INTEGRATION OF BIOGAS TECHNOLOGY INTO POWER GENERATION IN SRI LANKA

H.A.S.C. WIJENAYAKE

(118364P)

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

September 2014

INTEGRATION OF BIOGAS TECHNOLOGY INTO POWER GENERATION IN SRI LANKA

H.A.S.C. Wijenayake

(118364P)

Thesis/ Dissertation submitted in partial fulfillment of the requirements for the

Degree Master of Science

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

September 2014

DECLARATION

I declare that this is my own work and this thesis/ dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/ dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (Such as articles or books).

Signature:

Date:

The above candidate has carried out research for the masters Dissertation under my supervision.

Signature:

Date:

ABSTRACT

The integration of biogas technology into power generation system in Sri Lanka, is studied and analysed, as a possible solution to raising problematic situation in Colombo city from generating MSW. To fulfill this requirement, present energy scenario in Sri Lanka, literature review and global development of biogas to power, case studies related to biogas technology, data collection of MSW to estimate the potential of biogas from OFMSW in Colombo city, analysis of data, developing a plan for a biogas power plant and evaluation of the proposed plant, are discussed. It is investigated and identified the biogas potential from OFMSW generating in Colombo city and electricity potential from produced biogas. It is synthesized to select the suitable digester technology and conversion technology to generate electricity from OFMSW, to continue the study. Further it is calculated and compared the key financial indexes such as NPV, IRR and payback period for the selected scenario, for several cases, to find out the financial viability of the proposed power project as well as evaluated the project under several aspects, to conclude the objective of this study. Further, it is revealed that the integration of biogas technology into power generation system is financially viable for all cases.

DEDICATION

I dedicate my thesis work to my family and many friends. A special feeling of gratitude to my loving parents, H.A.A. Wijenayake and M. Kusumawathi whose words of encouragement and push for tenacity ring in my ears. My wife G. Kumari Wijenayake has never left my side and is very special. I dedicate this work and give special thank to my wife, G. Kumari Wijenayake for being helping there for me throughout the entire master programme.

I also dedicate this thesis to my many friends who have supported me throughout the process. I will always appreciate all they have carried out on behalf of me.

ACKNOWLEDGEMENT

This research project was successfully completed due to the guidance of my project supervisor. I would like to sincerely thank Professor Ajith de Alwis, supervisor of this research project, professor of Chemical and Process Engineering, University of Moratuwa, for his valuable time and patience. It is for his guidance, supervision & encouragement, this project became a reality. I would also like to thank Professor R.A. Attalage, Professor K.K.C.K. Perera and Dr. A.G.T. Sugathapala, senior lectureres of the Department of Mechanical Engineering, UOM, for their support and instructions at the initial stage of this research project.

I would like to thank Dr. H.K.G. Punchihewa, course coordinator of MEng. Programme (2011/2012), and Dr. M.M.I.D Manthilake, senior lecturer of Department of Mechanical Engineering, for allocating their valuable time and for providing information required for this study. I wish to thank all engineers in Generation Planning and Design unit of CEB, for sharing their knowledge & experience on

LTGEP.

University of Moratuwa, Sri Lanka. I express my deepest gratitude to manager, Online Knowledge Services, Mrs. Chandrika Kularathna of Practical Action, Colombo 5, for her support, encouragement & sharing knowledge and experience on biogas power plants. I also express my gratitude to DGM Asset Management Thermal Mechanical Eng. Lalith De Silva of CEB Asset Management Branch, for giving me the opportunity to follow this MEng Energy technology course.

I sincerely thank my colleagues at Samanalawewa Power Station, CEB for their support to compile this research thesis. Finally I greatly appreciate & thank all my family members, all members in the staff of Samanalawewa Power Station, CEB, all staff members who engaged in MEng. Energy Technology Programme 2011/2012, university of Moratuwa & all members of MEng. Energy Technology batch 2011/2012 for helping me in numerous ways in different stages of this study.

TABLE OF CONTENTS

Decl	aration c	of the candidate & supervisor	i
Abst	ract		ii
Dedi	cation		iii
Ackr	nowledge	ement	iv
Tabl	e of cont	tent	v
List	of Figure	es	viii
List	of Table	s	ix
List	of abbre	viations	Х
List	of appen	dices	xii
1.	Introc	luction	1
	1.1.	Background	1
		1.1.1. Supply of Energy	1
		1.1.2. Generation of Electricity	4
		1.1.3. Consumption of Electricity	7
	1.2	Problem Identification	11
	1.3	^{Goal} lectronic Theses & Dissertations	11
	1.4	Objectives WWW.lib.mrt.ac.lk	11
	1.5.	Methodology	12
2.	Litera	ature Review	13
	2.1.	Background	13
	2.2.	Microbiology & Biochemistry of Anaerobic Digestion	14
		2.2.1. Hydrolysis	15
		2.2.2. Acedogenesis	15
		2.2.3. Acetogenesis	16
		2.2.4. Methanogesis	17
	2.3.	Factors Affect to Biogas Production	17
	2.4.	Composition and Characteristics of Biogas	18
	2.5.	General Information on Biogas	20
	2.6.	Biogas Digester Technology	32
		2.6.1. Batch Type Digesters	32

		2.6.2. Continuous Type Digesters	34	
	2.7.	Biogas to Power Conversion Technology	38	
		2.7.1. Internal Combustion Engines	38	
		2.7.2. Gas Turbines	41	
		2.7.3. Combine Heat and Power	43	
		2.7.4. Fuel Cells	44	
		2.7.5. Summary	45	
	2.8.	Global Development of Biogas to Power	47	
3.	Case S	Studies	63	
	3.1.	Community Biogas Plant at Fateh Singh-Ka-Purwa	63	
	3.2.	Community Biogas Plant at Jainpur	65	
	3.3.	Community Biogas Plant at the KCP Sugar Factory, Vuyyuru	66	
	3.4.	Community Biogas Plant at Bidhlam, Sonepat	67	
4.	Data (Collection and Analysis	68	
	4.1.	Data of MSW	68	
		 4.1.1. Biogas Potential from MSW in Colombo University of Moratuwa, Sri Lanka. 4.1.2. Power Production Electronic Theses & Dissertations 4.1.3. Fertilizer Production WWW.IID.mrt.ac.Ik 4.1.4. Green House Gas Emission 	70 71 71 72	
	4.2.	Analysis of Data	73	
		4.2.1. Assumptions	73	
		4.2.2. Financial Analysis	75	
		4.2.3. Analysis of Scenario	77	
		4.2.4. Sensitivity Analysis	78	
	4.3.	Summary of Analysis	79	
5.	Devel	Developing a Plan for Biogas Power Plant		
	5.1.	Setting up a Biogas Plant Project	80	
	5.2.	Schematic Diagram of a Biogas Power Plant	82	
6.	Evaluation			
	6.1.	Economic Aspect	83	
		6.1.1 Electricity	83	
		6.1.2 Fertilizer	83	

	6.2.	Social Aspect	84
	6.3.	Environmental Aspect	84
	6.4.	Financing of Biogas Project	85
		6.4.1. Economic Forecast of a Biogas Power Plant	86
7.	Discus	ssion and Conclusion	88
	7.1.	Discussion	88
	7.2.	Conclusion	90
Reference List		t	92
Appen	dices		95
Appendix 1:		MSW Data	95
Appendix 2:		General Details of the Plant	97
Appendix 3-6: Case Studies			98
Appendix 7-14: Sensitivity Analysis of Case Studies		106	

LIST OF FIGURES

		Page
Figure 1.1	Evolution of Energy Supply Forms	3
Figure 1.2	Variations of Percentage Shares of the Primary Energy Supply	3
Figure 1.3	Gross Generation to CEB Grid	5
Figure 1.4	Evolution of Generation mix	5
Figure 1.5	Gross Generation of Renewable Energy Power Plants	6
Figure 1.6	Electricity Sales by Consumer Category	8
Figure 1.7	Total Energy Demand by Sector	9
Figure 1.8	Evolution of Total Energy Demand by Sectors	9
Figure 1.9	Energy Balance in 2012	10
Figure 2.1	Degradation Steps of Anaerobic Digestion Process	14
Figure 2.2	Schematic Representation of the Individual Microorganisms	16
Figure 2.3	Efficiencies of Biogas in Various Equipments	20
Figure 2.4	Schematic Diagram of Batch type Digester	33
Figure 2.5	Schematic Diagram of Vertical type Digesters	35
Figure 2.	Schematic Diagram of Plug Flow Digester	37
Figure 2.7	Expansion of Biogas Fuelled Power Plants in Germany	48
Figure 2.8	Expansion of Biogas Power Plants in Poland	50
Figure 5.1	Schematic Diagram of a Power Generating System	82
Figure 7.1	A comparison between 3-Tier Tariff & Cost	89

LIST OF TABLES

		Page
Table 1.1	Primary Energy Supply by Source	2
Table 1.2	Gross Generation to the CEB grid	4
Table 1.3	Total Gross Generation in Sri Lanka	6
Table 1.4	Electricity Sales by End Use Category	7
Table 1.5	Total Energy Demand by Sector	8
Table 2.1	Factors affect biogas production	18
Table 2.2	Chemical Composition of Biogas	19
Table 2.3	General Information of Biogas	20
Table 2.4	Energy Equivalent of Biogas	21
Table 2.5	Guide Values for Gas Consumption in Household Use	21
Table 2.6	Raw Materials Suitable for Biomethanation	22
Table 2.7	Biodegradability of Some Substrates	23
Table 2.8	Biogas Generation Rates of Some Substrates	24
Table 2.9	Gas Generation Guide Values	25
Table 2 100	Biogas Yields of Organic Matters	28
Table 2.11	C/N Ratios of Some Substrates	30
Table 2.12	Fuel Comparison Values	31
Table 2.13	Digester Types	34
Table 2.14	Comparison of Main Generator Options	45
Table 2.15	Typical Costs of Installing a Generation System use Biogas	46
Table 2.16	Air Emissions for Typical Generator Systems use Biogas	46
Table 2.17	Typical Noise Levels for Generator systems use Biogas	46
Table 3.1	Cost Benefits Analysis of Plant at Fateh-Singh-Ka-Purwa	65
Table 4.1	District-wise MSW Quantities	69
Table 4.2	Parameters Used as Input to Predict the Amount of Biogas	70
Table 4.3	Parameters Used as Input to Predict the Power Generation	71
Table 4.4	Fertilizer Production	72
Table 4.5	GHG Emission from Power Production from Biogas	72
Table 4.6	GHG Avoided by Using Biogas for Power Generation	73

LIST OF ABBREVIATIONS

AAS	Advanced Animal Science Co. Ltd
AD	Anaerobic Digestion
BOD	Biological Oxygen Demand
BWEP	Boland Waste Energy Project
CCY	Combined Cycle Power Plant
CCHP	Combined Cooling Heat & Power
CEB	Ceylon Electricity Board
CG	Centralised Generation
CHP	Combined Heat and Power
CISIR	Ceylon Institute of Scientific and Industrial Research
COD	Chemical Oxygen Demand
CO _x	Carbon Monoxide/Dioxide
DE	Distributed Energy
DER	Distributed Energy Resource
DHW	Domestic Hot Water niversity of Moratuwa Sri Lanka
DOC	Degradable-Organic Carbon ecitonic Theses & Dissertations
DSM	Demand Side Management
EPA	Environmental Protection Agency
ESDP	Energy Service Delivery Project
ESMAP	Energy Sector Management Assistant Programme
FIT	Feed In Tariff
GDP	Gross Domestic Product
GEMIS	Global Emission Model for Integrated Systems
GIS	Geographic Information Software
GOSL	Government of Sri Lanka
GTZ	German Agency for Technical Corporation
GWh	Giga watt hours
IAEA	International Atomic Energy Agency
IC	Internal Combustion
IGEN	Indo German Energy Program

LNG	Liquid Nitrogen Gas
LOLP	Loss of Load Probability
MCFC	Molten Carbonate Fuel Cell
MSW	Municipal Solid Waste
OFMSW	Organic Fraction of Municipal Solid Waste
MT	Metric Tone
MW	Mega watt
NNFC	National Non Food Crop Centre (UK)
NCRE	Non Conventional Renewable Energy
NO _x	Nitrogen Oxide/Dioxide
NORAD	Royal Norwegian Embassy
NRE	Non-conventional Renewable Energy
NREL	National Renewable Energy Laboratory
ORC	Organic Rankine Cycle
OTEC	Ocean Thermal Energy Conversion
O&M PDP PEMF	Operation & Maintenance University of Moratuwa, Sri Lanka, Project Development Programme Electronic Theses & Dissertations Proton Exchange Membrane Fuel Cell WWW.llb.mrt.ac.lk Public Private Partnership
PSDA	Private Sector Development in Agriculture
PUCSL	Public Utility Commission of Sri Lanka
RERED	Renewable Energy Rural Economic Development
SOFC	Solid Oxide Fuel Cell
SO _x	Sulphur Oxides
SPM	Suspended Particulate Matter
SS	Suspended Solids
T&D	Transmission & Distribution
UNEP	United Nations Environment Programe
UNIDO	United Nations Industrial Development Organization
VS	Volatile Solids

LIST OF APPENDICES

Appendix 1	MSW Data	95
Appendix 2	General Details of the Plant	97
Appendix 3-6	Four Cases	98
Appendix 7-14	Sensitivity Analysis of Cases 1 to 4	106

