CHARACTERIZATION OF LOCALLY AVAILABLE MONTMORILLONITE CLAY MINERALS TO BE USED AS NANO PARTICLES

Dimuthu Dananjaya Wanasinghe

(128021X)
University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Thesis submitted in partial fulfillment of the requirements for the degree
Master of Science in Materials Science and Engineering

Department of Materials Science and Engineering

University of Moratuwa
Sri Lanka

November 2014
DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: ………………………………… Date: …………………..

The above candidate has carried out research for the Masters Thesis under my supervision.

Signature of the supervisor: …………………………….. Date: …………………..

Name of the supervisor: Dr. S.U. Adikary
ABSTRACT

The research work describes the extraction of nano particles of Montmorillonite clay from local clay deposits located in the dry zone of the country, and its characterization techniques using X-Ray diffraction, Fourier Transform Infrared Spectroscopy, Differential Thermal Analysis and Thermogravimetry analysis, Scanning Electron Microscope, and particle size analysis.

Montmorillonite gained an increased attention during the past decade due to the superior properties imparted in polymer-clay nano composite synthesized with nano particles of Montmorillonite. These composites synthesized in this way have superior mechanical and thermal properties compared to their bulk counterparts. At present the local demand for Montmorillonite is fulfilled by imported Montmorillonite which is a purified form of bentonite. It has been found by previous research activities, that in Sri Lankan clay deposits located in the dry region, Montmorillonite is available mixed with other minerals. The main ingredients of these deposits are Montmorillonite and kaolinite.

Physically Montmorillonite and Kaolinite are so similar that they are very difficult to be separated from a mixture. However these two minerals have a difference in their specific gravities which can be used to separate the two minerals. This research describes how this separation could be carried out in detail finally leading to the extraction of Montmorillonite from local clay deposits. The clay used in the experiment underwent several purifying processes followed by characterization processes. The characterization of the final extracted clay reveals that it consists of Montmorillonite and the particle size of these falls below 100 nm. This indicates that these extracted Montmorillonite nano particles can be used to synthesize polymer-clay nano composite.

Keywords: Montmorillonite, nano, extraction, clay characterization
ACKNOWLEDGMENT

My foremost sincere gratitude is expressed to my supervisor, Dr. S.U. Adikary who gave me the opportunity to carry out this research work and for the immense help and guidance given throughout the project work.

I would also like to thank Dr. S. Amarasinghe, Dr. (Mrs.) N.M.V.K. Liyanage, Dr. M. Jayaratne, and Dr. S. Walpolage for helping me by providing correct guidance through the project work.

I also like to thank my sincere gratitude to Prof. R.G.N.De.S. Munasinghe for supporting me during my research activities.

In addition to that, I like to express my thanks to all the academic staff members of the Department of Materials Science and Engineering, University of Moratuwa for their assistance and contribution to my research work.

I am grateful to Mr. S. Chandrapala, Mr. Swaris and Mr. Abeyaratne and other non-academic staff members of the Department of Materials Engineering, for their assistance and contribution to my research work.

In conclusion, I would like to express my pardon if I have inadvertently omitted the name of those to whom thanks is due.

D.D. Wanasinghe
TABLE OF CONTENTS

Declaration i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Figures vi
List of Tables viii
List of Abbreviations ix

Chapter 1: Introduction 1

Chapter 2: Literature Review 3

2.1 Applications of Nano Technology 3

2.2 Clay Mineralogy 3

 2.2.1 Smectite group 5
 2.2.2 Kaolinite group 6
 2.2.3 Illite group 7
 2.2.4 Chlorite group 8
 2.2.5 Mixed-Layer Clays 8
 2.2.6 Sepiolite and Palygorskite 9
 2.2.7 Vermiculite 9

2.3 Clays as Natural Nano-Materials 9

2.4 Montmorillonite and its Application in Nano Technology 10

2.5 Montmorillonite Deposits in Sri Lanka 13

2.6 Identification and Characterization Techniques of Montmorillonite 15

 2.6.1 X-ray Diffraction Analysis (XRD) 15
 2.6.2 Fourier Transform Infrared Spectroscopy Analysis (FTIR) 16
2.6.3 Thermal Analysis
2.6.4 Scanning Electron Microscopy (SEM)

2.7 Extraction of Nano-Clays
2.7.1 Energetic stirring, centrifugation and freeze-drying
2.7.2 Ultracentrifugation
2.7.3 Hydrocyclone
2.7.4 Magnetic Particle Separation
2.7.5 Density Separation of Montmorillonite

2.8 Selection of Clay Deposits for Experiment Work

Chapter 3: Research Methodology

Chapter 4: Results and Discussion

4.1 Initial Characterization of Selected Clay Samples
4.1.1 X-Ray diffraction analysis
4.1.2 Differential Thermal Analysis and Thermo Gravimetric Analysis
4.1.3 Fourier Transform Infrared Analysis (FTIR)
4.1.4 Chemical Analysis

4.2 Analysis of the Isolated Clay Fractions
4.2.1 X-Ray diffraction analysis
4.2.2 Particle size analysis by laser diffraction
4.2.3 Scanning Electron Microscope (SEM) analysis

4.3 Analysis of the Extracted Montmorillonite

Chapter 5: Conclusions

Chapter 6: Suggestions and Future Work

References

Annexure: Publications
LIST OF FIGURES

Figure 2.1: Structure of an Al octahedral sheet (left) and a silica Tetrahedral Sheet (right) 4

Figure 2.2: Structure of Montmorillonite 6

Figure 2.3: Structure of kaolinite 7

Figure 2.4: Structure of illite 8

Figure 2.5: Scheme of the 2:1 Smecitite clay structure 11

Figure 2.6: Clay zones in Sri Lanka 14

Figure 2.7: XRD pattern of Montmorillonite 16

Figure 2.8: FTIR spectra of Montmorillonite 17

Figure 2.9: DTA analysis of Montmorillonite clays from several sources 19

Figure 2.10: SEM view of Montmorillonite 20

Figure 2.11: Hydrocyclone extraction of nano clay 23

Figure 2.12: Magnetic (a- dry and b- wet) separation method 24

Figure 4.1: Initial XRD analysis of specimens 31

Figure 4.2: Initial DTA and TGA analysis of clay specimen 34

Figure 4.3: Initial FTIR analysis of clays 36

Figure 4.4: XRD analysis of isolated clay fraction 40

Figure 4.5: Particle size analysis of the clay specimens before sonication 45

Figure 4.6: Particle size analysis of the clay specimens after 12 hours of sonication 45

Figure 4.7: SEM image of clay specimen before sedimentation 47

Figure 4.8: SEM image of clay specimen after sedimentation 48

Figure 4.9: SEM image of clay specimen after sedimentation 48

Figure 4.10: XRD analysis of extracted Montmorillonite from Clay 1 sample 50

Figure 4.11: XRD analysis of Clay 1 sample 51

Figure 4.12: XRD analysis of samples subjected to extraction process 52
Figure 4.13: Laser particle size analysis of extracted Clay 1 specimen

Figure 4.14: SEM image of extracted Montmorillonite

Figure 4.15: SEM image of extracted Montmorillonite showing the layered structure
LIST OF TABLES

Table 3.1: Location of clay deposits chosen for the research 26
Table 4.1: d values of specimens subjected to XRD analysis 32
Table 4.2: Peaks and relevant weight losses in the DTA and TGA analysis 35
Table 4.3: Absorption bands of FTIR spectra 37
Table 4.4: Chemical Analysis of Clay 1 39
Table 4.5: Chemical Analysis of Clay 2 39
Table 4.6: Peaks identified in Clay 1 41
Table 4.7: Peaks identified in Clay 2 41
Table 4.8: Peaks identified in Clay 3 42
Table 4.9: Peaks identified in Clay 4 42
Table 4.10: Peaks identified in Clay 5 43
Table 4.11: Crystal sizes calculated from XRD analysis 46
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>Angle of incidence</td>
</tr>
<tr>
<td>d</td>
<td>Inter planar spacing</td>
</tr>
<tr>
<td>BT</td>
<td>Bentonite</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermal Analysis</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>MMT</td>
<td>Montmorillonite</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetry Analysis</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
</tbody>
</table>