REFERENCE

Beadle, C.L., Long, S.P. 1985, Photosynthesis - is it limiting to biomass production? *Biomass*, 8, 19-168

Buekens, A.G., Schoeters, J.G., 1986, European experience in pyrolysis and gasification of solid waste, *Conservation & Recycling*, 9, 253-269

Central Bank of Sri Lanka, 2011, Annual Report

Ceylon Petroleum Corporation, 2010, *Statistical Report*

Chaloner, W.G., 2003, The role of carbon dioxide in plant evolution, *Evolution on planet earth*, 65-83

Christie, M., Fazey, I., Cooper, R., Hyde, T., Kenter, O.J., 2012. An evaluation of monetary and non-monetary techniques for assessing their importance of biodiversity and with developing economies, *Ecological Economics*, 83, 67–78

Cho, W., Bae, D., & Kim, H.S., 2008, Economic Valuation Methods of Biodiversity, *Environ. Eng. Res.*, 13, 41-48

Ferdinando M.M.C., Gunawardana R.J., Electricity Generation from Renewable Energy in Sri Lanka: Future Directions, Ceylon Electricity Board

Food and Agricultural Organization, 2010, [Online] Global Forest resources assessment 2010; key findings, Available at, *http://foris.fao.org/static/data/fra2010/KeyFindings-en.pdf*

Food and Agricultural Organization, 1986, Wood Gas As engine Fuel, FAO Forestry
Department (ISBN 92-5-102436-7), [Online] Available at,
ftp://ftp.fao.org/docrep/fao/t0512e/t0512e00.pdf

Gunathilake, N., Pethiyagoda, R., Gunathilake, S., 2008, Biodiversity of Sri Lanka, J. *Natn. Sci. Foundation of Sri Lanka*, 36, 25-62

International Energy Agency, 2012, [Online] World Energy Balance of 2010, Available at,

http://www.iea.org/statistics/statisticssearch/report/?country=WORLD&product=bal ances&year=2010

Invasive species specialist Group, 2012, [Online] Global Invasive Species database, Available at,

http://www.issg.org/database/species/search.asp?st=100ss&fr=1&str=&lang=EN

Jayasuriya M., 2001, New invasive weed in Sri Lanka, *Parthenium hysterophorus* L., *proceedings of the silver jubilee seminar series of the postgraduate institute of agriculture*, University of Peradeniya, Sri Lanka

JenkinS, B.M., Baxter, L.L., Miles, T.R., 1998, Combustion Properties of Biomass, *Fuel Processing Technology*, 54, 17-46

Joseph, P.G., 2011, Market and Economic Study of the Biomass Energy Sector in Sri Lanka, *Report submitted to United Nation's Industrial Development Organization*.

Kauriinoja A., 2010, Small scale biomass to energy solutions for northern periphery areas, Master's thesis, University of Oulu

Klass, D.L., 2004, Biomass for Renewable Energy and Fuels, *Encyclopedia of Energy*, 1

Loewer, O.J, Black, R.J., Brook, R.C., Ross, I.J., Payne, F., 1982, economic potential of on-farm biomass gasification for corn drying, *transactions of ASAE*, 779-784

McNeely, J.A., 2001, An introduction to human dimensions of Invasive Alien Species, *The Great Reshuffling*, Cambridge, IUCN Publications Services Unit, 5-20.

Makendry, P., 2002, Energy Production from biomass (part 1) – overview of biomass, *Bioresource technology*, 83, 37-46

Makendry, P., 2002, Energy Production from biomass (part 2) – Conversion technologies, *Bioresource technology*, 83, 47-54

Mooney, H.A., Hobbs, R.J., 2000, *Invasive Species in a Changing World*, Island Press, Washington DC, USA

Pan, X., Sano, Y., 2005, Fractionation of wheat straw by atmospheric acetic acid process, *Bioresource Technology*, *96* (*11*), 1256-1263

Perera, K.K.C.K., & Sugathapala, A.G.T., 2002, Fuel wood fired cook stoves in Sri Lanka and related issues, *Energy for Sustainable Development*, 6, 85-94

Rajvanshi, A.K., 1986, Biomass gasification, *Alternative energy in agriculture*, 2, 83-102

Ranwala, S., Marambe, B., Wijesundara, S., Silva, P., Weerakoon, D., Atapattu, N., Gunawardena, J., Manawadu, L., AND Gamage, 2011, Post-entry risk assessment of Invasive Alien flora in Sri Lanka; present status, gap analysis and most troublesome alien invaders, 23rd Asian-Pacific Weed Science Society Conference, The Sebel Cairns, 26-29

Reed T.B., Das A., 1988, *Handbook of biomass downdraft gasifier engine system*, Solar energy research institute, Colorado

Renewable energy policy network for the 21st century (REN21), 2011, Renewables 2011-Global status report, [Online] Available at

http://www.ren21.net/REN21Activities/GlobalStatusReport.aspx

Rowland, S., 2008, Designing & testing of a small scale updraft gasifier for gasification of eastern redcedar, Oklahoma state university, Master's thesis

Siyambalapitiya, T., 2002, A review of energy policy in Sri Lanka and its implementation, *Energy for sustainable development*, 6, 5 - 13

Stassen, H.E.M., Knoef, H.A.M., 1995. UNDP small scale biomass gasifier monitoring program – final findings, *Energy for sustainable development*, 2, 41 – 48

Sustainable Energy Authority of Sri Lanka, 2011, Sri Lanka Energy Balance 2010

Szczodrak, J., & Fiedurek, J., 1996, "Technology for conversion of lignocellulosic biomass to ethanol", *Biomass and Bioenergy* 10, 367-375

Tiwari, G., Sarkar B., & Ghosh, L., 2006, Design parameters for a rice husk throat less gasifier reactor, *Agricultural Engineering International: the CIGR Journal of Scientific Research and Development*, 8

Twidell, J., Weir, T., 1986, *Renewable energy resources, Second Edition*, Taylor & Francis, New York & Oxon

Wijesundara, S., 2008, Major invasive plant species in different climatic zones of Sri Lanka, *Proceedings of the National Symposium on Invasive Alien Species*, 15-21

Wijesundara, S., 2010, Invasive alien plants in Sri Lanka, Invasive Alien Species in Sri Lanka – strengthening capacity to control their introduction and spread, 27-38

Sorensen, B., 2000. Renewable Energy (Second Edition), Academic Press

Yakandawala, D., Yakandawala, K., 2011, Hybridization between native and invasive alien plants; An overlooked threat to the biodiversity of Sri Lanka, *Cey. J. Sci. (Bio. Sci.)* 40, 13-23

Department of Census and Statistics of Sri Lanka, 2010, Statistical Report

Yoda, S. 1995. *Trilemma; three major problems threatening world survival*, Tokyo, Central Research Institute of Electric Power Industry

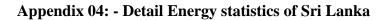
APPENDIX

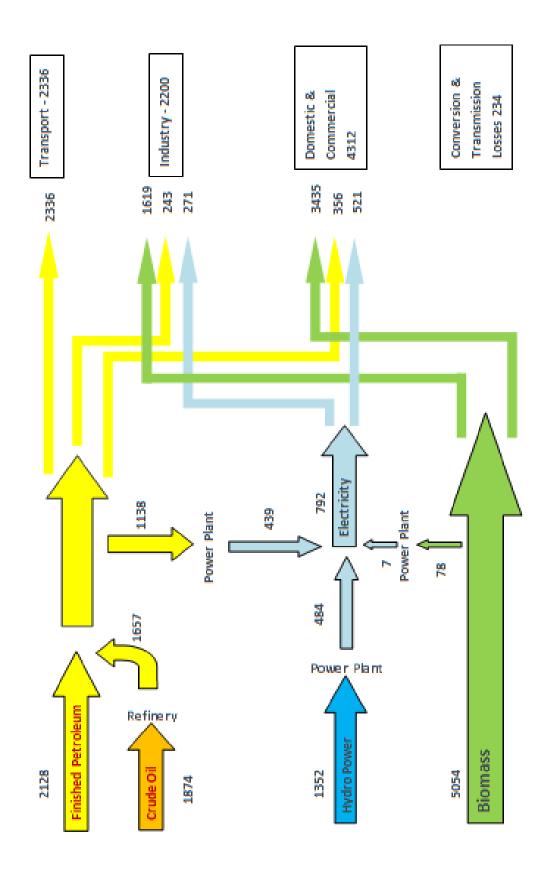
Plant Species	Total No of Species (Endemic)	Vertebrate	Total No of Species (Endemic)	Invertebrate	Total No of Species (Endemic)
Flowering Plants	3771 (927)	Mammals	91 (16)	Bees	148 (21)
Gymnosperms	1 (0)	Birds	482 (33)	Ants	181 ()
Ferns & Fern allies	314 (59)	Reptiles	171 (101)	Butterflies	243 (20)
Mosses	561 (63)	Amphibians	106 + (90+)	Spiders	501()
Liverworts	227 ()	Fishes	82 (44)	Land Snails	246 (204)
Freshwater Algae	560 + ()			Dragon Flies	120 (57)
Fungi	2260 + ()			Crabs	51 (51)
Lichens	661()			Shrimps	23 (07)

Appendix 01: - Biodiversity of Sri Lanka

Table A.1.1: - Species Diversity of Sri Lanka

Aquatic Ecosystem Diversity	Present Extent (ha)	Terrestrial Ecosystem Diversity	Present Extent (ha)	
Costal Ecosystems		Natural Forest Ecosystems		
Coral Reefs	N/A	Tropical Lowland Rain Forests	141506	
Sea Grass Beds	23819	Tropical Sub-montane Forests	68616	
Salt Marshes	33573	Tropical montane Forests	243886	
Mangroves	12189	Tropical Moist Evergreen Forests	1090981	
Sea Shores/Beeches	N/A	Tropical Dry Mixed Evergreen Forests	464076	
Mud Flats	N/A	Thorn Scrub Forests	N/A	
Lagoons & Estuaries	158017			
Sand Dunes	7606	Natural Grassland Ecosystems		
		Dry Patanas	65000	
Inland Aquatic Systems		Damanas	10000	
Fresh Water Marshes	10000	Wet Patanas	N/A	
Rivers/Streams, Riverine Forests	22435	Savannas	N/A	
Reservoirs	170000	Thalavas	N/A	
		Villu	N/A	


Table A.1.2: - Ecosystem diversity of Sri Lanka


Appendix 02: - Case study of how newly introduced species come out as invasive later on with huge economic losses

A good illustration of the issue is the Nile perch (Lates niloticus) which was introduced into Lake Victoria for economic reasons. It has led to the extinction of dozens, perhaps hundreds, of species of cichlid fish endemic to the lake, and has led to deforestation around the lake because firewood is needed to dry the oily perch; forest clearing in turn is leading to siltation and eutrophication, thus adding additional pressure to the continued productivity of the lake (which is also infested with invasive water hyacinth). While the Nile perch fishery in Lake Victoria generates up to US\$400 million per year in export income, relatively few people living around the lake earn these economic benefits. Tons of perch end up on the plates of European diners, while protein malnutrition is a major problem around the lake (WRI, 2000). Great economic benefits are flowing to a few people from this IAS, but none of the money is being spent on managing the considerable economic and ecological costs imposed on the poor, or on the Lake Victoria ecosystem. The economics of the marketplace have proven more powerful than the ethics of equitable distribution of benefits".

Family	Species	Country of Origin	Year of Introduction	
Asteraceae	Ageratina riparia	Mexico	1905	
Asteraceae	Tithonia diversifolia	Mexico	1851	
Clusiaceae	Clusia rosea	West Indies	1866	
Dilleniaceae	Dillenia suffruticosa	Borneo	1882	
Fabaceae	Myroxylon balsamum	Venezuela	1870	
Fabaceae	Prosopis juliflora	Tropical America	1880	
Fabaceae	Ulex europaeus	Europe	1888	
Iridaceae	Aristia ecklonii	Guatemala	1889	
Melastomataceae	Clidemia hirta	Tropical America	1894	
Melastomataceae	Miconia calvescens	Mexico	1888	
Polygonaceae	Antigonon leptopus	Tropical America	1870	
Pontederiaceae	Eichhornia crassipes	Hong Kong	1905	
Solanaceae	Cestrum aurantiacum	Cape of Good Hope	1889	
Verbenaceae	Lantana camara	Tropical America	1826	

Appendix 03: - IAS introduced by Royal Botanical Garden of Sri Lanka

