IMPLEMENTING A SIMULATOR FOR A PROCESS PLANT WITH A CONTROL SYSTEM

Waasala Appuhamilage Dilan Damendra Piyarathna

Degree of Master of Science in Sustainable Process Development

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

July 2014

IMPLEMENTING A SIMULATOR FOR A PROCESS PLANT WITH A CONTROL SYSTEM

Waasala Appuhamilage Dilan Damendra Piyarathna

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Sustainable Process Development

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

July 2014

DECLARATION OF THE CANDIDATE & THE SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Date:

Abstract

Intention of this research study is to develop a simulator with LABVIEW for a reactor/flash/recycle plant which is described in Edgar et al. (2003). The material balances, component balances and energy balances for each unit were used to develop this simulator. Plant wide control system was proposed in reference book Process Dynamics and Control (Edgar et al., 2003) was simulated to find out best control parameters for the plant. PID controllers are used to control required parameters and PID controllers were tuned using Good Gain method and trial and error as appropriate. The dynamic mathematical models are based on differential equations which are developed for the reactor, flash unit, and recycle tank and for the heat exchangers. The holdup condition was assumed when developing differential equations in the Edgar et al. (2003) but mathematical model developed for this research work eliminated that assumption and further developed the ODEs. These developed equations are solved using the Second Order Runge-Kutta method, in the library function of Lab VIEW software. The steady state values given in the reference book was used to check the accuracy of the simulator and the simulated plant reached steady state output for the relevant inputs. Instead of PID controllers some of the logical controllers were used for smooth operation of the plant Special functions of DABVIEWINGER, used to speed up the simulator to reach steady state bonditions very fast which in factual time will take of more than one day This simulator is feally a good option to find different conditions of the reactor/ flash/ recycle plant, which are impossible to check in an actual plant which can create very unsafe conditions and damages for the equipment and people.

Key words: LabVIEW, Plantwide control, Simulator, PID controllers, Dynamic model

DEDICATION

This thesis is dedicated to

my Mother, Father and

beloved Wife

who encouraged me

to complete the research

work

University the lectoraturya, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk who gave me knowledge

to achieve the success.

ACKNOWLEDGMENT

First of all I am grateful to my research supervisors Associate Professor Finn Haugen (TUC) and Dr. M. Narayana (UOM). Without their kind advices this would not be a successful thesis. Dr. Finn Haugen always responded to my E-mails and advised me to develop my skills in LABVIEW. Dr. M. Narayana guided me on modeling theories and in completing this successful thesis.

I convey my heartfelt gratitude to Head of the department, academic staff, non academic staff of Department of chemical and process engineering University of Moratuwa who helped me in various situations. Especially I should remember Dr. Shantha Amarasinge and Dr. P. G. Rathnasiri for encouraging me to complete the thesis within the given time.

Also I am thankful to my beloved wife, family members and my friends who supported me and encouraged me to finish this thesis successfully. Thank you very much my work place Ceylon Cold Stores PLC for allowing me to engaged in research activities whenever possible.

Finally I wish to convey in respected thanks to authorities and NOMA for funding me to support financially and for the collaboration of Telebick University Collage Norway. www.lib.mrt.ac.lk

TABLE OF CONTENT

Declaration of the Candidate & the Supervisor		i	
Dedication		ii	
Ack	Acknowledgement		
Abs	tract		iv
Tab	le of Cont	ent	v
List	of Figures	5	vii
List	of Tables		ix
List	of Abbrev	viations	х
List	of Symbo	ls	xi
List	of Appen	dices	xiii
1.	INTROD	UCTION	1
	1.1	Background	1
	1.2	The Reactor/ Flash/ Recycle Plant	1
	1.3	Work Scope University of Moratuwa, Sri Lanka,	3
2	CONTRO	L THEORY AND LABVIEW SIMULATOR	4
	2.1	Plantwide Control nrt. ac.lk	4
	2.2	Feedback Control	6
	2.3	PID Controller	7
	2.4	PID Controller Tuning	10
		2.4.1 Good Gain Method	10
	2.5	Runge-Kutta 2 nd Order Method	12
	2.6	Literature Survey	14
3	MATHEMATICAL MODEL FOR REACTOR/FLASH/RECYCLE PLANT		· 19
	3.1	Material and Mass Balances	19
		3.1.1 Dynamic model for reactor	19
		3.1.2 Dynamic model for flash unit (Modeled as a splitter)	23
		3.1.3 Dynamic model for recycle tank	24
		3.1.4 Summery of material balance models	26
	3.2	Energy Balance	27
		3.2.1 Model for reactor cooling system	27
		3.2.2 Model for heat exchanger at flash unit	29
		3.2.3 Model for heat exchanger at recycle tank	30

4	IMPLEMENTATION OF SIMULATOR IN LABVIEW		32
	4.1	Overall Plant and Control Mechanism	32
	4.2	LabVIEW Front Panel	34
	4.3	LabVIEW Block Diagram	36
5	TESTING	G SIMULATOR & TUNING PID CONTROLLERS	41
6	6 RESULTS & CONCLUSIONS		
	6.1	Results for Feed Composition Change	45
	6.2	Results for Set Point Change for Production Rate	46
	6.3	Conclusions	48
7	RECOM	MENDATIONS AND FUTURE WORKS	49
REFERENCES			50
APPENDIX A: Front Panel of Simulator			53
APPENDIX B: Block Diagram of Simulator			54
APPENDIX C: LabVIEW Simulator CD Copy			55

LIST OF FIGURES

Page

Figure 1.1: Reactor, Flsh, Recycle plant with control structure	2
Figure 2.1 Block diagram of a feedback control system	6
Figure 2.2: The Good Gain method: Reading off the time between the overshoo	t and
the undershoot of the step response with P controller	12
Figure 2.3: Inconsistent structure with both reactant flows given	15
Figure 2.4: Self-consistent structure where feed of reactant A depends on inver-	ntory
of A (as reflected by D)	15
Figure 3.1: Reactor P&I diagram	20
Figure 3.2: Flash unit P&I diagram	23
Figure 3.3: Recycle tank P&I diagram	24
Figure 3.4: Reactor P&I diagram	28
Figure 3.5: Flash unit P&I diagram	29
Figure 3.6: Recycle tank P&I diagram	30
Figure 4.1: P&I diagram which of the process	34
Figure 4.2: Front panel of the plant simulator	36
Figure 4.3. Tab controls of the Lab VIEW plant simulator	36
Figure 4.4: Flat sequence structure/ Control & simulation loop	37
Figure 4.5: Formula Node in LabVIEW block diagram	38
Figure 4.6: Formula node for heat exchanger in block diagram	39
Figure 4.7: PID controller in LabVIEW block diagram	39
Figure 4.8: Simulation Time Waveform	39
Figure 4.9: conditional controls in block diagram	40
Figure 5.1: The process after reached steady state	42
Figure 5.2: The tab control displays process parameters at steady state	43
Figure 6.1: Flow rate variation after initiating the simulator	44
Figure 6.2: Concentration variation in reactor after initiating the simulator	44
Figure 6.3: Change of X4A (A mole fraction of flash unit) with time (h)	45
Figure 6.4: Change of XTD (D mole fraction of recycle tank) with time (h)	45
Figure 6.5: Change of W4 (production rate Kg/h) with time (h)	45
Figure 6.6: Change of X4A (A mole fraction of flash unit) with time (h)	46
Figure 6.7: Change of XTD (D mole fraction of recycle tank) with time (h)	46
Figure 6.8: Change of W4 (production rate Kg/h) with time (h)	46

Figure 6.9: Change feed composition of D by +0.03	47
Figure 6.10: Changing production rate by +100kg/hr	47

LIST OF TABLES

Table 4.1: Manipulated variables and associated valves of the reactor/ flash /re	ecycle
plant	32
Table 4.2: Proposed control system structure (control loops) for the Reactor/	Flash
/Recycle unit.	33
Table 5.1: Parameters of the core reactor/flash recycle model	41
Table 5.2: Initial values of input for the core reactor/flash recycle model	41
Table 5.3: Steady state flow rates of stream variables.	42

LIST OF ABBREVIATIONS

Abbreviation	Description
LabVIEW	Laboratory Virtual Instrument Engineering Workbench
PID	Proportional Integral Deferential
VI	Virtual Instruments
I/O	Input Output
DAQ	Data Acquisition
GPIB	General Purpose Interface Bus
ODE	Ordinary Differential Equations

LIST OF SYMBOLS

- Subscript R Reactor
- Subscript F Flash unit
- Subscript T Recycle tank
- V_I Volume of unit I (I = R, F, T)
- $X_{I, N}$ Mass fraction of N component at unit I (I = R, F, T & N=A, B, C, D)
- $X_{I,N}$ Mole fraction of component N at I stream (I= 1, 2, 3, 4.... & N= A, B, C, D)
- W_I Flow rate of stream I (I= 1,2,3,4)
- T_I Temperature of Unit (I = R, F, T)
- T_I Temperature of I stream (I = 1, 2, 3....8)
- HI Liquid level of the unit I (I = R, F, T) University of Moratuwa, Sri Lanka. AI - Cross section area of the unit I (I = R, F, T) www.lib.mrt.ac.lk
- ρ Fluid density
- α Dimensionless mass ratio
- rc Reaction rate
- k Rate constant
- MW_I Molecular weight of component I (I= A, B, C, D)

Symbols of Energy Balance

- Subscript s Shell side of heat exchanger
- Subscript t Tube side of heat exchanger
- Subscript p Product stream
- Subscript w Water

Subscript C - Cooling water

VI	- Volume of component I (I= s, t, w, p, R)
C _p	- Specific heat capacity
U	- Overall heat transfer co-efficient
m	- Steam flow rate
Р	- Pressure
F	- Cooling water flow rate
f	- Heat transfer efficiency of steam heater

LIST OF APPENDICES

Appendix	Description	
Appendix - A	Front panel of simulator	53
Appendix - B	Block diagram of simulator	54
Appendix - C	LabVIEW Simulator CD Copy	55

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Page