LB/DON/76/02

Or siven

06

COMPUTER AIDED COST MODELLING AT BRIEFING STAGE

LINKED TO SMM

Anil Dissanayake BSc (QS) Hons.

Construction Management Unit Department of Civil Engineering

University of Moratuwa

Sri Lanka LIBRARY UNIVERSITY CT MORATUWA, SRI LANKA MORATUWA

Submitted in partial fulfillment for the Degree of Master of Science of Construction Project Management, May 2002

75122

TH

624 °02" 69.003

INIVER HTY OF	MONATUWA, SRI LANKA LIBRARY	
Лосъяз 12 — Э.	75122	
SLASS NO.	624 "02"	75122

6

75122

Paticca sammuppada

By examining the nature, the Lord Buddha came to realize that every thing is causally connected, causally related to each other. Everything operates and functions on the basis of this causal law. Dependent on certain causes and conditions, arise certain specific effects.

LORD BUDDHA

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

DEDICATION

This work is dedicated to my Father, Mother, Wife Asiri and Son Anuradha.

1

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

6

COMPUTER AIDED COST MODELING AT BRIEFING STAGE-LINKED TO SMM

ABSTRACT

Involvement of the cost advisors in the early stage of the building design process (briefing stage) for the forecasting of probable cost of projects is often minimal.

The traditional pre tender estimating techniques such as unit method, cost per unit floor area method, cube method, approximate quantities method and the like used to forecast the probable cost of projects are not satisfactory. This bars the cost advisor to make the fullest contribution in the early design stage decisions.

The surveys conducted in this research revealed the fact that local design practice with respect to design stage estimating is limited to unit method, cost per unit floor area method and later stage approximate quantities method and elemental cost method. The use of computer facility to automate tasks in local practice is very low. Quantity surveyors in design offices use spreadsheet software for calculations. Use of database software or other programming languages in the process of cost advice was not evidenced.

This research is, thus, aimed at establishing a computer aided cost model based on bill of approximate quantities properly linked to Standard Method of Measurement (SMM) with the flexibility in application during briefing, sketch plan and working drawing stages. Being linked to SMM, the proposed model ensures transformation of design and cost data into a BOQ prepared in accordance with SMM.

The current practice of using bill of approximate quantities for cost forecasting is limited to later stages of the design process since the method requires design information to work upon. This difficulty has been overcome in the proposed model by incorporating design and cost data libraries with computer manipulation.

A case study was used to generate quantities, compile historical design data, and provide causal relationships to the model. These data coupled with solution neutral design information were used to develop design data library and cost data library of the model which provide sufficient information to make professional judgements at the briefing stage.

i

ACKNOWLEDGEMENTS

I would like to thank my Supervisor, Dr Gamini Kodikara for his continuous guidance, assistance and encouragement. Directions given to me to manage time with research scope is invaluable. Since I was away from Sri Lanka when much of the dissertation was written and compiled ,the flexibility of the Supervisor was inestimable.

Also my thanks go to Dr A.A.D.A.J Perera for early guidance on concepts of databases and keenness to give his assistance. My thanks also due to Dr Niranjan Gunawardena for his comments on Questionnaire formulation.

I wish to take this opportunity to express my gratitude to Course coordinator and all academicians and practitioners of the Construction Project Management Course who rendered their skills and knowledge to learned society.

My gratitude goes to Mr Susantha Kumarage who provided me accommodation, computer facilities and finance in the early days when I was a new comer to Dubai.

My special gratitude goes to my parents-in-law who looked after my Son with kindness which spared me time to concentrate on research work.

Finally, my special thanks go to my Wife, Asiri for her love, encouragement and moral support in this work.

DECLARATION

This is to certify that this research:

- 1. embodies the results of my own course of study and research,
- 2. has been composed by myself,
- 3. has been seen by my supervisor before presentation
- 4. has not been submitted in support of an application for another degree or qualification at this or any other university or other institution of learning.

Signature of the research candidate..... University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

Date: 25 January 2002

TABLE OF CONTENTS

1.	1. INTRODUCTION		1
	1.1	BACKGROUND	2
	1.2	OBJECTIVES OF THE RESEARCH	4
	1.3	RESEARCH METHODOLOGY	4
	1.4	SCOPE OF THE RESEARCH	5
	1.5	MAIN FINDINGS OF THE RESEARCH	5
	1.6	GUIDE TO DISSERTATION	6
2.	DESI	IGN PROCESS AND COST ADVICE of Moratuwa, Sri Lanka, Electronic Theses & Dissertations	8
	2.1	INTRODUCTION	9
	2.2	DESIGN PROCESS	9
		2.2.1 Client's Brief	11
	2.3	DESIGN STAGE COST ADVICE	15
	2.4	DESIGN TECHNIQUES AND COST RELATIONS	16
	2.5	CONTEXT FOR COST MODELLING	17
	2.6	SUMMARY	17
3.	COST	T CONTROL IN BUILDING DESIGN	20
	3.1	INTRODUCTION	20
	3.2	PURPOSE AND PRINCIPLES OF COST CONTROL	20
	3.3	COST CONTROL DURING DESIGN STAGES	22
		3.3.1 Cost Control in Briefing Stage	22

	3.3.2 C	Cost Controlling Sketch Design Stage	22
	3.3.3 C	Cost Controlling Working Drawing Stage	23
3.4	APPROXI	MATE ESTIMATING TECHNIQUES	23
	3.4.1 E	arly stage approximate estimating techniques	25
	3.	.4.1.1 Unit method	25
	3	.4.1.2 Cube method	26
	3.	.4.1.3 Superficial area method	26
	3.	4.1.4 Storey enclosure method	26
	3.4.2 L	ater stage approximate estimating techniques	26
	3.	.4.2.1 Elemental estimating technique	26
	3.	.4.2.2 Approximate quantities estimating technique	26
	3.	.4.2.3 Pricing bill of quantities	27
3.5	TRADITI	ONAL AND ALTERNATIVE ESTIMATING TECHNIQUES	27
3.6	DESIGN (COST PLANNING	28
3.7	SUMMAR	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	28
PRAC	CTICE OF A	PPROXIMATE ESTIMATING IN LOCAL ORGANISATIONS	30
4.1	INTRODU	JCTION	31
4.2	PREVIOU	S RESEARCH STUDIES	31
4.3	SURVEY	ON APPROXIMATE ESTIMATING TECHNIQUES	34
	4.3.1 R	ationale of the questionnaire survey	34
	4.3.2 R	esult of sample survey	35
	4.	3.2.1 Experience of respondents	35
	4.	3.2.2 Use of approximate estimating techniques without pre set cost limit	36
	4.	3.2.3 Use of approximate estimating techniques with pre set cost limit	38
	4.	3.2.4 Application of alternative estimating techniques in approximate estimating	40
		-FF	
	4.	3.2.5 Application of knowledge base expert system	41

4.

.

.

	4.3.2.6 Information processing methods in approximate estim	nating 41
	4.3.2.7 Type of database structures in practice	42
	4.3.2.8 Type of software applications	43
	4.3.2.9 Identification of constraints in informative estimating	techniques 44
	4.3.2.10 Proposals of respondents	46
4.4	SUMMARY OF RESULTS OF THE SURVEY	48
NEEI	D FOR A NEW ESTIMATING TECHNIQUE AT BRIEFING STAGE	50
5.1	INTRODUCTION	51
5.2	DESIGN RELATED ISSUES	51
5.3	DESIGN COST CONTROL RELATED ISSUES	56
	5.3.1 Purposes of cost control and traditional approximate estimating in local practice	g techniques 56
	5.3.1 Principals of cost control and traditional estimating techniques Local practice	in 59
5.4	CLIENT RELATED ISSUES	60
5.5	INFORMATION TECHNOLOGY BASED ISSUES	63
5.6	LINKING TO SMM	65
5.7	RECENT STUDIES	65
5.8	REQUIREMENT OF A FORMAL MODEL OF HUMAN JUDGEMEN	JT 66
5.9	TRENDS IN BUILDING SERVICE ENGINERING COST FORECAS	TING 67
5.10	BIAS AND CONSISTENCY ASPECTS IN PRICE FORECASTING	67
5.11	REALISTIC MODELS	67
5.12	VALUE MANAGEMENT (VM)	68
5.13	SUMMARY	68

5.

6.	MUTHU:	COMPU	TER AIDED PROTOTYPE FOR BRIEFING	
	STAGE C	OST FOI	RECASTING	70
	6.1	INTRO	DDUCTION	71
	6.2	CONC	EPTUAL OVERVIEW OF THE MODEL	71
		6.2.1	The limits of formulation and implementation of the cost model	72
	6.3	SYSTE	EM ARCHITECTURE OF THE MODEL	73
		6.3.1	The graphical user interface and system control	73
		6.3.2	The data bases	73
	6.4	PROBI	LEM SOLVING STRATRGY OF THE MODEL	75
	6.5	CASE	BASE OF THE COST MODEL	77
		6.5.1	Data model diagram	78
		6.5.2	Cost database	79
	6.6	STEPS	S IN USING COST MODEL	88
	· 6.7	MODE	EL VALIDATION	115
	6.8	SUMM	MARY University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	115
7.	CONC	LUSION	NS AND FUTURE RESEARCH	117
	7.1	DISCU	ISSION	118
	7.2	CONCI	LUSIONS	118
		7.2.1	Status of current practice of local organizations	118
		7.2.2	Cost advisors' emerging role during the Briefing stage	119
		7.2.3	Benefits of the proposed cost model	120
		7.2.4	Database management perspective of the model	121
		7.2.5	Errors and biases in the propose cost model	121
		7.2.6	Limitations of the proposed model	122
		7.2.7	Experiential learning in cost estimating	123
		7.2.8	Implementation of research cost model	124

7.3 FUTURE RESEARCH

RAFERENCES

127

124

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

,

LIST OF FIGURES

CHAPTER 6

Figure 6.1	Conceptual overview of the cost model	71
Figure 6.2	System Architecture of proposed cost model	74
Figure 6.3	Problem solving strategy of the proposed cost model	75
Figure 6.4	Data model diagram for the database of the cost model	78
Figure 6.5	Window to initiate cost planning process for new project	90
Figure 6.6	Form to input general information of the project	92
Figure 6.7	Window to select cases	93
Figure 6.8	Display of matching cases	96
Figure 6.9	Window for quantity generation	98
Figure 6.10	Form for element quantity generation	99
Figure 6.11	Form to enter sub element quantities	100
Figure 6.12	Sub element bill of quantities	101
Figure 6.13	Form to enter and modify approximate quantities	102
Figure 6.14	Bill of approximate quantities	103
Figure 6.15	Form to input element quantities for element XR	103
Figure 6.16	Form to enter project specific sub element quantities	104
Figure 6.17	Project specific sub element BOQ	105
Figure 6.18	Form to enter project specific measured item quantities	106
Figure 6.19	Form to input specification notes of building elements	107
Figure 6.20	General information summary	109
Figure 6.21	Specification notes of building elements	110
Figure 6.22	Building element cost summary	111
Figure 6.23	Building element group cost plan	112
Figure 6.24	Project specific elemental cost summary	113
Figure 6.25	Project specific elements group cost plan	114
Figure 6.26	Project cost plan summary	114

LIST OF TABLES

CHAPTER 2

Table 2.1	Design stages and activities	12
Table 2.2	Development of the brief	14
CHAPTER 3		

Table 3.1 Approximate estimating techniques	24
---	----

CHAPTER 4

Table 4.1	Research sample	34
Table 4.2	Experience of respondents	35
Table 4.3	Design stages and approximate estimating practice	36
Table 4.4	Design stages and approximate estimating practice	38
	With pre set cost limits	
Table 4.5	Alternative approximate estimating methods against	40
	Design stages	
Table 4.6	Information processing systems	41
Table 4.7	Database structure	42
Table 4.8	Software types and applications in approximate estimate	43
Table 4.9	Information constraints of approximate estimating	45
	Techniques	
Table 4.10	Proposals to overcome information constraints at early	47
	Stages	

.

CHAPTER 5

Table 5.1	Traditional estimating techniques versus single estimating	55
	System characteristics	
Table 5.2	Estimating methods and cost control principles	60

CHAPTER 6

Table 6.1	Structure of case base of research cost model	77
Table 6.2	Structure of the design information database	77
Table 6.3	Structure of the specification database	77
Table 6.4	Structure of building cost	79
Table 6.5	Structure of element group cost with attributes	80
Table 6.6	Elemental decomposition of element group cost	81
Table 6.7	Decomposition of cost of element CL into sub-element	82
	cost	
Table 6.8	Decomposition of cost of sub element CLBR into Electronic These & Dissertations SMM item costs in matach	83
Table 6.9	Structure of project specific cost	84
Table 6.10	Structure of project specific element group cost with	84
	attributes	
Table 6.11	Elemental decomposition of project specific costs	85
Table 6.12	Decomposition of cost of element XR into sub element	86
	costs	
Table 6.13	Decomposition cost of sub element XRBR into measured	86
	items	
Table 6.14	Client brief for an office block	88
Table 6.15	Quantity parameter calculation	89

LIST OF APPENDICES

APPENDIX A	DESIGN DATABASE EXAMPLE 01	132
	DESIGN DATABASE EXAMPLE 02	133
	DESIGN DATABASE EXAMPLE 03	133
APPENDIX B	SPECIFICATION TABLE 01 FROM CASE A	134
APPENDIX C	SUBELEMENT COST SUMMARY FOR SUB STRUCTURE	135
	SUBELEMENT COST SUMMARY FOR COLUMNS	136
	SUBELEMENT COST SUMMARY FOR UPPER FLOORS	137
APPENDIX D	BILL OF APPROXIMATE QUANTITIES FOR SUMELEMENT SBCP	138
	BILL OF APPROXIMATE QUANTITIES FOR SUBELEMENT SBXF	139
	BILL OF APPROXIMATE QUANTITIES FOR SUBELEMENT SBFB	140
	BILL OF APPROXIMATE QUANTITIES FOR SUMELEMENT SBWG	141
	BILL OF APPROXIMATE QUANTITIES FOR SUMELEMENT SBFN	142
	BILL OF APPROXIMATE QUANTITIES FOR SUBELEMENT SBGS	143
	BILL OF APPROXIMATE QUANTITIES FOR SUBELEMENT CLSR	144
	BILL OF APPROXIMATE QUANTITIES FOR SUMELEMENT UFSB	145

LIST OF ABBREVIATIONS

ACT	- Alternative Cost Techniques
AI	- Artificial Intelligence
BCIS	- Building Cost Information Service
BOQ	- Bill of Quantities
CAD	- Computer Aided Design
CV	- Coefficient of Variation
GUI	- Graphic User Interface
IT	- Information Technology
KBES	- Knowledge Based Expert System
RDBMS	- Relational Database Management Systems
RIBA	- Royal Institute of British Architects
RICS	- Royal Institution of Chartered Surveyors
SLIA	- Sri Lanka Institute of Architects
SMM	- Standard Method of Measurement
UDA	- Urban Development Authority, Sri Lanka
VM	- Value Management