A S S E S S M E N T O F S L O P E S T A B I L I T Y A N D S T A B I L I Z A T I O N T E C H N I Q U E S T H R O U G H P R O B A B I L I S T I C A P P R O A C H D. C. A . M E T T A N A N D A This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfilment of the requirements for the Degree of Master of Science LIBRARY UNIVERSITY C> MORATUWA. SRI M G H A T U W A Supervised by Dr. S. A. S. KULATHILAKA Department of Civil Engineering University of Moratuwa Sri Lanka T August 2002 University of Moratuwa " 7 5 3 7 8 75378 7 5 3 7 8 A B S T R A C T U n c e r t a i n t y a n d r a n d o m n e s s of d a t a is a ma jo r i s s u e a s s o c i a t e d in g e o t e c h n i c a l e n g i n e e r i n g . It is the re fo re d e s i r a b l e to u s e m e t h o d s a n d c o n c e p t s in e n g i n e e r i n g p l a n n i n g a n d d e s i g n t h a t c a n faci l i tate t h e e v a l u a t i o n a n d a n a l y s i s of u n c e r t a i n t y . F o r m a l p robab i l i s t i c a p p r o a c h p r o v i d e s a u se fu l f r amework to i n c o r p o r a t e t h e s e u n c e r t a i n t i e s in s l ope i n s t ab i l i t y p r o b l e m s . U n d e r t h e r e s e a r c h d e s c r i b e d in t h i s t h e s i s , n u m b e r of p robab i l i s t i c m o d e l s h a v e b e e n deve loped to e v a l u a t e t h e s t ab i l i t y of s l o p e s a n d the i r u s e in t h e e v a l u a t i o n of s tab i l i ty of s l opes a n d t h e e v a l u a t i o n of effect iveness of v a r i o u s s t ab i l i za t ion t e c h n i q u e s h a v e b e e n d i s c u s s e d . Two p r o b a b i l i s t i c ana ly t i ca l m o d e l s t h a t c a n be u s e d to e v a l u a t e t h e s t ab i l i t y of s l o p e s t h a t c a n fail e i t h e r a l o n g c i r c u l a r fa i lure s u r f a c e s or n o n - c i r c u l a r fai lure s u r f a c e s h a v e b e e n deve loped . T h e s e m o d e l s fo rmal ly recognize t h e u n c e r t a i n t i e s a s s o c i a t e d wi th v a r i o u s g e o t e c h n i c a l p a r a m e t e r s a n d p rov ide m e a n s to quan t i fy the i r effects o n t h e s tab i l i ty . The r e s u l t is given in t h e form of p robab i l i t y of u n s a t i s f a c t o r y p e r f o r m a n c e of t h e s lope . E a c h m o d e l deve loped w a s fac i l i t a ted to pe r fo rm c o m p u t a t i o n s in five different w a y s r a n g i n g from t h e o r e t i c a l l y s o u n d m e t h o d s to s o m e a p p r o x i m a t e m e t h o d s , a n d t h e r e s u l t s o b t a i n e d were c o m p a r e d w i th e a c h o t h e r . In a d d i t i o n , t h e r e s u l t s w e r e c o m p a r e d wi th t h e r e s u l t s o b t a i n e d by a c o m m e r c i a l so f tware , w h e r e v e r app l i cab le . In a d d i t i o n , two o t h e r p robab i l i s t i c a n a l y t i c a l m o d e l s were deve loped to a n a l y z e t h e s l o p e s s tabi l ized by soil n a i l i n g . It is s e e n t h a t t h e behav io r of t h e p robab i l i s t i c m o d e l s deve loped u n d e r t h i s r e s e a r c h pe r fo rm sa t is fac tor i ly , a n d it c a n be r e c o m m e n d e d to u s e t h e s e m o d e l s in r o u t i n e p r o b l e m s of s lope ins t ab i l i t y to provide m o r e r ea l i s t i c r e s u l t s i n c o r p o r a t i n g t h e u n c e r t a i n t i e s a s s o c i a t e d wi th various geotechnical parameters. Analyses of a number of examples and case histories discuss the uses of the probability of failure in decision making to evaluate the stability of slopes as well as the effectiveness of various stabilization techniques. It also emphasizes the importance of the appropriate failure mechanism and the appropriate deterministic model in the probabilistic analysis. Analysis of case histories provides an important discussion showing the inadequacy of the conventional factor of safety alone in evaluating the stability of slopes. DECLARATION The work included in this thesis in part or whole, has not been submitted for any other academic qualification at any institution. A C K N O W L E D G E M E N T S It i s w i t h a s e n s e of g r a t i t u d e t h a t I r eca l l a n d a p p r e c i a t e t h e a s s i s t a n c e r ece ived from different p e r s o n n e l to m a k e t h i s r e s e a r c h a rea l i ty . At t h e o u t s e t , I e x p r e s s m y hear t fe l t g r a t i t u d e a n d a d m i r a t i o n to m y s u p e r v i s o r Dr . A t h u l a K u l a t h i l a k a , S e n i o r L e c t u r e r , D e p a r t m e n t of Civil E n g i n e e r i n g , Unive r s i ty of M o r a t u w a . His i n v a l u a b l e c o m m i t m e n t a n d d e d i c a t i o n w a s a g r ea t e n c o u r a g e m e n t for m e . W i t h o u t h i s v a l u a b l e g u i d a n c e a n d u n t i r i n g effort, t h i s r e s e a r c h m i g h t n o t h a v e b e e n a s u c c e s s . N a t i o n a l B u i l d i n g R e s e a r c h O r g a n i z a t i o n of Sr i L a n k a e x t e n d e d i t s full c o o p e r a t i o n to t h i s p ro jec t by p rov id ing t h e i r d a t a a b o u t p r e v i o u s s lope f a i l u r e s in Sr i L a n k a w i t h o u t h e s i t a t i o n . I s h o u l d a p p r e c i a t e t h e c o o p e r a t i o n e x t e n d e d by t h e Di rec to r G e n e r a l of t h e N a t i o n a l B u i l d i n g R e s e a r c h O r g a n i z a t i o n , Sr i L a n k a by i s s u i n g t h e n e c e s s a r y a p p r o v a l to u s e t h e i r d a t a . In a d d i t i o n , Mr. R .M.S . B a n d a r a , H e a d L a n d s l i d e s Div is ion a n d Mr. D h a r m a s e n a , E n g i n e e r , L a n d s l i d e s Divis ion e n c o u r a g e d m e in d o i n g t h i s r e s e a r c h , a n d owe spec i a l t h a n k s for t h e i r s u p p o r t . Mr. R.M. A m a r a s e k e r a , Provincia l D i r ec to r (Uva Province) , R o a d D e v e l o p m e n t A u t h o r i t y w a s very he lpful in s h o w i n g t h e r e h a b i l i t a t i o n w o r k in p r o g r e s s a t l a n d s l i d e s i t e s , a n d a l s o p r o v i d i n g i n f o r m a t i o n for c a s e h i s t o r i e s a n a l y z e d in t h i s r e s e a r c h . His s u p p o r t is a l so a p p r e c i a t e d . 1 A s i a n D e v e l o p m e n t B a n k p rov ided f inanc ia l s u p p o r t for t h i s p ro jec t t h r o u g h t h e S c i e n c e a n d T e c h n o l o g y p e r s o n n e l d e v e l o p m e n t pro jec t , a n d o w e s spec i a l t h a n k s . G e o t e c h n i c a l E n g i n e e r i n g divis ion a n d t h e T r a n s p o r t a t i o n E n g i n e e r i n g Div is ion of t h e D e p a r t m e n t of Civil E n g i n e e r i n g s u p p o r t e d m e in p r o v i d i n g w o r k i n g s p a c e . C o m p u t e r Se rv i ces Divis ion p rov ided n e c e s s a r y a s s i s t a n c e r e g a r d i n g t h e p r o b l e m s a s s o c i a t e d w i th c o m p u t e r s . I w o u l d like to t h a n k all t h e staff m e m b e r s of t h e G e o t e c h n i c a l E n g i n e e r i n g Divis ion, T r a n s p o r t a t i o n E n g i n e e r i n g Div is ion a n d t h e C o m p u t e r Service Divis ion in t h e D e p a r t m e n t of Civil E n g i n e e r i n g for t h e i r a s s i s t a n c e e x t e n d e d for t h i s r e s e a r c h . F ina l ly , I w o u l d like to t h a n k Di rec to r P o s t g r a d u a t e S t u d i e s , D e a n F a c u l t y of E n g i n e e r i n g , H e a d D e p a r t m e n t of Civil E n g i n e e r i n g , R e s e a r c h C o o r d i n a t o r , D e p a r t m e n t of Civil E n g i n e e r i n g a n d t h e all t h e a c a d e m i c staff m e m b e r s of t h e D e p a r t m e n t of Civil E n g i n e e r i n g for g iving m e t h i s o p p o r t u n i t y to c o m p l e t e t h i s r e s e a r c h . D. C. A. M e t t a n a n d a u C O N T E N T S Page A c k n o w l e d g e m e n t s i C o n t e n t s iii List of F igures vii * List of Tables xi List of A n n e x e s xiv List of S y m b o l s xv Chapter 1 - INTRODUCTION 1 1.1 Introduct ion 1 1.2 Determinis t ic vs. Probabilistic Approaches 2 1.2.1 Determinist ic Approach 2 1.2.2 Probabilistic Approach 3 i 1.3 Current State of the Probabilistic Evaluat ion of Slope 4 Stabil ity 1.3.1 Introduction 4 1.3.2 Uncertaint ies of Geotechnical Parameters 5 1.3.2.1 Types of Uncerta int ies 5 1 .3 .2 .2 Methods of Quantif icat ion of Uncertainty 6 1.3.3 Application of Probabilistic Concept s to Slope 7 Stability Analysis 1.3.3.1 Suitable Probability Dis tr ibut ions 7 1 .3 .3 .2 Different Approaches of Probabilistic 10 Analysis 1.3.4 Role of Probabilistic Analys i s in Landsl ide Risk 12 A s s e s s m e n t 1.3.5 Role of Probabilistic Analys i s a s a tool in Decis ion 15 Making 1.4 S c o p e of the Project 17 1.5 Out l ine of the Thes i s 18 > 111 C h a p t e r 2 - DEVELOPMENT O F PROBABILISTIC M O D E L S 2 1 2 . 1 Se lec t ion of a D e t e r m i n i s t i c Mode l 2 1 2 . 2 A s s i g n m e n t of U n c e r t a i n t i e s 2 3 C h a p t e r 3 - DEVELOPMENT O F T H E PROBABILISTIC M O D E L 2 5 BASED ON BISHOP 'S SIMPLIFIED M E T H O D 3 .1 B a s i s of t h e m e t h o d 2 5 3 .2 A s s i g n m e n t of U n c e r t a i n t i e s 2 7 3 . 3 De r iva t i on of Pa r t i a l Der iva t ives 2 8 3 .4 D e v e l o p m e n t of t h e S p r e a d s h e e t s 3 0 3 . 5 App l i ca t i on of t h e Model 4 2 3 . 5 . 1 G e n e r a l 4 2 3 . 5 . 2 T e s t E x a m p l e 1 4 2 3 . 5 . 2 . 1 E x a m p l e 1(a) 4 3 3 . 5 . 2 . 2 E x a m p l e 1(b) 4 7 3 . 6 C o n c l u d i n g R e m a r k s 52 C h a p t e r 4 - DEVELOPMENT OF T H E PROBABILISTIC MODEL 5 3 B A S E D ON J A N B U ' S SIMPLIFIED M E T H O D 4 . 1 B a s i s of t h e m e t h o d 5 3 4 . 2 A s s i g n m e n t of U n c e r t a i n t i e s 5 5 4 . 3 De r iva t i on of Pa r t i a l Der iva t ives 5 6 4 . 4 D e v e l o p m e n t of t h e S p r e a d s h e e t s 5 8 4 . 5 App l i ca t i on of t h e Model 6 9 4 . 5 . 1 G e n e r a l 6 9 4 . 5 . 2 E x a m p l e 2 6 9 4 . 5 . 3 E x a m p l e 3 7 6 4 . 6 C o n c l u d i n g R e m a r k s 8 3 C h a p t e r 5 - PROBABILISTIC B A S E D A S S E S S M E N T O F 8 5 DIFFERENT STABILIZATION M E T H O D S 5 .1 I n t r o d u c t i o n 8 5 iv 5.2 Development of Probabilistic Models based on Bishop's 89 simplified method to analyze Soil Nailed Structures 5.2.1 Basis of the Method 89 5.2.2 Assignment of Uncertainties 90 5.2.3 Derivation of Partial Derivatives 90 5.2.4 Development of the Spreadsheet 90 5.3 Development of Probabilistic Models based on Janbu's 99 simplified method to analyze Soil Nailed Structures 5.3.1 Basis of the Method 99 5.3.2 Assignment of Uncertainties 99 5.3.3 Derivation of Partial Derivatives 100 5.3.4 Development of the Spreadsheet 100 5.4 Illustrative Example for the Stabilization using 107 Drainage (Example 4) 5.5 Illustrative Example for the Stabilization using Soil 108 Nailing (Example 5) 5.6 Illustrative Example for the Stabilization using both 109 Drainage ans Soil Nailing (Example 6) 5.7 Concluding Remarks 111 Chapter 6 - APPLICATION TO SRI LANKAN CASE HISTORIES 113 OF NATURAL SLOPES 6.1 Stabilized Watawala Landslide 113 6.1.1 Introduction 113 6.1.2 Investigation of the Landslide 114 6.1.3 Stabilization of the Watawala Landslide 117 6.1.4 Extraction of Information 118 6.1.5 Analysis 119 6.1.6 Discussion of Results 121 6.2 Slope at Marangahawela (Badulla District) 122 6.2.1 Introduction 122 6.2.2 Stabilization of the Marangahawela Slope 122 6.2.3 Analysis 124 6 . 3 C o n c l u d i n g R e m a r k s 1 2 6 C h a p t e r 7 - PROBABILISTIC EVALUATION O F SAFETY O F 128 CUT S L O P E S 7 . 1 I n t r o d u c t i o n 1 2 8 7 .2 Soil S t r e n g t h P a r a m e t e r s 129 7 . 3 G r o u n d w a t e r C o n d i t i o n s 130 7 . 4 Need for P robab i l i s t i c A p p r o a c h 130 7 . 5 E x a m p l e C u t Slope 1 130 7 . 6 E x a m p l e C u t S lope 2 134 7 .7 C o n c l u d i n g R e m a r k s 138 C h a p t e r 8 - CONCLUSIONS 139 R E F E R E N C E S 145 A N N E X E S > vi L I S T O F F I G U R E S Page F i g u r e 1.1 - N o r m a l D i s t r i b u t i o n 8 F i g u r e 1.2 - G r a p h i c a l R e p r e s e n t a t i o n of Reliabi l i ty a n d 9 Probabi l i ty of F a i l u r e F i g u r e 1.3 - L o g n o r m a l D i s t r i b u t i o n 9 F i g u r e 3 .1 - F o r c e s a c t i n g o n a Slice 2 6 F igu re 3 .2 - F l o w c h a r t s h o w i n g t h e overview of t h e 3 2 S p r e a d s h e e t P r o g r a m (Bishop-Prob-Di rec t ) F i g u r e 3 . 3 - F l o w c h a r t for D e t e r m i n i s t i c W o r k s h e e t 3 3 (Bishop-Prob-Di rec t ) F i g u r e 3 .4 - F l o w c h a r t for C a l c u l a t i o n s W o r k s h e e t (B ishop- 3 4 Prob-Direct ) F i g u r e 3 . 5 - F l o w c h a r t for t h e P robab i l i s t i c W o r k s h e e t 3 6 (Bishop-Prob-Di rec t ) F igu re 3 .6 - A s lope wi th va r i ed p h r e a t i c s u r f a c e s 3 9 F i g u r e 3 .7 - F l o w c h a r t for S m a l l I n c r e m e n t P r o g r a m 4 0 ( B i s h o p - P r o b - S m a l l I n c r e m e n t ) F i g u r e 3 .8 - F l o w c h a r t for t h e c a l c u l a t i o n of F x + a n d Fx - 4 1 ( B i s h o p - P r o b - S m a l l I n c r e m e n t ) F i g u r e 3 .9 - E x a m p l e 1 G e o m e t r y 4 3 F i g u r e 3 . 1 0 - R e s u l t s of E x a m p l e 1(a) 4 6 F i g u r e 3 . 1 1 - G e o m e t r y of E x a m p l e 1 (b) 4 7 F i g u r e 3 .12 - R e s u l t s of E x a m p l e 1 (b) 5 1 F i g u r e 4 .1 - F o r c e s a c t i n g o n a Slice 5 4 F i g u r e 4 . 2 - F l o w c h a r t s h o w i n g t h e overview of t h e 6 0 S p r e a d s h e e t P r o g r a m ( J a n b u - P r o b - D i r e c t ) F i g u r e 4 . 3 - F l o w c h a r t for D e t e r m i n i s t i c W o r k s h e e t 6 1 ( J a n b u - P r o b - D i r e c t ) vii F i g u r e 4 . 4 - F l o w c h a r t for C a l c u l a t i o n s W o r k s h e e t ( J a n b u - 6 2 Prob-Direc t ) F i g u r e 4 . 5 - F l o w c h a r t for t h e P robab i l i s t i c W o r k s h e e t 6 4 ( J a n b u - P r o b - D i r e c t ) F i g u r e 4 . 6 - F l o w c h a r t for S m a l l I n c r e m e n t P r o g r a m 6 7 ( J a n b u - P r o b - S m a l l I n c r e m e n t ) F i g u r e 4 . 7 - F l o w c h a r t for t h e c a l c u l a t i o n of F x + a n d Fx- 6 8 ( J a n b u - P r o b - S m a l l I n c r e m e n t ) F i g u r e 4 . 8 - E x a m p l e 2 G e o m e t r y 7 0 F i g u r e 4 . 9 - R e s u l t s of N o n - C i r c u l a r A n a l y s i s for E x a m p l e 7 3 2 F i g u r e 4 . 1 0 - R e s u l t s of C i r c u l a r Ana lys i s for E x a m p l e 2 7 4 F i g u r e 4 . 1 1 - G e o m e t r y of E x a m p l e 3 7 6 F i g u r e 4 . 1 2 - R e s u l t s of N o n - C i r c u l a r A n a l y s i s for E x a m p l e 82 3 F i g u r e 4 . 1 3 - R e s u l t s of C i r c u l a r A n a l y s i s for E x a m p l e 3 8 2 F i g u r e 5.1 - F o r c e s a c t i n g o n a sl ice (B i shop ' s Model - 8 9 Nailed Slope) F i g u r e 5 .2 - F l o w c h a r t s h o w i n g t h e overv iew of t h e 9 3 S p r e a d s h e e t P r o g r a m (Soil Nai led S lope - B a s e d on B i s h o p ' s Method) F i g u r e 5 .3 - F l o w c h a r t for D e t e r m i n i s t i c W o r k s h e e t (Soil 9 4 Nailed Slope - B a s e d on B i s h o p ' s Method) F i g u r e 5.4 - F l o w c h a r t for C a l c u l a t i o n s W o r k s h e e t (Soil 9 5 Nailed Slope - B a s e d o n B i s h o p ' s Method) F i g u r e 5 .5 - F l o w c h a r t for t h e P robab i l i s t i c W o r k s h e e t (Soil 9 7 Nailed Slope - B a s e d o n B i s h o p ' s Method) F i g u r e 5 .6 - F l o w c h a r t for Nail R e s i s t a n c e W o r k s h e e t (Soil 9 8 Nailed Slope - B a s e d o n B i s h o p ' s Me thod) F i g u r e 5 .7 - F l o w c h a r t s h o w i n g t h e overview of t h e 101 S p r e a d s h e e t P r o g r a m (Soil Nai led S lope - B a s e d on J a n b u ' s Method) F i g u r e 5 . 8 - F l o w c h a r t for D e t e r m i n i s t i c W o r k s h e e t (Soil 102 Nai led S lope - B a s e d o n J a n b u ' s Method) F i g u r e 5 .9 - F l o w c h a r t for C a l c u l a t i o n s W o r k s h e e t (Soil 1 0 3 Nai led S lope - B a s e d o n J a n b u ' s Method) F i g u r e 5 . 1 0 - F l o w c h a r t for t h e P robab i l i s t i c W o r k s h e e t (Soil 1 0 5 Nai led S lope - B a s e d o n J a n b u ' s Method) F i g u r e 5 . 1 1 - F l o w c h a r t for Nail R e s i s t a n c e W o r k s h e e t (Soil 106 Nai led S lope - B a s e d on J a n b u ' s Method) F i g u r e 5 .12 - G r a p h i c a l R e p r e s e n t a t i o n of R e s u l t s ( E x a m p l e 107 4) F i g u r e 5 . 1 3 - P r o p o s e d Nail A r r a n g e m e n t for E x a m p l e 5 108 F i g u r e 5 . 1 4 - G r a p h i c a l R e p r e s e n t a t i o n of R e s u l t s ( E x a m p l e 109 5) F i g u r e 5 . 1 5 - P r o p o s e d Nail A r r a n g e m e n t for E x a m p l e 6 110 F i g u r e 5 . 1 6 - G r a p h i c a l R e p r e s e n t a t i o n of R e s u l t s ( E x a m p l e 111 6) F i g u r e 6 .1 - A G e o m o r p h o l o g i c a l M a p of t h e W a t a w a l a 1 1 5 E a r t h s l i d e F i g u r e 6 .2 - P l an view of t h e W a t a w a l a E a r t h s l i d e 1 1 5 F i g u r e 6 .3 - L o n g i t u d i n a l S e c t i o n Y-Y of t h e W a t a w a l a 116 L a n d s l i d e F i g u r e 6 .4 - C o n c e p t u a l Model of t h e R e h a b i l i t a t i o n Work 1 1 7 ( W a t a w a l a Lands l ide ) F i g u r e 6 . 5 - G r a p h i c a l R e p r e s e n t a t i o n of R e s u l t s ( W a t a w a l a 120 S lope - High W a t e r T a b l e S i tua t ion ) F i g u r e 6 . 6 - G r a p h i c a l R e p r e s e n t a t i o n of R e s u l t s ( W a t a w a l a 121 S lope - Low W a t e r T a b l e S i tua t ion ) F i g u r e 6 .7 - P l a n View of M a r a n g a h a w e l a Si te 123 F i g u r e 6 .8 - P l an view of t h e s u b s u r f a c e d r a i n s a n d 123 d r a i n a g e well F i g u r e 6 . 9 - C r o s s - s e c t i o n of t h e M a r a n g a h a w e l a S lope 124 F i g u r e 7 .1 - G e o m e t r y of t h e C u t S lope 1 131 tx 4- F i g u r e 7 .2 - P r o p o s e d Nail A r r a n g e m e n t a n d t h e F a i l u r e 133 S u r f a c e s c o n s i d e r e d for C u t S lope 1 F i g u r e 7 . 3 - G e o m e t r y of C u t S lope 2 135 F i g u r e 7 .4 - P r o p o s e d Nail A r r a n g e m e n t a n d t h e F a i l u r e 137 S u r f a c e s c o n s i d e r e d for C u t S lope 2 F i g u r e 8 .1 - Var ia t ion of P robab i l i ty of F a i l u r e w i t h A n a l y s i s 140 M e t h o d s ( S u m m a r y of E x a m p l e s - B i s h o p ' s Method) F i g u r e 8.2 - Var ia t ion of P robab i l i ty of F a i l u r e w i t h Ana lys i s 141 M e t h o d s ( S u m m a r y of E x a m p l e s - J a n b u ' s Method) F i g u r e A l . 1 F i g u r e A 1.2 F i g u r e A2 .1 F i g u r e A2 .2 F i g u r e A 2 . 3 F i g u r e A2 .4 F i g u r e A 2 . 5 F i g u r e A3 .1 F i g u r e A8 .1 F i g u r e A8 .2 F i g u r e A 8 . 3 F i g u r e A8 .4 F i g u r e A 8 . 5 - Typical P robab i l i ty D i s t r i b u t i o n of F a c t o r of II Safety - E s t i m a t i o n of P iezomet r i c Line p o s i t i o n s in a III Mon te Car lo t r ia l - Cri t ical F a i l u r e S u r f a c e c o n s i d e r e d in E x a m p l e V 1(a) - Flow Net for E x a m p l e 1 (b) VII - Cri t ical F a i l u r e S u r f a c e for E x a m p l e 2 IX - Cri t ical C i r c u l a r F a i l u r e S u r f a c e for E x a m p l e 3 XII - Flow Net for E x a m p l e 3 XIII - C h a r t for f0 in J a n b u ' s s implif ied m e t h o d XVI - S u b s u r f a c e Profile of t h e W a t a w a l a S lope CVII Locat ion of I n s t r u m e n t s a t W a t a w a l a CVIII Lands l ide - Identif ied F a i l u r e S u r f a c e s a t W a t a w a l a CVIII Lands l i de - P l an View of t h e D i r ec t i ona l D r a i n s CIX - P l an View of t h e I n s t a l l a t i o n of E d u c t o r D r a i n s CIX x L I S T O F T A B L E S Page T a b l e 1.1 - Rel iabi l i ty I n d e x a n d Probab i l i ty of F a i l u r e V a l u e s 15 for S l o p e s ( c o n s t a n t COV) T a b l e 1.2 - Coefficient of Var i a t i on of F (to h a v e c o n s t a n t 16 * p r o p o r t i o n b e t w e e n (3 a n d F) T a b l e 1.3 - A c c e p t a b l e v a l u e s of p robab i l i t y of fa i lure for 17 N a t u r a l S l o p e s T a b l e 3 .1 - D e t e r m i n i s t i c Soil P a r a m e t e r s for E x a m p l e 1(a) 4 3 T a b l e 3 .2 - Coeff icients of Var i a t ion v a l u e s for c a n d <|> 4 4 T a b l e 3 . 3 - R e s u l t s for E x a m p l e 1(a) 4 5 T a b l e 3 .4 - D e t e r m i n i s t i c Soil P a r a m e t e r s for E x a m p l e 1(b) 4 7 T a b l e 3 . 5 - Coeff icients of Var i a t i on v a l u e s for c' a n d ' 4 8 T a b l e 3 .6 - M e a n a n d Coefficients of Va r i a t i on of u 4 9 * T a b l e 3 .7 - R e s u l t s of E x a m p l e 1(b) 5 0 T a b l e 4 . 1 - D e t e r m i n i s t i c Soil P a r a m e t e r s for E x a m p l e 2 7 1 T a b l e 4 . 2 - Coeff icients of Var i a t i on v a l u e s for c' a n d <])' 7 1 ( E x a m p l e 2) T a b l e 4 . 3 - R e s u l t s of N o n - C i r c u l a r Ana lys i s for E x a m p l e 2 7 3 T a b l e 4 . 4 - R e s u l t s of C i r c u l a r Ana lys i s for E x a m p l e 2 7 4 T a b l e 4 . 5 - D e t e r m i n i s t i c Soil P a r a m e t e r s for E x a m p l e 3 7 7 T a b l e 4 . 6 - Coefficient of Var i a t i on v a l u e s for c' a n d 7 8 / ( E x a m p l e 3) T a b l e 4 . 7 - M e a n a n d Coefficients of V a r i a t i o n of u for 7 9 E x a m p l e 3 T a b l e 4 . 8 - R e s u l t s of N o n - c i r c u l a r A n a l y s i s for E x a m p l e 3 8 0 T a b l e 4 . 9 - R e s u l t s of C i r c u l a r Ana lys i s for E x a m p l e 3 8 1 T a b l e 5.1 - R e s u l t s s h o w i n g t h e I m p r o v e m e n t of S tab i l i ty by 107 D r a i n a g e (Example 4) f xi A T a b l e 5 . 2 - R e s u l t s s h o w i n g t h e I m p r o v e m e n t of S t a b i l i t y b y 1 0 9 S o i l N a i l i n g ( E x a m p l e 5) T a b l e 5 . 3 - R e s u l t s of E x a m p l e 6 1 1 1 T a b l e 6 . 1 - R e s u l t s for H i g h W a t e r T a b l e S i t u a t i o n ( W a t a w a l a 1 1 9 S l o p e ) T a b l e 6 . 2 -- R e s u l t s for L o w W a t e r T a b l e S i t u a t i o n ( W a t a w a l a 1 2 0 S l o p e ) T a b l e 6 . 3 - P r o b a b i l i t y of F a i l u r e for M a r a n g a h a w e l a S l o p e 1 2 5 ( w i t h p r o b a b i l i s t i c p a r a m e t e r s e t 1) T a b l e 6 . 4 - P r o b a b i l i t y of F a i l u r e for M a r a n g a h a w e l a S l o p e 1 2 5 ( w i t h p r o b a b i l i s t i c p a r a m e t e r s e t 2) T a b l e 7 . 1 - S t r e n g t h P a r a m e t e r s of R e s i d u a l S o i l s - R a t n a p u r a 1 2 9 M C A r e a T a b l e 7 . 2 - P e a k S t r e n g t h P a r a m e t e r s for C u t S l o p e 1 1 3 1 T a b l e 7 . 3 - So i l N a i l A r r a n g e m e n t for C u t S l o p e 1 1 3 2 T a b l e 7 . 4 - R e s u l t s for C u t S l o p e 1 - w i t h t h e g i v e n w a t e r t a b l e 1 3 3 T a b l e 7 . 5 -• R e s u l t s for C u t S l o p e 1 - w i t h w a t e r t a b l e r e d u c e d 1 3 4 b e l o w f a i l u r e s u r f a c e s T a b l e 7 . 6 -- R e s u l t s of C u t S l o p e 1 - w i t h t h e p r o p o s e d n a i l 1 3 4 a r r a n g e m e n t T a b l e 7 . 7 - P e a k S t r e n g t h P a r a m e t e r s for C u t S l o p e 2 1 3 5 T a b l e 7 . 8 - So i l N a i l A r r a n g e m e n t fo r C u t S l o p e 2 1 3 6 T a b l e 7 . 9 - R e s u l t s for C u t S l o p e 2 - w i t h t h e g i v e n w a t e r t a b l e 1 3 7 T a b l e 7 . 1 0 - R e s u l t s of C u t S l o p e 2 - w i t h t h e p r o p o s e d n a i l 1 3 7 a r r a n g e m e n t T a b l e A 2 . 1 - S l i c e D e t a i l s for E x a m p l e 1 (a) VI T a b l e A 2 . 2 - C o o r d i n a t e s of P h r e a t i c S u r f a c e fo r E x a m p l e 1 (b) VII T a b l e A 2 . 3 - S l i c e D e t a i l s of E x a m p l e 1 (b) VIII T a b l e A 2 . 4 - F a i l u r e S u r f a c e C o o r d i n a t e s for E x a m p l e 2 IX T a b l e A 2 . 5 - S l i c e D e t a i l s for E x a m p l e 2 ( N o n C i r c u l a r F a i l u r e X S u r f a c e ) f xii T a b l e A 2 . 6 - Sl ice De t a i l s for E x a m p l e 2 (C i rcu la r F a i l u r e XI Sur face) T a b l e A 2 . 7 - C o o r d i n a t e s of t h e Cr i t ica l F a i l u r e S u r f a c e for XII E x a m p l e 3 T a b l e A 2 . 8 - C o o r d i n a t e s of P iezomet r ic Su r f ace for E x a m p l e 3 XIII T a b l e A 2 . 9 - Sl ice De ta i l s for E x a m p l e 3 (Non C i r c u l a r F a i l u r e XIV Surface) > T a b l e A 2 . 1 0 - Slice De ta i l s for E x a m p l e 3 (Ci rcu la r F a i l u r e XV Surface) xiii L I S T O F A N N E X E S Page Annex 1 - Monte Carlo Analysis Performed by SLOPE/W I Annex 2 - Details of the Examples V Annex 3 - Chart for/o in Janbu's simplified method XVI Annex 4 - Sample set of Spreadsheets - Model Based on XVII Bishop's Method Annex 5 - Sample set of Spreadsheets - Model Based on LII Janbu's simplified Method Annex 6 - Sample set of Spreadsheets - Model Based on LXXXIX Bishop's Method for Slopes Stabilized by Soil Nailing Annex 7 - Sample set of Spreadsheets - Model Based on XCVII Janbu's simplified Method for Slopes Stabilized by Soil Nailing Annex 8 - Additional Details of the Stabilizzed Watawala CVII Landslide L I S T O F S Y M B O L S Mean Factor of Safety Mean Value of "i"th Random Variable Angle of the Nail to the Horizontal Angle of Internal Friction Bulk Density Standard Deviation Reliability Index Effective Angle of Internal Friction Standard Deviation of Effective Angle of Internal Friction Standard Deviation of Effective Cohesion Standard Deviation of Factor of Safety Standard Deviation of Uncorrected Factor of Safety Slice Angle of "i",h Slice Lognormal Reliability Index Undrained Angle of Internal Friction Standard Deviation of Pore Pressure Small Increment applicable ti "i"th Random Variable Standard Deviation of "i"lh Random Variable Width of "i"'h Slice Cohesion Effective Cohesion Coefficient of Variation Coefficient of Variation of Factor of Safety Coefficient of Variation of Angle of Internal Friction Coefficient of Variation of Cohesion Coefficient of Variation of Pore Pressure Undrained Cohesion Diameter of a Nail Side Normal Force acting on "i"th Slice (Left Boundary) Side Normal Force acting on "i"lh Slice (Right Boundary) Factor of Safety Uncorrected Factor of Safety for Janbu's Simplified Method Janbu's Correction Factor for Factor of Safety Bond Coefficient Yield Strength of Nail Material HCV - Highest Conceivaoie Value hi - Average Height of the "i"* Slice 1 - Effective Length of a Nail LCV - Lowest Conceivable Value n - Total number of Nails passing through a particular Slice N - Total number of samples Ni' - Effective Normal Force on "i"lh Slice Pr - Probability of Failure Pr(LN) - Probability of Failure assuming Lognormal Distribution for FOS Pf(N) - Probability of Failure assuming Normal Distribution for FOS Qi - Surcharge acting on "i"th Slice SM - Safety Margin T m , i - Shear Force acting along the Failure Surface on the "i"th Slicce T n - Force Mobilized in Nails T N , i - Nail Force acting on the "i"th Slice Ui - Pore Pressure Force on "i"th Slice U i - Pore Pressure acting on "i"th Slice V p - Variance of Factor of Safety Wi - Weight of V t h Slice X i - "i" t h random variable N o t e : S y m b o l s u s e d in t h e f lowchar t s a r e d e s c r i b e d in t h e s a m e f lowchar t s j