis for the building was done by using SAP 2000 software. Different load cases dead, imposed and dynamic loads such as wind were also considered. As stipulate in government requirement for new buildings in Sri Lanka safety against earthquakes is also designed. In addition to that thermal comfort was assessed by using DEROB LTH. Main Items of the BOQ are included together with the Details. At the end of the report further detail & architectural drawings were given in the annex. All the design parts were done in accordance with a code of practice and guidelines. This report will give a detail description about the project objectives, challenges we faced and how we overcome them to the reader.
**TEAM MEMBERS**

Bogahawatta J.R.M 100061L
Danushka K.K.G.K 100074E
De Silva M.P.I.M 100084J
De Silva T.D.D.p 100086R
Dadigamuwa. K.V 100089E
Denagama T.D 100091D
Dewasumithra M.S.D 100095T
Dissanayake B.S 100105D
Dissanayake D.M.K.W 100106G
Edirisooriya U.J.W 100113B
Epasinghe M.R 100120T

Contribution: The main 11 tasks given in the TOR were assigned to each member to act as the leader for the task. All 11 team members contributed to the leader of the main topic in the design process. The equal dedication of all team members are the pillars of success of this project.
ACKNOWLEDGEMENT

It is our pleasure to thank all personnel, organizations and authorities who gave us a chance to do Comprehensive Design Project (CDP) and to those who made it fruitful and success. CDP has been one of the best learning experiences in our undergraduate life.

We owe a debt of gratitude to the supervisors of our group Senior Prof. M. T. R. Jayasinghe and Prof. (Mrs) C. Jayasinghe Department of Civil Engineering, University of Moraruwa for valuable advice and guidance provided even when they are on such a busy schedule. They were available to assist us anytime we were having troubles with the project. Their guidance was the best motivation for us to work tirelessly day and night to make this a success. One word of their encouragement and appreciation meant so much to us.

Moreover we would like to express our gratitude to all the lecturers of department of civil engineering, University of Moratuwa for teaching us subjects in the last 4 years which helped us in all facets of designs in this project. The lecturers of all divisions helped us when we needed keenly.

We would like to appreciate the support given by Mr. Senaka – Design office Manager (Projects) at Maga Engineering Pvt Ltd and Mr. Pradeep- Project Manager (Sky Gurden) at Maga Engineering pvt Ltd for providing us the opportunity to visit the Clear Point construction site and other sites.

We would like to give our warmest thanks to our colleagues for their support to make the Comprehensive Design Project a success.

Group-02,
Comprehensive Design Project,
Department of Civil Engineering,
University of Moratuwa,
Moratuwa,
Sri Lanka.
CONTENTS

Preface ................................................................................................................................................ i

ACKNOWLEDGEMENT ................................................................................................................... iii

List of Tables .................................................................................................................................... xi

List of Figures ................................................................................................................................... xii

1. introduction to the project ......................................................................................................... 1

1.1. Introduction ........................................................................................................................ 1

1.2. Clients requirements ........................................................................................................... 1

1.3. Project Details ..................................................................................................................... 2

1.4. Methodology ....................................................................................................................... 3

2. Feasibility study ........................................................................................................................ 5

2.1. Building function selection ................................................................................................. 5

2.1.1. Zoning regulations ....................................................................................................... 5

2.1.2. Social feasibility .......................................................................................................... 6

2.1.3. Environmental feasibility ............................................................................................ 6

2.1.4. Technical feasibility .................................................................................................... 6

2.1.5. Market Feasibility ........................................................................................................ 7

....................................................................................................................................................... 8

2.2. Selection of Building Form ................................................................................................ 8

2.3. Building height selection .................................................................................................. 11

2.4. Feasibility of Facilities ..................................................................................................... 12

2.5. Financial feasibility of proposed development ................................................................. 12

3. Initial Environmental Examination ......................................................................................... 16

3.1. Selecting EIA or IEE ........................................................................................................ 16

3.2. Terms of Reference for the IEE: Attached to annex ........................................................ 17

3.3. INITIAL ENVIRONMENTAL EXAMINATION REPORT .......................................... 17

Executive Summary .................................................................................................................... 17
## Contents

4. Traffic Impact assessment ................................................................. 44

5. Architectural concept ...................................................................... 57

5.1. Building Architecture .................................................................. 57

5.1.1. Shape and Orientation of the Building ...................................... 57

5.2. Planning of Activity Space of the Building .................................... 58

5.2.1. Parking Area ........................................................................... 58

5.2.2. Recreational Area ................................................................. 59

5.2.3. Apartments ............................................................................. 60

5.3. Landscaping ................................................................................. 64

5.3.1. Landscape Design Requirements ............................................. 64

5.3.2. Main features suggested in landscape design ......................... 64

6. DESIGN OF SERVICES ................................................................... 66

6.1. DESIGN OF LIFT ARRANGEMENT ............................................. 66

6.1.1. Introduction ............................................................................ 66

6.1.2. Calculating the passenger lift requirement .............................. 66

6.2. ARRANGEMENT OF THE STAIR CASE ..................................... 67

6.2.1. Introduction ............................................................................ 67

6.2.2. Calculating the dimension of the stair case ............................ 67

6.3. WATER SUPPLY SYSTEM ......................................................... 68

6.3.1. Introduction ............................................................................ 68

6.3.2. Storage requirement ............................................................. 68

6.3.3. Pipeline design ........................................................................ 68

6.4. ABOVE GROUND WASTE WATER DISPOSAL SYSTEM ............. 71

6.4.1. Design the Size of the Soil (Black Water) Pipe ....................... 71

6.4.2. Design of Pipes for Grey Water .............................................. 71

6.5. BELOW GROUND WASTE DISPOSAL SYSTEM ......................... 73

6.5.1. Assumptions ........................................................................... 73
Contents

6.5.2. Soil Drainage ................................................................. 73
6.5.3. Waste water drainage .................................................. 73
6.6. SOLID WASTE MANAGEMENT .......................................... 75
  6.6.1. Design of the chute for the high rise building ............... 75
6.7. FIRE FIGHTING SYSTEM .................................................. 78
  6.7.1. Proposed Fire Fighting Systems .................................. 78
  6.7.2. Fire Detection Systems ............................................... 81
  6.7.3. Emergency Evacuation for People with Disabilities ....... 81
6.8. Air Conditioning .............................................................. 82
6.9. ELECTRICAL SUPPLY ..................................................... 82
  6.9.1. Lighting design .......................................................... 82
  6.9.2. Substation ................................................................. 85
    6.9.2.1. Consumer Unit .................................................... 86
    6.9.2.2. Rising main electricity distribution ....................... 86
6.10. Building Services integration ........................................ 87
6.11. Thermal Performance Assessment .................................. 88
  6.11.1. INTRODUCTION ....................................................... 88
  6.11.2. PROCEDURE ........................................................... 88
6.12. MEASURES TAKEN TO INCREASE THE THERMAL COMFORT ...... 94
7. ANALYSIS OF STRUCTURE USING SAP2000 ..................... 97
  7.1. Introduction .................................................................. 97
  7.2. Methodology ............................................................... 97
  7.3. Preparation of general arrangement ............................... 97
    7.3.1. Selection of element sizes ..................................... 99
  7.1. Identification of proper materials and their properties ....... 100
7.2. Identification of loading arrangement for the building .................................................. 101
  7.2.1. Dead loads ............................................................................................................. 101
  7.2.2. Imposed load ........................................................................................................ 101
  7.2.3. Wind load ............................................................................................................ 102
  7.3.1. Springs ................................................................................................................ 104
  7.3.2. Seismic load ........................................................................................................ 104
  7.3. Dynamic behavior of the building .......................................................................... 105
  7.4. Outputs and Validation of the Model ...................................................................... 105
    7.4.1. Axial forces ...................................................................................................... 106
    7.4.2. Sub structure .................................................................................................... 106
    7.3.4. Other results .................................................................................................... 107
  7.5. Lateral stability of the structure .............................................................................. 108
    7.5.1. Cross wind response ........................................................................................ 108
    7.5.2. Along wind response ....................................................................................... 108
  7.6. Drift calculation ..................................................................................................... 108
  8. Design of the superstructure ...................................................................................... 110
    8.1. Introduction to structural system ......................................................................... 110
      8.1.1. Conceptual Design Phase .............................................................................. 110
      8.1.2. Load transfer mechanism .............................................................................. 111
      8.1.3. Structural arrangement .................................................................................. 111
      8.1.4. Effect of Relative Strength of Beams and Columns ...................................... 111
      8.2. Preliminary Design ............................................................................................. 111
        8.2.1. Introduction .................................................................................................. 111
        8.2.2. Criteria used for member size selection ...................................................... 112
      8.3. Detail Design ...................................................................................................... 113
        8.3.1. Slab design .................................................................................................. 113
        8.3.2. Stair Case Design ....................................................................................... 116
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.3.</td>
<td>Beam Design</td>
<td>116</td>
</tr>
<tr>
<td>8.3.4.</td>
<td>Column Design</td>
<td>116</td>
</tr>
<tr>
<td>8.3.5.</td>
<td>Shear Wall Design</td>
<td>116</td>
</tr>
<tr>
<td>8.3.6.</td>
<td>Coupling Beam Design</td>
<td>117</td>
</tr>
<tr>
<td>8.3.7.</td>
<td>Swimming pool Design</td>
<td>118</td>
</tr>
<tr>
<td>8.3.8.</td>
<td>Water sump Design</td>
<td>119</td>
</tr>
<tr>
<td>8.4.</td>
<td>Disaster Resistive Design</td>
<td>120</td>
</tr>
<tr>
<td>8.4.1.</td>
<td>Fire Resistance</td>
<td>120</td>
</tr>
<tr>
<td>8.4.2.</td>
<td>Earthquake Resistance</td>
<td>121</td>
</tr>
<tr>
<td>8.4.3.</td>
<td>Structural Form</td>
<td>121</td>
</tr>
<tr>
<td>8.4.4.</td>
<td>Effects of Eccentric Cores</td>
<td>122</td>
</tr>
<tr>
<td>8.4.5.</td>
<td>Effect of Soft Zoning</td>
<td>122</td>
</tr>
<tr>
<td>8.4.6.</td>
<td>Effect of Relative Strength of Beams and Columns</td>
<td>122</td>
</tr>
<tr>
<td>8.4.7.</td>
<td>Member Sizing</td>
<td>122</td>
</tr>
<tr>
<td>8.4.8.</td>
<td>Analysis</td>
<td>122</td>
</tr>
<tr>
<td>8.4.9.</td>
<td>Detailing</td>
<td>123</td>
</tr>
<tr>
<td>8.4.10.</td>
<td>Structural detailing with disaster resistant detailing</td>
<td>123</td>
</tr>
<tr>
<td>9.</td>
<td>Substructure Design</td>
<td>125</td>
</tr>
<tr>
<td>9.1.</td>
<td>Literature Survey</td>
<td>125</td>
</tr>
<tr>
<td>9.2.</td>
<td>Site Visit</td>
<td>125</td>
</tr>
<tr>
<td>9.3.</td>
<td>Subsurface Investigation</td>
<td>125</td>
</tr>
<tr>
<td>9.4.</td>
<td>Estimation of soil strength parameters</td>
<td>127</td>
</tr>
<tr>
<td>9.4.1.</td>
<td>Specimen Calculation-Energy Approach Method (Borehole location1)</td>
<td>128</td>
</tr>
<tr>
<td>9.4.2.</td>
<td>Settlement of the piles</td>
<td>130</td>
</tr>
<tr>
<td>9.4.3.</td>
<td>The rationale behind selection of bored piles over other types of piles and foundations</td>
<td>132</td>
</tr>
<tr>
<td>9.4.4.</td>
<td>Construction difficulties and suitable remedial measures</td>
<td>132</td>
</tr>
</tbody>
</table>
9.4.5. Estimation of Skin frictional resistance and end bearing capacities ......... 133
9.4.6. Reinforcements for 1 m diameter piles .................................................. 136
9.4.7. Pile Raft Design ...................................................................................... 137
9.5. Earth Retaining Structure for excavation ................................................. 142
9.6. Procedure .................................................................................................. 143
9.6.1. General Details ..................................................................................... 144
10. Sustainable concepts adopted ................................................................. 149
10.1. LEED Certification for the building ....................................................... 149
10.2. Location, Linkages and Sustainable Site Planning .................................. 149
10.2.1. Site Selection (Max. points: 2) ............................................................ 150
10.2.2. Surface Water Management (Max. Points: 6) ......................................... 150
10.2.3. Soil Conservation (Max. Points: 2) ....................................................... 150
10.2.4. Development of density and Community Connectivity (Max. Points: 3) ................................................................. 152
10.2.5. Alternative transport (Max. Points: 6+1) ............................................. 152
10.2.6. Landscaping and Protecting of Habitat (Max. Points: 1) ................. 153
10.2.7. Sanitary and Safety Facilities ............................................................. 154
10.2.8. Pollution Mitigation ............................................................................ 154
10.2.9. Water Efficiency ................................................................................ 155
10.2.10. Water Reuse (Max. points: 5) ............................................................. 155
10.2.11. Rainwater Harvesting System .......................................................... 155
10.2.12. Waste water treatment plant ........................................................... 156
10.2.13. Irrigation System (Max. Points: 4) ...................................................... 161
10.3. Energy and Atmosphere ........................................................................ 166
10.3.1. Insulation, Air Infiltration and Windows (max. points: 2+3+3) ............ 166
10.3.2. Lighting (max. points: 3) ................................................................. 168
10.3.3. Renewable Energy (max. points: 10) .................................................. 171
Contents

10.4. Materials and Resources ........................................................................................................ 173
    10.4.1. Reduction in waste during construction (max. 3 points) ........................................ 173
    10.4.2. Material Reuse (max. 3 points) ................................................................................ 173
    10.4.3. Materials Selection with Less Embodied Energy (Max. Points: 8) .................... 174
    10.4.4. Indoor Environmental Quality ................................................................................. 174
    10.4.5. Low-Emitting Materials—Adhesives and Sealants (1 point) ............................... 174
    10.4.6. Low Emitting Materials – Paints and Coatings (1 point) ...................................... 175
    10.4.7. Low Emitting Materials—flooring Systems (1 point) ........................................... 175
    10.4.8. Furnishings and Equipment .................................................................................... 175
    10.4.9. Vehicle Emission Protection (Max. Points: 3) ..................................................... 175

10.5. Innovation and Design ........................................................................................................ 176

10.6. Awareness and Education .................................................................................................. 176

11. Bill of Quantity ...................................................................................................................... 178
    11.1. Introduction .................................................................................................................. 178
    11.2. Grand Summary of BOQ ......................................................................................... 178
    11.3. Detailed Bill of Quantity ............................................................................................. 179

APPENDICES
LIST OF TABLES

Table 1.1 Project Details .................................................................................................................. 2
Table 2.1 Comparing Alternatives .................................................................................................. 10
Table 2.2 Details on existing tallest buildings in Colombo ............................................................... 11
Table 2.3 Details on proposed tallest buildings in Colombo .............................................................. 11
Table 2.4 Estimated Cost for Financial Feasibility ........................................................................ 13
Table 2.5 NPV IRR Calculation ...................................................................................................... 14
Table 5.1 Features and space allocation within the apartment ......................................................... 63
Table 5.2 Features and space allocation within the apartment .......................................................... 63
Table 6.1 Selected pipe diameters for a typical 3 bed room apartment ........................................... 69
Table 6.2 Selected pipe diameters for vertical pipes on top 5 floors ............................................... 69
Table 6.3 Typical pipe sizes for 2 bed room apartment ..................................................................... 69
Table 6.4 Calculation of discharge units per floor of one pipe ......................................................... 71
Table 6.5 Type of Extinguisher ...................................................................................................... 79
Table 6.6 Air conditioning loading requirement .............................................................................. 82
Table 6.7 12w Par 38 Led Light Bulb ............................................................................................ 82
Table 6.8 Summary of the lighting fittings ...................................................................................... 83
Table 6.9 Summary of the Socket Outlet ....................................................................................... 84
Table 6.10 Properties of light colour and dark colour ................................................................... 89
Table 6.11 Color type..................................................................................................................... 89
Table 6.12 Indoor temperature variation in °C (CSEB light colour)w) ................................................ 92
Table 6.13 Temperature variation of vol_1 with different wall material .......................................... 93
Table 7.1 - Typical dimensions of members of structural model ..................................................... 100
Table 7.2 - Material properties .................................................................................................. 101
Table 7.3 - Wall loads .................................................................................................................. 101
Table 7.4 - Wind loads for each 5 floor levels ............................................................................. 102
Table 7.5 - Wind loads on nodes in x direction ............................................................................. 103
Table 7.6 - Wind loads on nodes in y direction ............................................................................. 103
Table 7.7 - Spring values for piles ............................................................................................... 104
Table 7.8 - Seismic load distribution in each floor - static analysis ................................................ 105
Table 7.9 - Fundamental period in three aspects .......................................................................... 105
Table 8.1: Span/effective depth ratios for initial design of beams ....................................................... 112
Table 8.2: Span/effective depth ratios for initial design of slabs ...................................................... 112
Table 8.3: Provided reinforcement for each slab panel ..................................................................... 115
Table 8.4: Fire resistance of structural members .......................................................................... 121
Table 9.1 Selection of soil parameters for design ......................................................................... 129
Table 9.2 Assumed E and v values ............................................................................................... 130
Table 9.3 Pile Capacities .............................................................................................................. 136
Table 10-1: Selected Plants for the Building .................................................................................. 154
Table 10-2: Tolerance limits for discharge of effluents into public sewers with central treatment plants -National Environmental Act, No. 47 OF 1980 - list vii ...................................................... 158
Table 10-3: Properties of different double glazing windows ......................................................... 167
Table 10-4: A comparison of the lifetime cost of different types of bulbs ..................................... 170
Table 10-5: System Performance ................................................................................................. 172
Table 10-6: Embodied Energy comparison of the possible materials ........................................... 174
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location of the Site</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>View of the building</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Zoning Regulations</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Selection of function</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Alternative 1</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Alternative 2</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Alternative 3</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Site Location</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of site in Kadowala Division</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Site Layout</td>
<td>23</td>
</tr>
<tr>
<td>3.4</td>
<td>Existing Environment</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Figure 3.7 Existing Environment</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Existing Environment</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Shape of the Building</td>
<td>57</td>
</tr>
<tr>
<td>5.2</td>
<td>Plan view of the typical parking floor</td>
<td>58</td>
</tr>
<tr>
<td>5.3</td>
<td>Plan view of the typical parking floor</td>
<td>59</td>
</tr>
<tr>
<td>5.4</td>
<td>Recreational Area</td>
<td>59</td>
</tr>
<tr>
<td>5.5</td>
<td>Plan view of recreational floor</td>
<td>60</td>
</tr>
<tr>
<td>5.6</td>
<td>Typical apartment floor layout</td>
<td>60</td>
</tr>
<tr>
<td>5.7</td>
<td>Apartment Type 1</td>
<td>62</td>
</tr>
<tr>
<td>5.8</td>
<td>Apartment Type 2</td>
<td>62</td>
</tr>
<tr>
<td>5.9</td>
<td>Landscape</td>
<td>64</td>
</tr>
<tr>
<td>5.10</td>
<td>Landscape</td>
<td>64</td>
</tr>
<tr>
<td>5.11</td>
<td>Landscape</td>
<td>65</td>
</tr>
<tr>
<td>5.12</td>
<td>Landscape 4</td>
<td>65</td>
</tr>
<tr>
<td>6.1</td>
<td>Stair Case</td>
<td>68</td>
</tr>
<tr>
<td>6.2</td>
<td>Top of the refuse chute</td>
<td>76</td>
</tr>
<tr>
<td>6.3</td>
<td>Overall Design of Chute</td>
<td>77</td>
</tr>
<tr>
<td>6.4</td>
<td>The Extinguisher Label</td>
<td>79</td>
</tr>
<tr>
<td>6.5</td>
<td>Layout of the substation</td>
<td>85</td>
</tr>
<tr>
<td>6.6</td>
<td>The rising main system with fire prevention</td>
<td>86</td>
</tr>
<tr>
<td>6.7</td>
<td>Service Duct Layout</td>
<td>87</td>
</tr>
<tr>
<td>6.8</td>
<td>DEROB model without roof slab</td>
<td>90</td>
</tr>
<tr>
<td>6.9</td>
<td>DEROB model with roof slab</td>
<td>90</td>
</tr>
<tr>
<td>6.10</td>
<td>Indoor Temperature Variation</td>
<td>92</td>
</tr>
<tr>
<td>6.11</td>
<td>Comparison of materials</td>
<td>94</td>
</tr>
<tr>
<td>6.12</td>
<td>Shading arrangement</td>
<td>96</td>
</tr>
<tr>
<td>7.1</td>
<td>General arrangement in car park floors</td>
<td>98</td>
</tr>
<tr>
<td>7.2</td>
<td>General arrangement in apartment floors</td>
<td>98</td>
</tr>
<tr>
<td>7.3</td>
<td>Idealized model</td>
<td>99</td>
</tr>
<tr>
<td>7.4</td>
<td>Application of unit loads in apartment floors</td>
<td>102</td>
</tr>
<tr>
<td>7.5</td>
<td>Bending moment in pile caps</td>
<td>107</td>
</tr>
<tr>
<td>7.6</td>
<td>Axial force on walls</td>
<td>107</td>
</tr>
<tr>
<td>7.7</td>
<td>Bending moment diagrams of an apartment floor</td>
<td>108</td>
</tr>
<tr>
<td>8.1</td>
<td>Apartment floor slab panels</td>
<td>113</td>
</tr>
<tr>
<td>8.2</td>
<td>Selected slab panels in car park for design</td>
<td>115</td>
</tr>
</tbody>
</table>
List of Figures

Figure 8.3: Considered locations for provide reinforcement ........................................................ 115
Figure 8.4: Coupling beam ............................................................................................................. 117
Figure 8.5: Section view of swimming pool ................................................................................. 118
Figure 8.6: Long wall vertical reinforcement ............................................................................... 118
Figure 8.7: Short wall vertical reinforcement ................................................................................ 119
Figure 8.8: Dimensions of long wall in water sump ..................................................................... 119
Figure 9.1 Actual Subsurface profile ............................................................................................ 126
Figure 9.2 Idealized sub surface profile ....................................................................................... 127
Figure 9.3 Skin Friction Variation ............................................................................................... 134
Figure 9.4 Pile Layout ................................................................................................................... 135
Figure 9.5 Pile Reinforcement ...................................................................................................... 137
Figure 9.6 Pile Raft ....................................................................................................................... 138
Figure 9.7 Section view of the excavation ................................................................................. 144
Figure 9.8 Geometry model of the window .................................................................................. 144
Figure 9.9 Initial Water table level ............................................................................................... 145
Figure 9.10 Installing Retaining wall and applying load due to existing buildings ...................... 145
Figure 9.11 Excavating up to 0.5 m from the ground level .......................................................... 146
Figure 9.12 Total Excavation ........................................................................................................ 146
Figure 9.13 Vertical Displacement .............................................................................................. 147
Figure 9.14 Methods to reduce the deformations in soil retaining structures ............................... 148
Figure 10-3: Well protected stock pile .......................................................................................... 151
Figure 10-4: Geotextiles and their applications ......................................................................... 151
Figure 10-5: Protected Drains ...................................................................................................... 151
Figure 10-6: An Electric Car Re-charging Station ....................................................................... 153
Figure 10-7: Proposed Unit Processes ......................................................................................... 158
Figure 10-8: Up flow Anaerobic Sludge Blanket (UASB) Reactor .............................................. 160
Figure 10-9: Pressure filters ........................................................................................................ 161
Figure 10-10: Gardens on Balconies ............................................................................................. 162
Figure 10-11: Drip Irrigation Systems for the balconies (top) and for green wall (bottom) .......... 163
Figure 10-12: Pressure assist technology and water less urinals ................................................. 164
Figure 10-13: A Tap with Automatic Sensors .............................................................................. 165
Figure 10-14: Aerating shower heads ......................................................................................... 165
Figure 10-15: A CSEB block (left) and a building constructed with them (right) ......................... 167
Figure 10-16: Double glazing windows ....................................................................................... 168
Figure 10-17: The visual comparison above shows how well LED lights compare with other light sources ........................................................................................................................................... 169
Figure 10-18: Efficient Exterior Lighting ..................................................................................... 170
Figure 10-19: Schematic overview of a Grid Connected Solar PV power system .................... 171