AN ANALYTICAL STUDY OF THERMAL COMFORT LEVELS
IN CONTEMPORARY RESIDENTIAL UNITS
IN THE COLOMBO METROPOLITAN REGION

A Dissertation presented to the Department of Architecture
University of Moratuwa
for the final examination in M.Sc. (Architecture)

Gishan Ratnayake
June 2001
ACKNOWLEDGEMENTS.

This study, with many complexities, and difficulties completed due to the assistance, guidance and encouragement given by all of the following persons, to whom I wish to extend my heartfelt gratitude.

My tutor, Dr. Emmanuel senior lecturer, Dept. of Architecture, for guidance comments and criticism, which encouraged me to do this study.

Dr. L.S.R Perera, Archt. Ranjith Alahakoon, Archt. Archt Prasanna Liyanage and Archt. Dilshan Ossen for valuable comments and unreserved help given to me for the completion of this task.

All my colleagues, for their valuable support in completing this task.

Finally I expressed my deepest gratitude to my Mother for her unlimited love, affection and encouragement to make this success.
This study analyses the thermal comfort variation between urban houses in Colombo Metro Region. Three Basic urban house forms exist in the CMR were selected for the study. Using parametric building energy simulation software, the study analyses the indoor Operative Temperature levels. Five design options are analysed to determine their potential to improve the indoor comfort levels. Further using two sets of climatic records (1995-2000) (1920-1960) study analyses the effect of altered urban climate to the contemporary residential units.
LIST OF FIGURES

Fig (1.1) Colombo Metropolitan Region
Fig (1.2) Highly built-up residential area
Fig (1.3) House of pre Colonial period
Fig (1.4) House of Pre Independence period
Fig (1.5) House of Pre Independence period
Fig (1.6) House of Pre Independence period
Fig (1.7) House of Pre Independence period
Fig (1.8) House forms of the present
Fig (1.9) House forms of the present
Fig (1.10) House forms of the present
Fig (1.11) House forms of the present
Fig (1.12) House forms of the present
Fig (1.13) Rectangular shape form
Fig (1.14) ' L" shaped form
Fig (1.15) ' I" shaped form
Fig (1.16) ' U" shaped form
Fig (1.17) Center court type form
Fig (1.18) Thirty year diurnal variation in temperature during the hottest month in CMR.
Fig (1.19) Historical trends in Heat Index in the CMR.
Fig (1.20) Predicted percentage of dissatisfied (PPD) as a function of predicted mean vote (PMV)
Fig (1.21) Relationship of PMV and Operative Temperature
Fig (2.1) Solar radiation on building surfaces at different latitudes
Fig (2.2) Formation of Temperature Inversion
Fig (2.3) The temperatures in and around buildings can be tempered or aggravated by the nature of surrounding surfaces.
Fig (2.4) Wind velocity Gradients
Fig (2.5) The volume effect. The cube with a larger thermal capacity in proportion to its surface area or rate of
Fig (2.6) Effect of building depth on internal conditions
Fig (2.7) Spacing between buildings
Fig (2.8) The effect of increased ceiling height
Fig (2.9) House Type 1 Rectangular shaped
Fig (2.10) House Type 2 "L" shaped
Fig (2.11) House Type 3 Center courtyard
Fig (2.12) Optimal operative temperature (corresponding to PMV = 0) as a function of clothing and activity
Fig (3.1) Ground Floor Plan
Fig (3.2) Upper Floor Plan
Fig (3.3) Section
Fig (3.4) Ground Floor- Simulated Model
Fig (3.5) Ground Floor- Simulated Model
Fig (3.6) 3D view Simulated Model
Fig (3.7) Ground Floor Plan
Fig (3.8) Upper Floor Plan
Fig (3.9) Section
Fig (3.10) Ground Floor- Simulated Model
Fig (3.11) Upper Floor- Simulated Model
Fig (3.12) 3D view Simulated Model
Fig (3.13) Ground Floor Plan
Fig (3.14) Upper Floor Plan
Fig (3.15) Section
Fig (3.16) Ground Floor- Simulated Model
Fig (3.17) Upper Floor- Simulated Model
Fig (3.18) 3D view Simulated Model
Fig (3.19) Simulated models for 5m ceiling height
Fig (3.20) Results for 5m ceiling height
Fig (3.21) Simulated models for 30d Roof angle
Fig (3.22) Results for 30 d roof angle
Fig (3.23) Simulated models for Flat roof
Fig (3.24) Results for 30 d Flat roof
Fig (3.25) Simulated models for 90d Orientation
Fig (3.26) Results for 30 d 90d Orientation
Fig (3.27) Simulated models for Wall Materials
Fig (3.28) Results for Wall Materials
Fig (3.29) Simulated models for 3m high parapet Wall
Fig (3.30) Results for 3m high parapet wall
Fig (3.31) Simulated models for Best Cases
Fig (3.32) Results for Best Cases
Fig (3.33) Results for Unchanged Climate
Fig (4.1) Variation of Operative Temperature -House type 1
Fig (4.2) House Type 1
Fig (4.3) Section
Fig (4.4) Site layout
Fig (4.5) Calculated PMV index for House Type 1 (simple rectangular form)
Fig (4.6) Variation of Operative Temperature -House type 2
Fig (4.7) House Type 2
Fig (4.8) Section
Fig (4.9) Site layout
Fig (4.10) Calculated PMV index for House Type 2 ("L" shaped form)
Fig (4.11) Variation of Operative Temperature -House type 3
Fig (4.12) House Type 3
Fig (4.13) Section
Fig (4.14) Site layout
Fig (4.15) Calculated PMV index for House Type 3 (Center courtyard form)
Fig (4.16) Variation of Operative Temperature Fig (4.17) Effect of Design Options for house Type 1-Rectangular form betwen basic house forms (Base Cases
Fig (4.18) Operative Temperature variation for Ceiling height-House Type 1
Fig (4.19) Operative Temperature variation for Roof angle -House Type 1
Fig (4.20) Operative Temperature variation for Orientation-House Type 1
Fig (4.21) Operative Temperature variation for Wall material-House Type 1
Fig (4.22) Operative Temperature variation for Parapet wall height-House Type 1
Fig (4.23) Effect of Design Options for house Type 2-"L" shaped form
Fig (4.24) Operative Temperature variation for Ceiling height-House Type 2
Fig (4.25) Operative Temperature variation for Roof angle -House Type 2
Fig (4.26) Operative Temperature variation for Orientation-House Type 2
Fig (4.27) Operative Temperature variation for Wall material-House Type 2
Fig (4.28) Operative Temperature variation for Parapet wall height-House Type 2
Fig (4.29) Effect of Design Options for house Type 3-Center court yard form
Fig (4.30) Operative Temperature variation for Ceiling height-House Type 3
Fig (4.31) Operative Temperature variation for Roof angle -House Type 3
Fig (4.32) Operative Temperature variation for Orientation-House Type 3
Fig (4.33) Operative Temperature variation for Wall material-House Type 3
Fig (4.34) Operative Temperature variation for Parapet wall height-House Type 3
Fig (4.35) Variation of Operative Temperature between Best Cases
Fig (4.36) Variation of Operative Temperature in house type 3 for unchanged climatic Period (1920-1960)
Fig (4.37) Calculated PMV index for House Type 3 during unchanged climatic Period (1920-1960)
CONTENTS
Acknowledgement

Abstract

List of Figures & tables

Introduction

Chapter One: Background
1.1 Urban residential development of CMR 6
1.2 Variety of house forms exists in the CMR 7
 1.2.1 House forms of the present 8
 1.2.2 Basic house forms exist in CMR 10
1.2.3 Urban climate of the CMR 11
1.4. Thermal comfort 12
 1.4.1 First conditions for Thermal comfort 12
 1.4.2 The Comfort equation 13
 1.4.3 Parameters require for the comfort equation 13
1.5 Contemporary models of Thermal comfort 14
 1.5.1 Predicted Mean Vote (PMV) scale 15
 1.5.2 Operative Temperature (OT) 16

Chapter Two: Method
2.1 Introduction 17
2.2 Theory 17
 2.2.1 Effect of natural forces on indoor climate of buildings 17
 2.2.2 Relationship between building parameters and indoor climate. 19
2.3 Analytical framework 22
 2.3.1 Analysis for Thermal comfort variation between the basic house forms 22
 2.3.2 Analysis for design options 22
 2.3.3 Analysis for influence of the urban climate of CMR on indoor thermal comfort 22
2.4 Selection of house types 23
2.5. Assumptions of the base cases 24
2.6 Parameters of the study 24
2.7 Research Data 25
 2.7.1 Clothing data 25
 2.7.2 Metabolic rates 25
 2.7.3 Climatic data 25
 2.7.4 Building Materials 25
2.8 Method of data measurement 27
 2.8.1 DEROB-LTH27 27
 2.8.2 Operative temperature (OT) 27
 2.8.2 Predicted mean vote (PMV) 28
Chapter Three: Results
3.1 House type 1
3.2 House type 2
3.3 House type 3
3.4 Design Options
3.5 Best Cases
3.6 Unchanged urban climate

Chapter Four: Analysis
4.1 Analysis 1 – Thermal comfort levels of basic house types (Base cases)
 4.1.1 House type 1 - Rectangular (simple) form
 4.1.2 House type 2 - “L” shaped form
 4.1.3 House type 3 – Center court –yard form
4.2 Comparison 1 - Thermal comfort variation between basic house forms
4.3 Analysis 2 – Design options
 4.3.1 House type 1 - Rectangular (simple) form
 4.3.1.1 Orientation
 4.3.1.2 Roof angle
 4.3.1.3 Parapet wall height
 4.3.1.4 Floor to ceiling height
 4.3.1.5 Wall material
 4.3.2 House type 2 - “L” shaped form
 4.3.2.1 Orientation
 4.3.2.2 Roof angle
 4.3.2.3 Parapet wall height
 4.3.2.4 Floor to ceiling height
 4.3.2.5 Wall material
 4.3.3 House type 3 – Center court –yard form
 4.3.3.1 Orientation
 4.3.3.2 Roof angle
 4.3.3.3 Parapet wall height
 4.3.3.4 Floor to ceiling height
 4.3.3.5 Wall material
4.4 Comparison 2 – Comparison of best design options
4.5 Analysis 3- Influence of the urban climate of CMR on indoor comfort levels

Conclusion

References

Appendix
INTRODUCTION
Introduction.

The traditional houses in Sri Lanka reflect the simple life pattern, attitudes and needs of a community based on agriculture. The houses were very simple structures, made out of easily available materials from their environment. Thick mud walls and thatched roofs, which have very low thermal conductivity, reduced heat gain and this contributed to keeping the indoor air temperature at low level.

In present day situation, the population growth and unplanned urbanization have compelled people to build houses on smaller plots of land and minimum plot size has been reduced up to 150m² (six perches) in the urban situation. (CMRSP, 1998) Considering Colombo district, the average plot size of a residential unit located within the urban areas has reduced to less than 15 perches (DC&S, 1999).

Contrary to the traditional setup where the house was encircled by a large garden, today a parapet wall encircles the entire land and also the garden is mostly pocketed inside the house by way of small courtyards. The thermal comfort has accordingly changed from the traditional house, to that of the modern contemporary house, resulting uncomfortable living environment. Since a large number of qualitative and quantitative requirements have to be fulfilled in designing the house, such as aesthetics, climate has sadly become a secondary factor or almost been disregarded today. This has resulted in an uncomfortable warm indoor environment especially in houses built on small-restricted lands.

In the face of rapid urbanization and urban development the urban climate also has been changed and this has influenced the indoor comfort levels of the buildings. "the altered urban climate has a significant impact on the potential space cooling and indoor thermal comfort of typical residences in CMR"(Emmanuel, 1999).
Need for the study.

Today the common assumption among the Architects is that a correctly oriented, adequately shaded and properly located building that encourages natural air movement within the building will be thermally appropriate in a warm humid climate like that of Sri Lanka, all year round.

But within the present restricted urban situation and in the altered urban climate, application of those basic thermal control strategies become questionable or not practical. Rather than these commonly practiced strategies there are several aspects, which relate to the thermal comfort in a building, such as materials in the building envelope, volume of the space, roof pitch of the building, shape of the building and the floor to ceiling height of a particular space. Existing knowledge of those aspects and thermal comfort of a building is not studied well in contemporary Sri Lankan residential buildings. The knowledge on those aspects among Architects is lacking and also there is a great deal of controversy about those aspects and thermal comfort, for example, volume and thermal comfort of a particular space. The need to understand these aspects therefore is very important and is the primary intention of the study. By this study, its analysis of the above mentioned aspects and the thermal comfort of a building will help the Architects and students to understand the gray areas and will help to find some design strategies.

Intention and scope of study.

In this study it is intended to examine ways of improving the thermal comfort level in contemporary urban houses in the Colombo Metropolitan Region (CMR) and to explore the variation of comfort levels between common urban house forms. This is a critical study because; contemporary Sri Lankan urban residential units are generally thermally uncomfortable. It is also intended to make this study as an entry to further in-depth research in this field. The study will be limited to houses located within the Colombo area because when considering contemporary Sri Lankan urban situation Colombo is known as the best example.
All case studies for this study were taken from designed houses, which are located in urban restricted situations, where the average plot size is 8-10 perches. Since there are several parameters to compare and since it should be done providing equal conditions computer simulation technique will be used for the study to analyze the thermal environment. The level of comfort is going to be measured in Operative temperature and Predicted Mean Vote (PMV, ISO 7730) index, which was developed by Danish scientist named P.O Fanger. Further this study is not going to be a conclusive study because, more scientific research has to be done before arriving at a firm recommendation.

Methodology.

When considering existing house types in Sri Lanka, several house typologies made by various scholars could be identified. But most of these typologies are based on Sociological and Economical aspects. Therefore for the purpose of this study, author will make a typology of existing Sri Lankan urban houses based on generic forms of houses, which have thermal variations on one another. This could be identified as,

1. Rectangular shaped house form,
2. “L” shaped house form,
3. “U” shaped house form,
4. “T” shaped house form,
5. Center courtyard type house form,
6. Irregular shaped house form,

which has average floor area of 1500-2000 sqft. 6-10 perch will be taken as the average plot size for each house type. Further this will classify into categories based on which facade touched or faced with the boundary wall of the plot. Based on this typology, selected houses will be modelled on a computer using parametric building energy simulation program called DEROB, which is capable of analyzing simulated environments thermally.
The study will be carried out in three parts. In the first instance it explores the thermal comfort variation between the selected basic house forms. The second part explores the possibility of improving the comfort levels by changing the Roof pitch, materials in the building envelope, effects of parapet walls and floor to ceiling height of the building. Different simulated environments will be created for each house type by changing above parameters. Comparing the results for thermal comfort levels of each simulated environment, the analysis will be carried out. Finally the study will explore the influence of the urban climate of CMR by using unchanged climatic records of Colombo. All calculations will be done for climatic period of hottest pre-monsoon April.