RELIABILITY IMPROVEMNET IN THE 33kV DISTRIBUTION FEEDER USING OPTIMUM POSITIONING OF AUTO RECLOSERS

Passikku Hannedige Nimeshika Sanjeewi de Silva

Department of Electrical Engineering

University of Moratuwa
Sri Lanka

May 2015

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters dissertation under my supervision.

Dr. W. D. A. S. Rodrigo

$29^{\text {th }}$ May, 2015

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Asanka Rodrigo for the continuous support given for the research, for the patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this dissertation.

Special thanks goes to Prof. Chintha Jayasinghe, Professor in Civil Engineering Department in University of Moratuwa for frequently reminding me about the submission date and encouraging me to finish my thesis on time.

My sincere thanks go to Mrs. Chulani Gamlath; a Chief Engineer in Ceylon Electricity Board, for enlightening me the first glance of research in year 2010. Also to Mr. L.D.J. Fernando, DGM (P\&D) - DD4 and Mr. R.S. Wimalendra CE (P\&D) DD4 for the support gave me throughout the study.

Further, I must thank all the lecturers engaged in the MSc course sessions for making our vision broader, providing us with the opportunity to improve our knowledge in various fierds: www.lib.mrt.ac.lk

It is a great pieasure to remember the kind cooperation of ail my coileagues and my friends who have helped me in this Post Graduate programme by extending their support during the research period.

My special thanks go to my parents Mr. Nihal de Silva and Mrs. Chintha de Silva, and my sister Miss Santhrushika de Silva, for supporting me spiritually throughout my life and tolerating my engagement on this work.
P.H.N.S. de Silva

Abstract

In an era where Sri Lanka economy is going towards a drastically higher growth it is highly important to have a reliable electricity network in the country. To improve the reliability of the distribution network, Distribution Licensees improve the system capacity and at the same time install protective devices to reduce the interrupted area due to an electrical fault in the network. For this Auto Reclosers and Fuses are used in the Distribution Network.

In developed countries the installation of Protective devices are done optimally and techniques have been developed. In Sri Lanka, the process of planning, design and construction of transmission and medium voltage power lines is solely authoritative by Transmission Licensee and Five Distribution Licensees of the country. At present there is no proper way of selecting optimal location for the installation of Auto reclosers is practiced in either of these Licensees.

As the first step of this study, a research survey was done about the optimal location selection methods researched in other countries. A suitable objective function was finding two opptinal Focafornsiniseries. www.lib.mrt.ac.1k This report will discuss the objective function formation to find the optimal location for the Auto Recloser and also as a supporting study a pilot project done on how to coordinate the fuses with the Auto Reclosers and the Circuit Breakers at the Grid Substation is also included.

Major Findings of this research: Optimal locations to install an Auto recloser for a feeder according to the SAIDI values of substations and the energy consumptions of bulk and retail consumers connected to that specific feeder.

Findings of the pilot project: how to co-ordinate the fuses installed on a feeder and how to decide the rating of a fuse to be installed on the feeder by maintaining the protection co-ordination with other protective devices on the feeder.

CONTENTS

Page
Declaration of the candidate and supervisors ii
Acknowledgement iii
Abstract iv
Contents v
List of figures vii
List of tables viii
List of abbreviations x
List of appendices xi
Chapter 1 12
Introduction
1.1 Background/Survey of previous work 12
1.2 Motivation 14
1.3 Objectives 15
1.4 Problem Statementwersity. of. Moratuwa. Sri. Luanka 16
1.5 Scope ef syork Electronic Theses \& Dissertations 17 www.lib.mrt.ac.lk
Chapter 2 18
Mathematical Modeling
2.1 Theoretical Background 18
2.2 Objective Function 19
Chapter 3 23
Data Collection, Data Analysis and Data Flow
3.1 Data Collection 23
3.2 Feeder Selection 24
3.3 Data Analysis 28
3.4 Data Flow for the Study 34
Chapter 4 35
Case Study
4.1 Introduction of the Selected Feeder 35
4.2 Location Identification for AR Installation 35
4.3 Supporting Calculation for Ambalangoda Feeder 3 37
4.4 Data Analysis for Ambalangoda Feeder 3 39
4.5 Results from the Objective Function 40
4.6 Sensitivity Analysis 43
Chapter 5 48
Case Study
5.1 Introduction 48
5.2 Model Validation - $1^{\text {st }}$ Case: Galle Feeder 8 48
5.2.1 Location Identification for AR Installation 48
5.2.2 Supporting Calculation for Galle Feeder 8 50
5.2.3 Data Analysis for Galle Feeder 8 52
5.2.4 Results from the Objective Function 53
5.3 Model Validation - $2^{\text {nd }}$ Case: Matara Feeder 7 56
5.3.1 Location Identificiton foryA fastanatiowa, Sri Lanka 56
5.3.2 Supporting Catcuattron for MataraFee er ${ }^{2}$................ 56
5.3.3 Data Analysis for Matara Feeder 7 56
5.3.4 Results from the Objective Function 60
Chapter 6 67
Protection Co-ordination of Fuses with the Auto Recloser
6.1 Present Scenario 67
6.2 Theoretical Background of Protection Co-ordination 67
6.2.1 Fuse - Fuse Co-ordination 67
6.2.2 Fuse - AR Co-ordination 68
6.3 How a Distribution Network properly Co-ordinated is working 69
6.4 Pilot Project: Matara Feeder 7 71
6.4.1 Overview of Matara GSS - Feeder 7 71
6.4.2 Proposed Fuse Ratings for Matara Feeder 7 72
Chapter 7 75
Discussion
7.1 Discussion 75
7.2 Conclusions 76
7.3 Suggestions to be implemented 77
7.3.1 Recommendations for Optimal Positioning of AR 77
7.3.2 Recommendations for Fuse Selection 77
References 79
Appendices 80
List of Figures Page
Figure 3.1 Geographical Map of Ambalangoda Feeder 3 25
Figure 3.2 Geographical Map of Matara Feeder 8 26
Figure 3.3 Geographical Map of Galle Feeder 8 27
 33
Figure 3.5 ata Flowfor the Study. 1 k 34
Figure 4.1 Indentified AR Locations on Ambalangoda Feeder 3 36
Figure 4.2 Finalized Optimal AR Locations on Ambalangoda Feeder 3 47
Figure 5.1 Indentified AR Locations on Galle Feeder 8 49
Figure 5.2 Finalized Optimal AR Locations on Galle Feeder 8 55
Figure 5.3 Finalized Optimal AR Locations on Matara Feeder 7 66
Figure 6.1 Backup Fuse and Main Fuse on a Feeder 68
Figure $6.2 \quad$ Fuse - Fuse Co-ordination from TC curves 69
Figure 6.3 Fuse - AR Co-ordination from TC curves 69
Figure 6.4 Properly Coordinated Distribution Feeder 69
Figure 6.5 Proposed Fuse Ratings 74

List of Tables

Table 1.1 Cost of Protection Devices used in Distribution Network 14
Table 1.2 Steps followed by DDs to select an AR Location 16
Table $3.1 \quad$ Outage Rate of Selected Distribution Feeders 28
Table 3.2 Bulk and Retail Consumer Energy Consumption ofSelected Feeders29
Table 3.3 Customer Interruption Duration for substations on Galle Feeder 8 30
Table 3.4 Temporary Fault percentage for Nindana Gantry Gonapinuwala side Feeder 31
Table 3.5 Maintenance and Fuel Cost for a Crew Cab 32
Table 4.1 SAIDI values calculated for Identified Locations on
Ambałangoalssiteeder 3Moratuwa, Sri Lanka. 37
Electronic Theses \& Dissertations
Table 4.2 SAIPI valuesicalquilated die to line tripping for Identified
Locations on Ambalangoda Feeder 3 38
Table 4.3 CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Nindana Gantry - Kahatapitiya
side Feeder 40Table 4.4 CoR, Average CoI and $\mathrm{B}_{\text {cost }} \quad$ for Nindana Gantry - Kuleegodaside Feeder41
Table 4.5 CoR, Average CoI and $\mathrm{B}_{\text {cost }} \quad$ for Nindana Gantry - Gonapinuwalaside Feeder42
Table 5.1 SAIDI values calculated for Identified Locations on
Galle Feeder 8 50

Table 5.2 SAIDI values calculated due to line tripping for Identified

$$
\text { Locations on Galle Feeder } 8 \quad 51
$$

Table 5.3 CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Galle Feeder 8 53
Table 5.4 SAIDI values calculated for Identified Locations on
Matara Feeder 7 57
Table 5.5 SAIDI values calculated due to line tripping for IdentifiedLocations on Matara Feeder 759
Table 5.6 CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Kaburupitiya Gantry - Andaluwa side Feeder 60
Table 5.7 CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Kaburupitiya Gantry - Semidale side Feeder 62
Table 5.8 CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Kaburupitiya Gantry - Hakamana side Feederronic Theses \& Dissertations 63
Table 6.1 Operation of protectorlactices for permanent and
Temporary faults 70
Table 6.2 General Statistics of Matara Feeder 7 71
Table 6.3 Protection settings of Matara Feeder 7 Circuit Breaker 71
Table 6.4 Protection settings of Kamburupitiya Gantry Andaluwa side AR 71
Table 6.5 Proposed Fuse Ratings 72
Table 7.1 Proposed Fuse Ratings which are connected after an AR 77
Table 7.2 Proposed Fuse Ratings which are not connected after an AR 78

LIST OF ABBREVIATIONS

LIST OF APPENDICES

Appendix 1: Feeder wise installed ARs in DD4 network
Appendix 2: Customer Interruption Duration for the 3 Feeders

Appendix 3: Supporting Calculations for Ambalangoda Feeder 3

Appendix 4: Fuse to Fuse Co-ordination for Different Fuses
Appendix 5: Fuse - AR Co-ordination for Matara Feeder 7

Appendix 6: Temporary Fault percentage of spur

Chapter 1

Introduction

1.1 Background/ Survey of Previous Work

Electricity plays a crucial part in day to day life in our lives and with the drastic improvement in technology a reliable electricity supply is a must. At the present time power sectors mainly focus on providing a reliable supply to the consumers. At the same time providing a reliable supply, the power sector focuses on maximizing their profits with cost optimization.

A highly reliable distribution network is a network which should have a lower number of interruptions or a network which could isolate interruptions with minimum consumers interrupting. To achieve this, the utility must do routine maintenance, way leave clearances and install protective devices in the system.

When instahing protective devices such asatuto Reclosers and Fuses, these devices
 an Auto Rectoser is Wigher thanlarfusebut this huge cost difference is due to the fact that the Auto Recloser has so many additional features than a fuse. When installing an Auto Recloser, the utility must have a macro view of the network and should find an optimal location on the feeder.

There are several researches have been done to allocate protective devices optimally in distribution networks using different methods. One of those studies which is described in "Allocation of protective devices in distribution circuits using nonlinear programming models and genetic algorithms" by Luis G.W. da Silva, Rodrigo A.F. Pereira and Jose R.S. Mantovani. This research presents a Non-Linear Integer Programming (NLIP) model with binary values, to find optimal location for allocating protective devices in the main feeder and all the branches connected to the main feeder. In this study both technical and economical limitations are considered. The problem is solved by using the Genetic Algorithm (GA). [1]
"Optimised placement of control and protective devices in electric distribution systems through reactive tabu search algorithm" by Luis G. Wesz da Silva, Rodrigo A. Fernandes Pereira, Juan Rivier Abbad and Jose R. Sanches Mantovani is another research paper under the title of optimal location identification. The problem is modeled through Mixed Integer Non-Linear Programming (MINLP) with real and binary values. Reactive Tabu Search (RTS) is utilized to solve the problem in this study and the tests were carried out to a 13.8 kV , 134 nodes, overhead three-wire feeder with a delta-grounded wye connection substation transformer. [2]

To study more about the different techniques used to find the optimal location for devices on a distribution feeder, another research paper was referenced and that was "Enhancement in Distribution Systems using Optimal Allocation of Switcching Devices" by M.R. Haghifam, H. FAlaghi, M Ramezani, M PArsa and G. Shahryari. In this study a GA is proposed to find optimal number and locations for sectionlizers, tie points and tie lines. Cost of energy not supplied, cost of switches and tie lines are considered when designing the objective function and the results were obtained by simulating the results for ar reat distribatipgtine in sran. Aimindow based computer planning preck he hellbedrataveloplad basedonthisestudy doysDistribution Networks Laboratory in TarbiatuMModaberesunatersity, Tehran, Iran. Also this software was used to decide the sectionalizer locations and tie line positioning for distribution networks in Iran by the utilities. [3]

Another research paper which was referenced was "Optimal Feeder Switches and Pole Mounted RTUs Relocation on Electrical Distribution System considering Load Profile" by Pichit Jintagosonwit, Pichai Jintakosonwit and Naruemon Wattanapongsakorn. In this study optimal locations were considered by annual load curve changing and failure rate changing. GA was applied to find optimal locations from the objective function. [4]

One last research which was referenced was "Distribution Reliability Improvement through Optimal Location of Load Break Switches in 33 kV Network" by Ranjit Perera and S. P. Thushara. In this study, it presents a method to locate the Load Break Switches optimally and the optimal number of switches considering the nature
of the different zones the feeder is going through and the number of customers fed from the feeder. [5]

Immune algorithm [11] and particle swarm optimization based on fuzzy expert systems [12] methods are also used for the optimal positioning of line switches on an distribution feeder.

1.2 Motivation

As the main and largest electricity provider in Sri Lanka, Ceylon Electricity Board has to maintain a healthy reliable distribution network for the betterment of the country's economy. When considering the reliability of distribution network, Electrical Protection of the network plays a crucial role. Auto Recloser is one of the protection devices used in the network and this is a smart device which is costly and it has several features which we can use for distribution protection and also we can use that as a device to collect data of the distribution system because this has the ability of collecting data.

Electronic Theses \& Dissertations

1	Auto Recloser 11 kV	Price (LKR)
2	Auto Recloser 33 kV	$1,209,720.00$
3	Fuses Link Expulsion	$1,855,410.00$
4	Copper Solid Link $11 \mathrm{kV} / 33 \mathrm{kV}$	$3,805 / 4,435$
5	Sectionalizer 36 kV	$1,758,960.00$

Source: Catalogue and Price Lists of Materials - 2015 [9]
As an AR is costly compared to other protective devices used for distribution protection such as Fuses, it is mandatory to choose an optimal location to install an AR. Following are reasons which motivated me to choose this specific study area for my research.

- No proper way is practiced to select an optimal location for the AR to install in CEB.
- To improve the reliability of the network.
- While studying the network, found that few ARs are installed at locations where LBSs should be installed (As an example Normally Open locations). This is a waste of money.

As an engineer who works in the Planning and Development branch of Distribution Division 4 of (DD4) Ceylon Electricity Board (CEB), faced several incidents where Area engineers requests ARs for locations where fuses should be installed. When installing ARs we have to make sure that ARs are co-ordinated with one another and also with the Circuit Breaker at the Grid Substation.

With the constraint of protection setting at the GSS the distribution divisions can install only 2 or 3 ARs in series, away from the GSS. So with this constraint the study was done.

In the existing network there are more than 50 ARs installed in the Distribution Division 4 network. In DD4 network, in some main feeders there are 2 ARs installed and in some there is only one AR installed and at the same time in some feeders there are no ARs installed. Freder wise instahed ARs are given intunnex 1. Electronic Theses \& Dissertations
1.3 Objectives www.lib.mrt.ac.lk

- The first objective of this study was to develop an algorithm to find an optimum location for an AR to be installed in the distribution line after the GSS.
- The second objective was to co-ordinate the installed or existing AR, with already installed fuses downstream and GSS circuit breaker upstream.

1.4 Problem Statement

The Distribution Network of CEB has divided into 4 divisions as DD1, DD2, DD3 and DD4. AEEs (Area Electrical Engineers) inform the respective provincial planning branch when an Auto Recloser is needed through a letter including the location and the GSS Feeder Number. AEE decide whether an AR needed to a specific Feeder or a spur, if there are higher interruptions on that feeder or spur going through high vegetation. Then the provincial planning engineer will forward the AR
request to Regional planning branch. From there the appropriateness of installing an AR to that specific location is verified and sends the AR installation request with the protection settings to the Projects and Heavy Maintenance (PHM) Branch.

When checking the appropriateness of requested AR location Distribution Divisions follow different methods and there are no common guidelines to select an optimal location to install an AR. When selecting an AR location the CEB does not check for the optimal location. Following table tabulates the methods which have been practiced by the different distribution feeders for finalizing a location for AR.

Table 1.2: Steps followed by Distribution Divisions to select an AR location

No	Distribution Division	How an AR location is finalized
1	Univer Electro www. 1	If the line is an express line then install ARs at the gantry location.
		If there are higher faults reported on a specific spur sinstaf an Aratuthe beginnfngok the spur. nic Theses \& Dissertations on an Distributor, b. mrt.ac.Ik install the AR, 12 km away from GSS to maintain proper protection co-ordination.
		Only 4 ARs to be installed in series
2	DD2	Install ARs at Gantry locations.
		If the spur is long or have higher breakdown count install an AR at the beginning of that specific spur.
		If a Feeder is $40-50 \mathrm{~km}$ long install ARs in-between.
3	DD3	Install ARs at Gantry locations
		Only 2 or 3 ARs in series
		When installing an AR check the protection coordination with the GSS and choose the appropriate Time vs Current curve and maintain 0.3 sec time discrimination between the protection devices.

No	Distribution Division	How an AR location is finalized
4	DD4	Install ARs at Gantry locations
		Only 2 or 3 ARs in series
		When installing an AR check the protection coordination with the GSS and choose the appropriate Time vs Current curve and maintain 0.3 sec time discrimination between the protection devices.

Though there are these methods to choose the suitable AR location, there are some AR locations which do not come under these guidelines.

1.5. Scope of Work

For this research, scope of work is as follow.

1. Studied the Optimization problem solving done in the distribution network of other countries.
2. Studied the constraints which will affect the optimal location of the AR.
3. Selection of Eeedersnfoit the studyoratuwa, Sri Lanka.
4. Data conlectioneghubero of heaes ioferniqearandi qiterrupted consumers for each ind every substation onthe selected feeders, outage rate of feeders, SAIDI values for bulk and retail consumers, cost for the utility for one hour power interruption for bulk and retail consumers.

After the objective function was formulated the data from one feeder was fed into the function and got the results. Then the data from two other feeders were used to validate the objective function.
Accuracy of the results was depending upon the accuracy of data collection and collected data of interruptions of the substations.

Chapter 2

Mathematical Modeling

2.1 Theoretical Background

For a distribution network to reach a highly reliable level, the distribution utility must focus on coordinating the protection system. Before coordinating the protection devices the protection devices should be located optimally, minimizing the interruption cost and cost of breakdown recovery. The mathematical model is derived considering these two aspects, under the constraint of selecting 2 AR locations in series. The optimal location originated from this model is both technically and economically viable.

Auto Reclosers and Fuses are the protection devices used in the distribution network in CEB and in some Distribution Divisions Sectionalizers are used. Mostly K type fuses are used in the network. When considering the prices, installing a fuse instead of installing in Auto irectosetyisodheafperalButynsfartingaflises to clear temporary faults mas not be viablectonilidering forfotterm. Assertationsfor this ARs should be installed in the system, co-ordinated with the fuses installed downstream. If the utility can install several ARs on a feeder, they can improve the reliability of that specific feeder. But this is not viable economically. So a location has to be decided considering both technical view and economic view.

The mathematical model is derived to minimize the cost of reliability of a specific location. To find the cost of reliability an objective function has been derived using SAIDI values for a feeder, and that is described in the following section and SAIDI equation is given in chapter 3 .

2.2 Objective Function

The proposed objective function is the sum of Breakdown Recovery Cost of location 'i' ($\mathrm{B}_{\text {cost-i }}$) and the Cost of Interruption of location ' i ' $\left(\mathrm{CoI}_{\mathrm{i}}\right)$. The objective function for each section i of the feeder is derived by the following terms.

$$
\text { Minimize } \operatorname{CoR}_{i}=B_{\text {cost-i }}+\operatorname{CoI}_{i}
$$

subjected to 2 locations in seiris and 0.3 sectime descrimination bbetween ARs
For a location i on the feeder;

$$
\begin{aligned}
& \operatorname{CoR}_{i}-\text { Cost of Reliability } \\
& B_{\text {cost-i }}-\text { Breakdown Recovery Cost } \\
& \text { CoI }_{i}-\text { Cost of Interruption }
\end{aligned}
$$

The breakdown recovery cost was added to the objective function to check the economical viability of the system. When installing an AR to CEB distribution network, maximum number of ARs to be installed in series is limited to two or three numbers. This constnaint is there hecause the ipsetection settings of the Circuit Breaker (CB) at the GSSjucllephatadowide value and because of this reason it would be difficult to have a proper co-ordination between the ARs when more than 3 ARs are connected in series. Hence, the number of ARs to be added to the feeder was not included in the objective function to check the economic viability. GSS is taken as the reference point, to obtain distances for the identified locations. The breakdown recovery cost is written as follows.

$$
B_{\text {cost }-i}=\lambda_{i} \cdot l_{i}(b \cdot x+m)
$$

For a location i on the feeder;
λ_{i} - Outage rate of the feeder, only for Auto tripping (interruptions/month)
l_{i} - Distance from Grid Sub Station (GSS) to the location i (km)
b - Consumed fuel per km for a Crew Cab (1/km) x - Fuel price (LKR./l)
m - Maintenance cost per km for a Crew Cab (LKR./km)

When calculating the cost of interruption, interruptions occurred only due to temporary faults were considered. The reason for this, because the optimal locations are selected for installation of ARs and the AR is mainly used to interrupt temporary faults in the network. For the cost interruption the consumers are divided as bulk consumers and retail consumers.

On a feeder, let's assume that an AR is installed at the location i, and for a temporary or permanent fault the AR will operate and interrupt the consumers connected downstream both retail and bulk consumers. To calculate the cost of interruption, SAIDI value of bulk consumers and the SAIDI values of retail consumers are to be calculated separately. When a consumer is interrupted it will be a loss for the utility. Losses for the utility due to interruption of power for one hour for both bulk and retail consumers are also included to this equation. The equation for cost of interruption is given below. This whole part should be multiplied by the temporary fault percentage for the specific section. From the latter part, the cost for the utility due to line tripping should be reduced.

> University of Moratuwa, Sri Lanka.
> Electronic Theses \& Dissertations

$$
\begin{aligned}
& -\lambda_{f}\left[\left(\text { SAIDI }_{\text {bulk }(1-i)} \times f_{\text {bulk }}\right)+\left(\text { SAIDI }_{\text {retail }(1-i)} \times f_{\text {retail }}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { SAIDI }_{\text {bulk }(i-n)}=\frac{\sum_{j=i}^{n} \text { IH }_{j} . \text { CNos }_{j}}{\text { CNos }_{\text {tot }}} \\
& \text { SAIDI }_{\text {bulk }(1-i)}=\frac{\sum_{k=1}^{i} \text { IH }_{k} . \text { CNos }_{k}}{\text { CNos }_{\text {tot }}} \\
& \text { SAIDI }_{\text {retail }(i-m)}=\frac{\sum_{j=i}^{m} I H_{j} . \text { CNos }_{j}}{\text { CNos }_{\text {tot }}} \\
& \text { SAIDI }_{\text {retail }(1-i)}=\frac{\sum_{k=1}^{i} I H_{k} \cdot \text { CNos }_{k}}{\text { CNos }_{\text {tot }}}
\end{aligned}
$$

For a location i on the feeder, with ' n ' number of bulk substations and ' m ' number of retail substations.

λ_{i}	- Temporary fault percentage of feeder section of location i
λ_{f}	- Auto Tripping percentage of the feeder
$S^{\text {AIDI }} \mathrm{I}_{\text {bulk }(i-n)}$	- SAIDI value of bulk consumers downstream of location i (hrs)
SAIDI $\mathrm{retail}(i-m)$	m) - SAIDI value of retail consumers downstream of location i (hrs)
$S^{\text {ald }} \mathrm{I}_{\text {bulk (1-i) }}$	- SAIDI value of bulk consumers from GSS to the location i (hrs)
SAIDI ${ }_{\text {retail }}(1-i)$	${ }_{\text {i }}$ - SAIDI value of retail consumers from GSS to the location i (hrs)

$f_{\text {bulk }}$ - Cost for the utility for one hour power interruption for a bulk consumer
$f_{\text {retail }}$ - Cost for the utility for one hour power interruption for a retail consumer

IH_{j}	- Outage Hours for $j^{\text {th }}$ substation (hrs) University of Moratuwa, Sri Lanka. IH_{k} CNOs_{j}
CNos_{k}	- Interrupted bulk consumers of $\mathrm{j}^{\text {th }}$ substation
- Interrupted bulk consumers of $\mathrm{k}^{\text {th }}$ substation	
$\mathrm{CNos}_{\text {tot }}$	- Total number of consumers of section i

Cost for the utility for one hour power interruption ($f_{\text {bulk }}$ and $f_{\text {retail }}$)
This has to be derived for both retail and bulk consumers. For this Cost of Expected Energy Not Served (EENS) was needed. From the study "Assessment of Economic Impact of Poor Power Quality" - USAID - SARI/E Program, October 2002 report it was given that the Cost of Energy Not Served (ENS) as 1.2 USD/kWh. This value was given to the whole network, but for this study two cost values for the both bulk and retail consumers are needed. The derivation of cost for the utility for one hour power interruption equation is given in the next page. [8]

The value which was found for this was from a research specially worked out for Sri Lanka, but the study was done in October 2002. To find an ENS from a research done recently several research papers were referred. [6] [7] But the values from those values couldn't be used for this study as those studies weren't done to South Asian region. So finally the Research done by USAID - SARI/E Program was used. [8]

From this value the cost for the utility for one hour power interruption is derived using the following equation. $f_{\text {bulk }}$ and $f_{\text {recuil }}$ values can be derived for each and every feeder separately depending on the energy consumption respectively.

$$
\begin{aligned}
f_{\text {bulk }} & =\frac{\operatorname{Cost}_{\text {EENS }} \times E C_{\text {bulk }}}{24 \times 30 \times N_{\text {bulk }}} \text { USD } / H r s \\
f_{\text {retail }} & =\frac{\operatorname{Cost}_{\text {EENS }} \times E C_{\text {retail }}}{24 \times 30 \times N_{\text {retail }}} \text { USD } / H r s
\end{aligned}
$$

$f_{\text {bulk }}$ - Cost for the utility for one hour power interruption for a bulk consumer
$f_{\text {retail }}$ - Cost for the utility for one hour power interruption for a retail consumer University of Moratuwa, Sri Lanka.
 www.lib.mrt.ac.lk
$E C_{\text {bulk }}$ - Energy Consumption of Bulk Consumers of the selected feeder (kWh)
$E C_{\text {retail }}$-Energy Consumption of Retail Consumers of the selected feeder (kWh)
$N_{\text {bulk }}$ - Bulk consumers connected to the feeder
$N_{\text {retail }}$ - Retail consumers connected to the feeder
With all these variables in hand, one can find an optimal location for an Auto Recloser to be installed. When there are several types of data and several equations it is easier to handle those when a data flow chart is plotted. The data flow chart of this study and the data to be collected are described in the next chapter.

Data Collection, Data Analysis and Data Flow

3.1 Data Collection

The accuracy of the results of the mathematical model will depend on the accuracy of the collected data. Data collection is a crucial part in any of the research study. The following are the list of data collected and the data source is also mentioned in front. All these data were collected for the period of, from March 2012 to February 2013.

Feeder data

- Auto Tripping outage rate of the feeder - these data are obtained by the "Summary of 33 kV Feeder Trippings" Report prepared by the System Control branch of CEB. [10]
- Energy Consumption of bulforadutail consumens-ar for each feeder the
 were downloadedilbylthet on tinke data base of CEB.
= Transformers connected to the feeder - from the updated AutoCAD maps from the provincial planning branch.
- AutoCAD map of the selected feeders.
- Total no. of faults and temporary no. of faults of each feeder section from the relevant area engineer.
> Transformer Data
- Transformer Category - this information can be obtained by the online database of CEB and this is cross-checked by the respective area office.
- Connected Consumers - from the online database of CEB
- No. of Interruptions for a transformer and the duration - collection of this data was a bit time consuming as a proper data recording method for
transformer wise power interruption is not maintained. These data were collected from the Area office and CSC.

For this study only interruptions due to Over Current (OC) and Earth Fault (EF) were considered. Planned interruptions were not considered.

Other

- Maintenance and travel cost for a crew cab - the details were obtained from the respective CSC of the crew cab.
- Cost of EENS - from a research paper. [8]

3.2 Feeder Selection

Three feeders were selected from the distribution division network to validate the mathematical model. When the feeders of the DD4 network considered some feeders have more than 4 ARs (at the gantry locations) while some other feeders doesn't have any $A R$. ${ }^{T} \rho$ validate the mathematica model 3 feeders were selected from the DD4 netwo Following 1are the fegders selected and the feeders drawn on SynerGEE model are also given with the description.
> Ambalangoda Feeder 3-14907 consumers are connected to this feeder. There is a one gantry location with 4 outgoing feeders and there are 4 ARs installed at the starting point of the outgoing feeder. When the feeder tripping data was analyzed Ambalangoda Feeder 3 had higher number of tripping compared to other feeders on which ARs have been installed. Because of that reason this feeder was selected to validate the mathematical model. The feeder shown on geographical map is shown in the following figure. During the period in which the data collected, the ARs were not functioning properly due to protection settings were not coordinated with the GSS circuit breaker. Hence, the result does not depend on the already installed AR locations

Figure 3.1 Geographical map of Ambalangoda Feeder 3
$>$ Matara Feeder 7 - As shown in the below figure Matara F7 feeds more than 35,787 consumers in the Matara - Kamburupitiya area. Feeder 7 is divided into 3 outgoing feeders at the Kamburupitiya Gantry where only one AR is installed for one of the outgoing feeder which goes towards Andaluwa.

Figure 3.2 Geographical map of Matara Feeder 3
$>$ Galle Feeder 8 - This feeder is a distributor and there are no gantry locations located on this feeder. There are no ARs installed on this feeder. 8950 consumers are fed from this feeder. This feeder had higher tripping rate compared to other feeders where no ARs are installed.

Figure 3.3 Geographical map of Galle Feeder 8

3.3 Data Analysis

The collected data should be analyzed accordingly to obtain results from the objective function by using them. The analyzed data are described in the following section.
$>$ Outage rate of the feeder - when deciding the outage rate of the feeder only the auto tripping were considered. From March 2012 to Feb 2013 tripping data collected and got the average value. This value was taken as the outage rate of the feeder and percentage value is also calculated

$$
\text { Outage Rate }=\left(\sum_{n=\text { March } 2012}^{n=\text { February } 2013} \text { Auto Tripping }{ }_{n}\right) / 12
$$

Table 3.1: Outage rate of selected distribution feeders

Energy consumption of Bulk and Retail consumers of the feeder - monthly energy consumption of retail and bulk consumers for an annum is considered and monthly average value is obtained.

Table 3.2: Bulk and Retail Energy consumption of selected feeders

Ambalangoda Feeder 3													
Month	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ \mathbf{2 0 1 2} \end{gathered}$	$\begin{gathered} \text { Aug } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \text { Oct } \\ 2012 \end{array}$	$\begin{aligned} & \text { Nov } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Avg
Retail (MWh)	940.93	949.82	961.74	949.29	939.70	941.04	923.00	978.47	930.17	952.24	963.03	995.05	952.04
$\begin{gathered} \text { Bulk } \\ \text { (MWh) } \end{gathered}$	49.529	56.138	55.703	57.022	39.228	31.219	37.059	54.588	44.061	35.112	42.289	55.056	46.417
Matara Feeder 7													
Month	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ 2012 \end{gathered}$	$\begin{array}{r} \text { Aug } \\ 2012 \end{array}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \text { Oct } \\ 2012 \end{array}$	$\begin{aligned} & \text { Nov } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Avg
Retail (MWh)	1948.5	2008.1	2019.4	1940.2	1893.5	1874	1906.1	1988.6	1925.0	1975.2	1995.5	1956.3	1952.6
$\begin{gathered} \text { Bulk } \\ \text { (MWh) } \end{gathered}$	1583.6	1616.5	1648.6	1675.6	1706.3	1742.4	1776.2	1821.4	1857.7	1893.4	1924.0	1942.7	1765.7
Galle Feeder 8													
Month	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{aligned} & \text { Apr } \\ & 2012 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Aug } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Oct } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { Nov } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Avg
Retail (MWh)	694.35	1440.5				656.99	686.21	691.07	706.73	730.53	743.91	722.74	823.06
$\begin{gathered} \text { Bulk } \\ \text { (MWh) } \end{gathered}$	743.98	$\left.(964)^{2}\right)$	734:94	$\text { Ners } 1753.96$	011			P64.io	$1 \mathrm{~S}^{28.07}$	763.96	727.07	728.07	747.77

Interruption Duration values of each Substation - From the collected interruption data calculate the customer interruption duration which is needed to calculate the SAIDI values. The equation to calculate the SAIDI values are given below. At the same time categorize the substations ins whether it's a Bulk transformer or a Retail transformer.

$$
\text { SAIDI }=\frac{\text { Total Customer interrupticu, Duratiaxıuı }}{\text { Total Number of Customers }}
$$

Customer Interruption Duration

$$
=\text { Interrupted Hours } \times \text { No. of Interrupted conconsumers }
$$

Calculation of customer interruption duration done for few of the substations on Galle - Feeder 8 is given in the table below. The customer interruption duration calculation for the selected feeders is attached in Annexure 2.

Table 3．3：Customer Interruption Duration for substations on Galle Feeder 8

$\begin{array}{\|l} \hline \text { Sin } \\ \text { No } \end{array}$	Interrupted Hours											
	$\begin{aligned} & \hline \text { Mar } \\ & 2012 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { May } \\ 2012 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \hline \text { Jul } \\ 2012 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Aug } \\ 2012 \\ \hline \end{array}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \hline \text { Oct } \\ 2012 \end{array}$	$\begin{array}{c\|} \hline \text { Nov } \\ 2012 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Dec } \\ 2012 \end{gathered}$	$\begin{array}{r} \hline \text { Jan } \\ 2013 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Feb } \\ 2013 \\ \hline \end{array}$
$\begin{aligned} & \stackrel{\otimes}{0} \\ & \text { N } \\ & \text { Nै } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{y}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{gathered} 0.0 \\ \mathbf{C}^{\infty} \\ 0 \end{gathered}$	$\begin{gathered} \text { N} \\ \text { O} \\ \text { In } \end{gathered}$	$\stackrel{\Delta}{\stackrel{\rightharpoonup}{7}}$			$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\dot{O}} \end{aligned}$	$\begin{aligned} & \overline{7} \\ & \underset{\sim}{\dot{G}} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \stackrel{0}{0} \\ & \stackrel{n}{n} \end{aligned}$	\bigcirc	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\sim}{\underset{~}{*}} \end{aligned}$
	$\begin{aligned} & \underset{\mathscr{Z}}{\underset{\infty}{\infty}} \\ & \underset{\infty}{1} \end{aligned}$	$\begin{aligned} & \overline{\text { ch}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$			$\underset{\substack{\underset{\sim}{\infty} \\ \underset{\sim}{i}}}{ }$			$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{7}{6} \\ & 6 \\ & \vdots \end{aligned}$	$\underset{\sim}{\text { Y }}$ $\underset{\infty}{\infty}$ ∞	$\begin{aligned} & \text { n } \\ & \underset{y}{\dot{6}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { Ǹ } \end{aligned}$
$\begin{aligned} & \text { స్ } \\ & \text { ヘ̂ज } \end{aligned}$		$\begin{aligned} & \stackrel{\aleph}{\circ} \\ & \stackrel{\rightharpoonup}{\Omega} \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \text { 亿̈ } \end{aligned}$	$\begin{aligned} & \underset{y}{q} \\ & \underset{\sim}{\dot{G}} \end{aligned}$			$\begin{gathered} \underset{\sim}{\tilde{j}} \\ \stackrel{y}{2} \end{gathered}$		$\begin{aligned} & \underset{\sim}{\alpha} \\ & \stackrel{\infty}{\dot{\infty}} \\ & \stackrel{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \text { y } \\ & \text { ה } \\ & \underset{\sim}{6} \end{aligned}$	
$\begin{aligned} & \text { స్} \\ & \text { Nö } \end{aligned}$	$\begin{aligned} & \underset{\sigma}{2} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\overleftarrow{6}}{6} \\ & \dot{0} \\ & \underset{子}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \stackrel{\infty}{\dot{G}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \underset{\oplus}{+} \\ & \underset{\infty}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{6} \\ & \infty \end{aligned}$	∞ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ +	$\begin{aligned} & \text { ®̃ } \\ & 0.0 \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{U} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N} \\ & \text { No } \end{aligned}$
	$\stackrel{0}{c}$		先ni Ele		$\begin{aligned} & \text { ?⿳亠丷厂犬} \\ & \text { of } \\ & \text { The } \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \text { Mo華at } \\ \text { ses } \end{gathered}$	$\begin{gathered} \text { 人े} \\ \text { uble } \\ \text { Diss } \end{gathered}$	$\begin{gathered} \stackrel{\circ}{n} \\ \text { SríL } \\ \text { ertatio } \end{gathered}$			$\begin{aligned} & \text { 筞 } \\ & \dot{+} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$
욱 \sim	$\stackrel{\infty}{\infty}$	ત̃	$\begin{gathered} \text { WW } \\ \text { O. } \\ \text { Ó } \end{gathered}$	$\begin{aligned} & \text { lib } \\ & \stackrel{y}{\infty} \\ & \stackrel{c}{0} \end{aligned}$		$\frac{c .1 k}{\substack{q \\ \hline}}$	O	กֻ．	$\underset{\sim}{n}$	\bigcirc	$\stackrel{\circ}{\circ}$	$\stackrel{+}{0}$
$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{G}} \\ & \text { 论 } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{+}{4} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\alpha} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{y}{\mathcal{O}} \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \text { É } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{n} \\ & \stackrel{1}{\Xi} \end{aligned}$	$$	$\begin{aligned} & \text { no } \\ & \stackrel{0}{0} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\alpha}{\circ} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { 冗̌ } \\ & \underset{\circ}{\circ} \\ & \stackrel{\otimes}{\circ} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{6} \\ & \stackrel{\circ}{\infty} \end{aligned}$	$\begin{aligned} & \text { ત̈ } \\ & \text { O} \end{aligned}$
	$\begin{aligned} & \text { àn } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{2}{2} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{aligned} & \stackrel{t}{\vdots} \\ & \stackrel{\rightharpoonup}{=} \end{aligned}$	$\begin{aligned} & \text { ®. } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{+}{\mathrm{a}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathrm{I}} \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{2} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{0}{n} \\ & \stackrel{n}{7} \end{aligned}$	$\begin{aligned} & \text { EO } \\ & \text { O. } \\ & \infty \\ & \infty \end{aligned}$	$\xrightarrow{\text { g }}$	$\stackrel{\bigcirc}{\stackrel{\circ}{\sim}}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \text { 夠 } \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{0}{\mathcal{y}} \\ & \underset{\sim}{n} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\ominus} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{i}{1} \\ & \underset{\sim}{\mathcal{m}} \end{aligned}$	$\begin{aligned} & \text { त్ } \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \hat{N} \\ & \hat{0} \end{aligned}$	$\begin{aligned} & \text { o} \\ & \stackrel{0}{3} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{o}{\infty} \\ & \stackrel{\infty}{\oplus} \end{aligned}$	$\xrightarrow{ \pm}$	$\begin{aligned} & \text { N} \\ & \underset{i}{U} \\ & \text { N} \end{aligned}$	
$\begin{aligned} & \text { 충 } \\ & \text { 会 } \end{aligned}$	$\underset{0}{0}$	－	Ơ	$\stackrel{\infty}{\circ}$	$\stackrel{0}{\circ}$	$\stackrel{i}{i}$	$\stackrel{ٌ}{0}$	Nֶi	$\underset{\sim}{n}$	$\stackrel{0}{n}$	$\stackrel{\circ}{\circ}$	$\stackrel{+}{\circ}$

On the above feeder, the Bulk transformer numbers are highlighted in color 'Red' while the retail transformer numbers are not highlighted.
$>$ Temporary Fault percentages of each feeder section - the collection of these data were time consuming. The data were collected from Area Engineers and the respective ESs at the CSCs. For each and every spur the temporary percentage needed to be calculated. The temporary fault percentages for several spurs in Ambalangoda Feeder 3 line is given below. All the other temporary fault percentages of the selected feeders are given in Annex 8.

Table 3.4: Temporary Fault percentages for Nindanda Gantry - Gonapinuwala side feeder section on Ambalangoda Feeder 3

No	Name of the Section	Temporary Fault Percentage (\%)
1	Supem Uyana Spur	100
2	Berathuduwa Spur	94
3 Dalawathumulla Sbar Moratuwa, Sri Lanka. 90		
4 \% bik osgharebanSpurheses \& Dissertations 90		
5 - Manarlitalspuphrt.ac.Ik 95		

Source: Area Engineer - Ambalangoda

Breakdown Recovery Cost - This is the cost for a crew cab to travel one km when an AR is lockout and make it back to the normal operation after clearing the fault. To obtain this value two other variables should be analyzed.

- Fuel consumed per km for a crew cab
- Maintenance cost per km for a crew cab

Maintenance and Fuel consumption details are collected for a crew cab for a time span of 17 months and got an average value for Maintenance cost and fuel cost per km. 17 months time span was taken because for a time span of one year data was considered in some months the crew cab was not driven but maintenance was done and in some months there was no maintenance
was done. To include all these variations a time span of 17 months was considered. Collected data and the relevant calculations are given below. Also to do a sensitivity study, whether the locations vary due to the used crew cab is also done. For this process, maintenance cost and fuel cost of 2 more crew cabs were considered. These values are attached in Annexed 9.

Table 3.5: Maintenance and Fuel Cost for Crew Cab No. 1

Year	Month	Consumed Fuel (1)	Driven km	Maintenance Cost (LKR)
2013	January	1,861	199.02	3,300.00
	February	1,887	208.41	11,472.00
	March	1,958	214.56	2,100.00
	April	1,979	217.8	-
	May	1,486	158.99	49,950.00
	June	0	0	-
	July	0	0	14,350.00
		Theses	issertations	144,900.00
	Septembe	nrt.a692	179.6	124,265.00
	October	1,963	215.96	31,922.00
	November	2,201	241.85	5,950.00
	December	1,973	217.43	-
2014	January	2,506	274.45	12,052.00
	February	1,872	206.01	-
	March	2,480	273.33	34,390.00
	April	1,694	187.44	3,950.00
	May	1,911	209.67	56,400.00
Total		28,217	3077.84	495,001.00

Source: Data was taken from the Accounts Branch - Southern Province

Fuel Consumption per km,

$$
\begin{gathered}
\text { Fuel consumed per } \mathrm{km}=\frac{\text { Consumed } \text { Fuel }}{\text { Driven } \mathrm{km}} \\
\text { Fuel consumed per } \mathrm{km}=\frac{3077.84}{28,217}=0.109 \mathrm{l} / \mathrm{km}
\end{gathered}
$$

Maintenance Cost per km,

$$
\begin{gathered}
\text { Maintenance cost per } k m=\frac{\text { Maintenance Cost for the time period }}{\text { Driven } \mathrm{km}} \\
\text { Maintenance cost per } \mathrm{km}=\frac{495,001.00}{28,217}=17.54 \mathrm{Rs} . / \mathrm{km}
\end{gathered}
$$

Location of the respective GSS on the AutoCAD map for a specific feeder. The Distance to each and every location marked on the map should be obtained from the SynerGEE model of the Distribution Network of DD4. How the distances are obtained from the SynerGEE model is shown in figure 3.1 the the distanersidbtained fromatheasymerdeanhodel are displayed in Electronic Theses \& Dissertations

Figure 3.4 How the distances obtained from the SynerGEE model

Figure 3.5 Data Flow for the Study

Chapter 4

Case Study

4.1 Introduction of the Selected Feeder

The first feeder selected for the case study was Ambalangoda Feeder 3. This feeder starts from Ambalangoda GSS and the feeder goes to Nindana Gantry, approximately for 10 km and from there the feeder is divided to 3 outgoing feeders. Three ARs are installed at the starting point of these 3 outgoing feeders. The feeders going towards Gonapinuwala and Kahatapitiya is approximately 7 km long and the other feeder going towards Kuleegoda is approximately 6 km long. On each feeder there are spur lines connected and these spur lines are $1-2 \mathrm{~km}$ long.

4.2 Location Identification for AR installation

The first step of the study is to mark every possible location for installing an AR on the selected feeder. Thellocationidentifidation wasadonelacording to following steps. Electronic Theses \& Dissertations
> On themain feeder .lib.mrt.ac.lk

- Just after a spur line on the main feeder, is marked as a location.
- DDLO locations or LBS locations.
$>$ On a spur line
- At the starting point of the spur line
- After a substation on the spur line
- DDLO location or LBS location on the spur line.

Identified locations on Ambalangoda Feeder 3 is marked the AutoCAD map given in the figure 4.1. On the figure, locations on the main feeder are marked in color Green and the locations on the spurs are marked in color Blue. Each location is given a number for identification and the numbering starts from the end point of the feeder.

When analyzing the locations, the locations on three outgoing feeders from the gantry should be analyzed separately. That means finally there should be 3 separate AR locations for the 3 feeders from the gantry.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

4.3 Supporting Calculations for Ambalangoda Feeder 3

First calculate the SAIDI values for identified locations using the calculated Interrupted Hours for each substation. For the locations which have both retail and bulk substations there should be two separate SAIDI values. At the same time obtain the distance from the GSS to the identified location from the SynerGEE model and the consumers connected on that specific location. The summarized SAIDI values for few of the identified AR locations on Ambalangoda Feeder 3 are tabulated below. The full calculation sheet is attached in Annexure 3.

Table 4.1: SAIDI values calculated for identified locations on Ambalangoda Feeder 3

Section		Sin No.	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 201 ? \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ 2012 \end{gathered}$	$\begin{array}{r} \text { Aug } \\ \mathbf{2 0 1 2} \end{array}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \text { Oct } \\ 2012 \end{array}$	$\begin{aligned} & \text { Nov } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Consumers
1	16.370	AG 090	0.0113	8.5344	$0,1948$	0.0542 j	$1.6854=$	93589	0.0744	$4: 23,53$	0.0051	0.0728	33.9430	0.0173	247
		AG 090	0.0113	- $8.533^{3} 44$	0,1948	0.0542	1.6854	0.3589	0.0744	4.2313	. 0.0051	0.0728	33.9430	0.0173	247
2		AG 095	0.45	0.63	23	0.35	0.56	0.006	0.04	0.89	$\mathrm{O}_{0.24 \mathrm{~S}}$	0.02	0.98	0.005	1
3	15.194	AG 100 AG 105	0.0113	7.4125	$\begin{gathered} \mathbf{W W} \\ 0.2532 \end{gathered}$	$\begin{gathered} \mathbb{W} .110 \\ 0.8223 \end{gathered}$	$\frac{1114.2}{8.2620}$	$\begin{aligned} & \text { C.1K } \\ & 1.4760 \end{aligned}$	0.0594	30.835	0.3489	0.7323	43.3635	0.0245	439
		AG 095	0.45	0.63	0.23	0.35	0.56	0.006	0.04	0.89	0.24	0.02	0.98	0.005	1
		AG 090													
		AG 100	0.0113	7.8165	0.2322	0.5457	5.8941	1.0738	0.0648	21.256	0.2251	0.4949	39.9716	0.0219	686
		AG 105													
5	16.219	AG 130	0.3935	27.633	4.3736	0.2861	5.5689	7.9781	11.985	1.9058	8.9833	51.589	49.9256	16.431	415
6	14.057	AG 120 AG 130	0.4020	14.345	2.3815	0.2321	5.5725	6.5818	10.036	3.0452	8.7793	34.490	48.7919	16.009	802
7	14.057	AG 110	1.1724	0.0072	0.3382	0.0005	0.0872	5.1922	9.2925	3.9273	0.0036	8.4285	54.6444	0.1158	433

The above calculated SAIDI value for each and every location includes the interrupted hours due to the permanent faults also. To get the temporary fault contribution, the SAIDI values given in table 4.1 should be multiplied by the temporary fault percentage of that specific feeder section and then from that the SAIDI value due to line tripping must be reduced. The SAIDI values due to line tripping for few of the identified AR locations on Ambalangoda Feeder 3 are tabulated below. These values are multiplied by line tripping percentage and reduced from the respective value of table 4.1. The result of the calculation for Ambalangoda Feeder 3 is attached in Annexure 3.

Table 4.2: SAIDI values calculated due to line tripping for identified locations on Ambalangoda Feeder 3

Section	$\begin{gathered} \hline \text { Distance } \\ \text { from } \\ \text { GSS } \\ \text { (km) } \\ \hline \end{gathered}$	Type	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	Apr 2012 魏	May 2012 \square	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$		$\begin{gathered} \text { Aug } \\ 2012 \\ \text { Mo1a } \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	Oct 2012	$\begin{aligned} & \text { Nov } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Consumers
1	16.370	Bulk				0.35	- 0.56	0.006		0.89	0.24	0.02	0.98	0.005	6
		Retail			4.47683	8.59960	4.88428	.83010	6.50637	8.2242	10.4247	13.1389	12.9148	4.4138	13,496
2	15.794	Bulk	0.45	0.63	0.23 W	$\mathrm{V}_{0.55} \mathrm{O}$	110.56.	C0.00\%	0.04	0.89	0.24	0.02	0.98	0.005	5
		Retail	5.07270	9.79535	4.47683	8.59960	4.88428	5.83010	6.50637	8.2242	10.4247	13.1389	12.9148	4.4138	13,496
3	15.194	Bulk	0.45	0.63	0.23	0.35	0.56	0.006	0.04	0.89	0.24	0.02	0.98	0.005	6
		Retail	5.14575	9.85057	4.5367	8.69758	4.71343	5.87219	6.59969	7.40398	10.5637	13.3057	12.30047	4.47701	13,304
4	13.182	Bulk	0.45	0.63	0.23	0.35	0.56	0.006	0.04	0.89	0.24	0.02	0.98	0.005	5
		Retail	5.24288	9.87547	4.61884	8.86108	4.77071	5.97649	6.72312	7.46400	10.7635	13.5560	11.89106	4.56137	13,507
5	16.219	Bulk	0.45	0.63	0.23	0.35	0.56	0.006	0.04	0.89	0.24	0.02	0.98	0.005	6
		Retail	5.12460	9.21657	4.40069	8.70009	4.80368	5.66182	6.21659	8.34694	10.2765	11.6995	12.15208	3.95815	13,328

4.4 Data Analysis for Ambalangoda Feeder 3

Other than SAIDI values for the locations there are few more inputs needed to be obtained for the objective function. The respective inputs with the calculations are given below.

- Auto tripping rate of the feeder
- $\lambda_{f}=8.25$ failures $/$ month
- Auto Tripping percentage of the Feeder
$-\quad \lambda_{i}=58.4 \%$
- Temporary Fault percentages of line sections (Annexure 8)
- Retail and Bulk consumer accounts
- No. of Retails consumers $=14,901$
- No. of Bulk consumers $=6$
- Retail and Bulk energy consumption
- Retail Energy Consumption $=952,039.30 \mathrm{kWh}$
- Bulk Energy Consumption $=46,417.05 \mathrm{kWh}$
- Exchange rate of 1 USPDollar to Sri Lankan Rupees $=132.90$ LKR
- Cost tor tje utiliecfobone hotropersintergytiqations
* \quad or retaincōnsilmersit.ac. 1 k

$$
\begin{aligned}
f_{\text {retail }} & =\frac{E N S \times E C_{\text {bulk }}}{24 \times 30 \times N_{\text {bulk }}}=\frac{1.2 \frac{\$}{\mathrm{kWh}} \times 132.90 \frac{\mathrm{LKR}}{\$} \times 952,039.3 \mathrm{kWh}}{24 \times 30 \times 14,901} \\
f_{\text {retail }} & =14.06 \frac{\mathrm{LKR}}{\mathrm{hr}}
\end{aligned}
$$

- For bulk consumers

$$
\begin{aligned}
& f_{\text {bulk }}=\frac{E N S \times E C_{\text {retail }}}{24 \times 30 \times N_{\text {retail }}}=\frac{1.2 \frac{U S D}{\mathrm{kWh}} \times 132.90 \frac{\mathrm{LKR}}{U S D} \times 46,417.05 \mathrm{kWh}}{24 \times 30 \times 6} \\
& f_{\text {bulk }}=1,701.96 \frac{\mathrm{LKR}}{\mathrm{hr}}
\end{aligned}
$$

- Price of Lanka Auto Diesel $=95$ LKR/liter
- Fuel Cost for the Crew $\mathrm{Cab}=0.109 \mathrm{liter} / \mathrm{km}$
- Maintenance cost for the Crew $\mathrm{Cab}=17.54 \mathrm{LKR} / \mathrm{km}$

4.5 Results from the Objective Function

From these analyzed data, calculated the breakdown recovery cost and the interruption cost for 12 months were calculated and obtained the average interruption cost. These values are tabulated in the following tables for each feeder going from Nindana Gantry. The results and the detailed calculations are attached in Annexure 3. As the first step the interruption cost and the breakdown recovery cost were calculated for every location marked on the map.

- Nindana Gantry - Gonapinuwala side Feeder

Table 4.3: CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Nindana Gantry - Gonapinuwala side Feeder

Section No.	Distance from GSS (km)	Average Interruption Cost (LKR)	Breakdown Recovery Cost (LKR)	Cost of Reliability (LKR)
1	16.370	(371.41)	3,767.31	3,395.90
2	15.794	252.78	3,634.80	3,887.58
3	(2) 15.194iversity (325.4pratuwa, Sr.496at2ka. 3.183 ${ }^{2}$.			3,171.31
4				3,298.37
5	16.221	$\text { 10.1 } \underset{(229.29)}{ }$	3,732.68	3,503.39
6	14.057	(267.21)	3,234.92	2,967.71
7	14.057	(340.98)	3,234.92	2,893.94
8	13.183	(292.30)	3,033.76	2,741.46
9	12.721	(367.97)	2,927.21	2,559.24
10	12.281	(303.84)	2,825.95	2,522.11
11	12.276	287.99	2,825.01	3,112.99
12	11.098	275.82	2,554.02	2,829.85
13	11.453	(74.30)	2,635.63	2,561.33
14	11.098	(128.29)	2,554.02	2,425.73
15	9.894	334.07	2,276.99	2,611.06

The rows highlighted in color 'Green' are the locations on the spur lines. From the locations on main lines Location No. 15 has the minimum CoR and from the locations on spur lines Location No. 14 has the minimum CoR. The location No. 15 and No. 14
are finalized as optimal locations (which are highlighted in color 'Yellow') on Nindana - Gonapinuwala Feeder.

- Nindana Gantry - Kahatapitiya side Feeder

Table 4.4: CoR, Average CoI and B $_{\text {cost }}$ for Nindana Gantry - Kahatapitiya side Feeder

Section No.	Distance from GSS (km)	Average Interruption Cost (LKR)	Breakdown Recovery Cost (LKR)	Cost of Reliability (LKR)
16	14.852	(365.34)	3,418.02	3,052.67
17	14.338	534.43	3,299.66	3,834.08
18	14.206	509.13	3,269.19	3,778.32
19	14.206	(362.47)	3,269.19	2,906.72
20	13.533	439.85	3,114.47	3,554.32
21	13.534	(2.60)	3,114.54	3,111.94
22	16.289	(296.95)	3,748.63	3,451.68
23	15.408iversity (8f iMoratuwa, Sci4 43380 ka 5. dosectronic (7hefe8s \& Dissert,453.945s			3,142.11
24				3,138.72
25	14.5 IJWW		3,353.23	3,041.52
26	13.534	(287.45)	3,114.58	2,827.14
27	13.424	302.29	3,089.41	3,391.69
28	14.325	(279.15)	3,296.64	3,017.50
29	13.424	(301.33)	3,089.41	2,788.07
30	13.288	319.11	3,057.95	3,377.06
31	11.669	303.37	2,685.34	2,988.71
32	10.749	307.84	2,473.64	2,781.48
33	10.126	305.08	2,330.33	2,635.42
34	9.895	292.54	2,277.17	2,569.71

The rows highlighted in color 'Green' are the locations on the spur lines. From the locations on main lines Location No. 34 has the minimum CoR and from the locations on spur lines Location No. 29 has the minimum CoR. The location No. 34 and No. 29
are finalized as optimal locations (which are highlighted in color 'Yellow') on Nindana - Kahatapitiya Feeder.

- Nindana Gantry - Kuleegoda side Feeder

Table 4.5: CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Nindana Gantry - Kuleegoda side Feeder

Section No.	Distance from GSS (km)	Average Interruption Cost (LKR)	Breakdown Recovery Cost (LKR)	Cost of Reliability (LKR)
35	14.719	(290.20)	3,387.32	3,097.11
36	13.967	(330.85)	3,214.85	2,884.00
37	14.835	(373.76)	3,414.08	3,040.32
38	14.361	(376.12)	3,304.88	2,928.76
39	12.896	(378.07)	2,967.85	2,589.78
40	13.970	(335.21)	3,214.85	2,879.64
41	13.470	(337.49)	3,099.95	2,762.45
42	, 13.4才oiver	sity (392:26)ratu	wa, \$6099995ka.	2,707.69
43	(e) 11.536 ectro	nic (35re95) \&	Disser,654.911	2,296.97
44	$\begin{aligned} & \text { Www.1 } \\ & 11.536 \end{aligned}$	10.m(358.99) ${ }^{\text {a }}$	2,654.91	2,295.92
45	11.383	(355.29)	2,619.70	2,264.41
46	11.383	478.51	2,619.70	3,098.21
47	11.113	516.11	2,557.55	3,073.66
48	10.866	539.37	2,500.54	3,039.91
49	10.565	521.16	2,431.39	2,952.55
50	10.565	419.90	2,431.39	2,851.29
51	9.895	530.50	2,277.17	2,807.67

The rows highlighted in color 'Green' are the locations on the spur lines. From the locations on main lines Location No. 45 has the minimum CoR and from the locations on spur lines Location No. 44 has the minimum CoR. The location No. 45 and No. 44 are finalized as optimal locations (which are highlighted in color 'Yellow') on Nindana - Kuleegoda Feeder.

4.6 Sensitivity Analysis

Sensitivity analysis was done to check whether the optimal locations found from the objective function would vary with the breakdown vehicle used. For this fuel consumption and maintenance records of two breakdown vehicles were used. The calculated fuel consumption and maintenance costs are as follows. The collected records are given in Annex

Vehicle No. 1 (Sensitivity Analysis - 1)

Fuel Consumption per km,

$$
\begin{gathered}
\text { Fuel consumed per } \mathrm{km}=\frac{\text { Consumed Fuel }}{\text { Driven } \mathrm{km}} \\
\text { Fuel consumed per } \mathrm{km}=\frac{10,574}{35,560}=0.297 \mathrm{l} / \mathrm{km}
\end{gathered}
$$

Maintenance Cost per km,

> Maintenance Enst per kmy of Mabitenawce cost fonlehe time period WwW.lib.mrt.ac. 1 k Maintenance cost per $\mathrm{km}=\frac{614,802.00}{35,560}=17.29 \mathrm{Rs} . / \mathrm{km}$

Vehicle No. 2 (Sensitivity Analysis - 2)

Fuel Consumption per km,

$$
\begin{gathered}
\text { Fuel consumed per } \mathrm{km}=\frac{\text { Consumed Fuel }}{\text { Driven } \mathrm{km}} \\
\text { Fuel consumed per } \mathrm{km}=\frac{1,781.27}{16,970}=0.105 \mathrm{l} / \mathrm{km}
\end{gathered}
$$

Maintenance Cost per km,

$$
\text { Maintenance cost per } \mathrm{km}=\frac{\text { Maintenance Cost for the time period }}{\text { Driven } \mathrm{km}}
$$

$$
\text { Maintenance cost per } \mathrm{km}=\frac{74,825.00}{16,970}=4.41 \mathrm{Rs} . / \mathrm{km}
$$

The Cost of Reliability of the case study and the Cost of Reliability calculated for the two sensitivity analysis are given in the following tables for the three outgoing feeders from the Nindana Gantry of Ambalangoda Feeder 3, with the observations discussed at the bottom of each table. With keeping the SAIDI values as it is, breakdown recovery cost is varied by changing the maintenance cost and the fuel consumption cost.

- Nindana Gantry - Gonapinuwala side
$\left.\begin{array}{|c|c|c|c|}\hline \text { Section } \\ \text { No. }\end{array} \begin{array}{c}\text { Cost of Reliability for } \\ \text { the Case Study }\end{array} \quad \begin{array}{c}\text { Cost of Reliability for } \\ \text { Sensitivity Analysis - }\end{array} \quad \begin{array}{c}\text { Cost of Reliability for } \\ \text { Sensitivity Analysis - 2 }\end{array}\right\}$

The Optimum location (which has the lowest Cost of Reliability) for the spur lines has changed for the sensitivity analysis -2 . The optimum location finalized for the main line remains unchanged with the change of cost values.

- Nindana Gantry - Kahatapitiya Side

Section No.	Cost of Reliability for the Case Study	Cost of Reliability for Sensitivity Analysis - 1	Cost of Reliability for Sensitivity Analysis - 2
16	3,052.67	5,210.45	1,397.27
17	3,834.08	5,917.14	2,236.01
18	3,778.32	5,842.15	2,195.00
19	2,906.72	4,970.54	1,323.40
20	3,554.32	5,520.48	2,045.94
21	3,111.94	5,078.14	1,603.52
22	3,451.68	5,818.17	1,636.16
23	3,142.11	5,322.48	1,469.37
24	3,138.72	5,319.10	1,465.99
25	3,041.52	5,158.40	1,417.50
26	\% 2,82 加ixersity	of Mora, 993 ,36 Sri Lan	ka. 1,318.69
27	$(3) 3,391.69 \text { tronic }$	Theses 5,342.6sertation	1,895.44
28	$\begin{aligned} & \text { WWW.Lib.m } \\ & \text { 3,017.50. } \end{aligned}$	$\text { Itt.ac. } \mathrm{lk}_{5,098.66}$	1,420.88
29	2,788.07	4,738.40	1,291.82
30	3,377.06	5,307.53	1,896.04
31	2,988.71	4,683.96	1,688.16
32	2,781.48	4,343.07	1,583.45
33	2,635.42	4,106.55	1,506.80
34	2,569.71	4,007.28	1,466.84

In this part of the study, the optimal location for the main line has changed in the sensitivity analysis -2 , while the optimum location for the spur lines remains unchanged.

- Nindana Gantry - Kuleegoda side

Section No.	Cost of Reliability for the Case Study	Cost of Reliability for Sensitivity Analysis - 1	Cost of Reliability for Sensitivity Analysis - 2
35	3,097.11	5,235.51	1,456.58
36	2,884.00	4,913.53	1,327.00
37	3,040.32	5,195.62	1,386.83
38	2,928.76	5,015.12	1,328.15
39	2,589.78	4,463.38	1,152.41
40	2,879.64	4,909.17	1,322.64
41	2,762.45	4,719.44	1,261.10
42	2,707.69	4,664.67	1,206.34
43	2,296.97	3,973.00	1,011.15
44	2,295.92	3,971.96	1,010.11
45	59. 2,264miversity	of Mor3,918:22, Sri Lan	ca. 995.65
46	3,098.29tronic	Theses 4,452.025ertation	1,829.44
47	3,073.46V.lib.n	mrt.ac. $\mathrm{lk}_{4,688.23}$	1,835.00
48	3,039.91	4,618.50	1,828.86
49	2,952.55	4,487.47	1,774.99
50	2,851.29	4,386.21	1,673.73
51	2,807.67	4,245.24	1,704.80

For the outgoing feeder goes towards Kuleegoda side, both the optimal locations for the main line and spur line remains unchanged.

When considering the optimal locations with the change in cost values of the objective function, it is visible that the locations have changed in the sensitivity analysis -2 , which has a lower maintenance cost per km compared to other 2 scenarios. Following observations were identified for the optimal location change with the change of maintenance cost per km and fuel consumption per km.

- The optimal location does not change with the variation in fuel consumption per km.
- Maintenance cost per km is lower than 7.6 LKR/km the optimal locations vary.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Figure 4.2 Finalized Optimal Locations on Ambalangoda Feeder 3

Chapter 5

Model Validation

5.1 Introduction

To validate the model two other feeders were selected from the DD4 network. Those feeders are Galle Feeder 8 and Matara Feeder 7. A brief description about the two feeders is given below.

- Galle Feeder 8 - This feeder starts from Ambalangoda GSS and goes towards Boossa and the length of the main feeder is approximately 10 km long. This feeder doesn't have any gantry locations and no ARs are installed. There are several spur lines connected to Galle Feeder 8 and the longest spur is about 2 3 km long.

 3 outgong feeders athe farm these feeders the supply is given to Weligama side, Hakmana side and Andaluwa side. At the gantry location only one AR is installed and that is on the Andaluwa side feeder.

5.2 Model Validation - $1^{\text {st }}$ Case : Galle Feeder 8

5.2.1 Location Identification for AR installation

As described in 4.2 in the previous chapter the location identification for Galle Feeder 8 was done in the same manner.

Identified locations on Galle Feeder 8 are marked on the AutoCAD map given in the following figure. On the figure, locations on the main feeder are marked in color Green and the locations on the spurs are marked in color Blue. Each location is given a number for identification and the numbering starts from the end point of the feeder.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Figure 5.1 Identified AR Locations on Galle Feeder 8

Figure 5.1 Identified Locations on Galle Feeder 8

5.2.2 Supporting Calculations for Galle Feeder 8

The SAIDI calculations for the identified locations were done in the same manner as described in section 4.2 in the previous chapter. The summarized SAIDI values for few of the identified AR locations on Galle Feeder 8 are tabulated below.

Table 5.1 SAIDI values calculated for identified locations on Galle Feeder 8

Section	Distance from GSS (km)	Sin No.	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Aug } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \text { Oct } \\ 2012 \end{array}$	$\begin{gathered} \text { Nov } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Consumers
1	10.559	GG 590	0.00981	0.00207	0.03981	0.00849	0.05471	0.01660	0.01622	0	0	0.00472	0.009811	0.06	53
2	10.108	GG 590	0.00981	0.00208	$0.039811{ }^{\text {c }} 0.0084911$		V. 05472	6.0166a	10.01623	Söi	Lamka	1.0.00472	0.009811	0.06	53
		GG 450	0.9978	-1.0833	$0.3672 \mathrm{cct0.6311}$		C ITheSe48		20.1635S	Seotat1001S		0.24	0.503	0.3036	1
3	9.809	GG 580	0.89	$=0.24$	$0^{0} 02 \mathrm{~W}$	$\mathrm{W}^{0.981}$	103005.	C. 0.41 K	0.63	0.23	0.35	0.56	0.006	0.04	1
4	8.704	GG 590	0.00981	0.00208	0.03981	0.00849	0.05472	0.01660	0.01623	0	0	0.00472	0.009811	0.06	53
		$\begin{gathered} \text { GG } 450 \\ \hline \text { GG } 580 \\ \hline \end{gathered}$	0.9439	0.66165	0.2086	0.755	0.5025	0.465	0.39675	0.115	0.175	0.4	0.2545	0.1718	2
5	9.201	GG 570	0.393	1.11695	0.15573	5.98842	24.9504	17.933	54.3223	1.41461	5.17284	79.9453	9.592048	7.91179	546
6	9.201	GG 545	50.2463	0.03684	0.00799	7.38130	16.6444	1.14195	0.00645	0.29571	0.18081	0.66557	8.670893	0.03536	568
7	8.704	GG 545	25.8119	0.56623	0.08040	6.69861	20.7154	9.37168	26.6280	0.84411	2.62754	39.5227	9.122375	3.89580	1114
		GG 570													
8	8.588	GG 560	0.9978	17.2723	0.18533	0.14883	64.5983	0.36546	40.5532	0.56732	3.58485	2.80374	0.52293	0.89696	1065

The SAIDI values due to line tripping for few of the identified AR locations on Galle Feeder 8 are tabulated below.

Table 5.2: SAIDI values calculated due to line tripping for identified locations on Galle Feeder 8

Section	Distance from GSS (km)	Type	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { May } \\ & \text { no1? } \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Aug } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \text { Oct } \\ 2012 \end{array}$	$\begin{aligned} & \text { Nov } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Consumers
1	10.56	Bulk	1.0079	0.2100	0.0175	0.8575	0.0044	0.3938	0.5513	0.2013	0.3063	0.4900	0.0053	0.0350	8
		Retail	6.5651	8.2461	1.8925	4.4961	30.5372	8.0553	43.0654	4.5616	4.8208	11.9937	7.4384	4.0152	8,888
2	10.11	Bulk	1.0079	1022100	0.0175	$0 \cdot 857$	9.084	9.393	0.5513	Q.20.73	. 0.30	0.4900	0.0053	0.0350	8
		Retail	6.5657	-8.2469	1.8927	4.4960	30,5383	$\stackrel{8.0557}{\text { Sod }}$	43,0702	4.5621	. 4.8214	11.7179	6.8728	3.6740	8,887
3	9.81	Bulk	1.0248	0.2057	0.0171	0.8400	0.0043	0.3857	0.5400	0.1971	0.3000	0.4800	0.0051	0.0343	7
		Retail	6.5321	8.1984	1.8837	4.4993	30.3595	$8: 0088$	42.8110	4.5346	4.7922	11.9509	7.4526	4.0270	8,941
4	8.70	Bulk	1.0248	0.2057	0.0171	0.8400	0.0043	0.3857	0.5400	0.1971	0.3000	0.4800	0.0051	0.0343	7
		Retail	6.8568	8.6171	1.9758	4.6858	30.1491	6.2207	44.4260	4.6599	5.0213	12.5346	7.7829	4.1536	8,490
5	9.20	Bulk	1.0079	0.2100	0.0175	0.8575	0.0044	0.3938	0.5513	0.2013	0.3063	0.4900	0.0053	0.0350	8
		Retail	6.9314	8.6590	1.9960	4.4024	30.7113	7.3634	42.0624	4.7375	4.7675	7.5286	7.3135	3.7743	8,395
6	9.20	Bulk	1.0079	0.2100	0.0175	0.8575	0.0044	0.3938	0.5513	0.2013	0.3063	0.4900	0.0053	0.0350	8
		Retail	3.5666	8.7521	2.0109	4.3037	31.2899	8.4747	45.7148	4.8221	5.1051	12.7165	7.3700	4.2977	8,373

5.2.3 Data Analysis for Galle Feeder 8

The inputs needed for the objective function with the calculations are given below.

- Auto tripping rate of the feeder
- $\lambda_{f}=5.33$ failures/month
- Auto Tripping percentage of the Feeder
- $\lambda_{i}=54.5 \%$
- Temporary Fault percentages of line sections (Annexure 6)
- Retail and Bulk consumer accounts
- No. of Retails consumers $=8,941$
- No. of Bulk consumers $=8$
- Retail and Bulk energy consumption
- Retail Energy Consumption $=823,063.4 \mathrm{kWh}$
- Bulk Energy Consumption $=747,769.3 \mathrm{kWh}$
- Exchange rate of 1 US Dollar to Sri Lankan Rupees $=132.90$ LKR
- Cost for the utilityiforreng hofirlpowertintertupfigin anka.

OPbr retallectansuiers heses \& Dissertations www.lib.mrt.ac.lk

$$
\begin{aligned}
& f_{\text {retail }}=\frac{E N S \times E C_{\text {bulk }}}{24 \times 30 \times N_{\text {bulk }}}=\frac{1.2 \frac{U S D}{\mathrm{kWh}} \times 132.90 \frac{\mathrm{LKR}}{U S D} \times 823,063.4 \mathrm{kWh}}{24 \times 30 \times 8,941} \\
& f_{\text {retail }}=20.25 \frac{\mathrm{LKR}}{\mathrm{hr}}
\end{aligned}
$$

- For bulk consumers

$$
\begin{aligned}
& f_{\text {bulk }}=\frac{E N S \times E C_{\text {retail }}}{24 \times 30 \times N_{\text {retail }}}=\frac{1.2 \frac{\$}{\mathrm{kWh}} \times 132.90 \frac{\mathrm{LKR}}{\$} \times 747,769.3 \mathrm{kWh}}{24 \times 30 \times 8} \\
& f_{\text {bulk }}=20,563.76 \frac{\mathrm{LKR}}{\mathrm{hr}}
\end{aligned}
$$

- Price of Lanka Auto Diesel $=95$ LKR/liter
- Fuel Cost for the Crew $\mathrm{Cab}=0.109$ liter/km
- Maintenance cost for the Crew $\mathrm{Cab}=17.54 \mathrm{LKR} / \mathrm{km}$

5.2.4 Results from the Objective Function

With the analyzed data, the results from the objective function were obtained. On this feeder there are no gantry locations and as a result of this, all the identified locations were considered as a whole and selected the optimal locations.

Table 5.3 CoI, Average CoI and $\mathrm{B}_{\text {cost }}$ for the locations on Galle Feeder 8

Section No.	Distance from GSS (km)	Average Interruption Cost (LKR)	Breakdown Recovery Cost (LKR)	Cost of Reliability (LKR
1	10.56	$(3,935.29)$	1,569.89	(2,365.40)
2	10.11	$(3,934.21)$	1,502.88	$(2,431.33)$
3	9.81	$(3,891.88)$	1,458.41	$(2,433.48)$
4	8.70	1,667.41	1,294.05	2,961.46
5	9.20	$(3,613.02)$	1,367.96	(2,245.06)
6	9.20	$(3,808.24)$	1,367.96	$(2,440.27)$
7	19.8.70 niver	sity 3 Of Morratu	va, Stur ${ }^{\text {2 }}$, 9495a.	$(2,417.67)$
8	(3) ${ }^{3}$) 8.59 lectro	nic 11866s70s \&	Disserae7603s	3,143.62
9	¢ 8.59 WW.11	1b. 173, 9 .359.02)	1,276.93	(2,658.09)
10	7.96	1,864.61	1,183.99	3,048.60
11	7.96	$(3,867.47)$	1,183.99	$(2,683.48)$
12	7.72	1,840.55	1,148.35	2,988.90
13	7.72	$(3,935.95)$	1,148.35	(2,787.60)
14	6.91	1,837.03	1,027.98	2,865.01
15	6.91	$(3,596.77)$	1,027.98	(2,568.80)
16	6.36	1,823.48	946.28	2,769.75
17	9.56	$(3,853.04)$	1,421.82	$(2,431.23)$
18	8.63	$(3,804.23)$	1,283.35	$(2,520.88)$
19	8.63	$(3,873.57)$	1,283.35	(2,590.22)
20	8.56	$(3,827.53)$	1,272.45	(2,555.08)
21	8.56	$(3,480.53)$	1,272.45	(2,208.08)
22	8.39	$(3,815.30)$	1,247.96	(2,567.34)
23	8.73	(1,312.75)	1,297.59	(15.16)

24	8.58	$(1,249.75)$	1,276.08	26.32
25	8.39	$(1,174.68)$	1,247.96	73.28
26	7.83	$(1,159.47)$	1,163.88	4.42
27	7.83	$(3,891.88)$	1,163.88	(2,728.00)
28	7.65	264.26	1,136.77	1,401.03
29	8.90	$(3,753.39)$	1,322.99	$(2,430.40)$
30	7.92	$(3,770.85)$	1,178.20	$(2,592.65)$
31	7.92	$(3,502.84)$	1,178.20	$(2,324.63)$
32	7.65	$(3,612.75)$	1,136.81	$(2,475.94)$
33	6.94	278.24	1,032.32	1,310.56
34	6.94	$(3,920.05)$	1,032.32	$(2,887.74)$
35	6.79	356.66	1,008.89	1,365.54
36	6.69	348.98	993.96	1,342.94
37	6.36	340.34	946.32	1,286.66
38	6.09	(361.03)	906.09	545.06
39	59. 6.99 nivers	sity $4011 \times{ }_{\text {a }}$	uwa, SPP¢.89nka.	$(3,204.44)$
40	(2) 3 3 37 lectro	nic 1,138sses \&	Disser49litons	1,630.27
41	3.58 Ww.li	b. $12,5994.0 \mathrm{bk}$	532.69	3,523.69
42	3.31	2,990.52	491.72	3,482.23
43	1.69	(832.13)	251.81	(580.33)
44	1.69	$(3,940.31)$	251.81	$(3,688.51)$
45	1.27	(815.39)	188.11	(627.28)
46	1.27	$(3,893.52)$	188.11	$(3,705.41)$
47	0.35	(739.72)	52.25	(687.48)
48	0.10	-	15.22	15.22

The rows highlighted in color 'Green' are the locations on the spur lines. From the locations on main lines Location No. 38 has the minimum CoR and from the locations on spur lines Location No. 25 has the minimum CoR. The location No. 38 and No. 26 are finalized as optimal locations (which are highlighted in color 'Yellow') on Galle Feeder 8.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Figure 5.2 Finalized Optimal Locations on Galle Feeder 8

5.3 Model Validation - $\mathbf{2}^{\text {nd }}$ Case : Matara Feeder 7

5.3.1 Location Identification for AR installation

As described in 4.2 in the previous chapter the location identification for Matara Feeder 7 was done in the same manner.

Identified locations on Matara Feeder 7 are marked on the AutoCAD map given in figure 5.6. Locations on the main feeder are marked in color Green and the locations on spur lines are marked in color Blue.

5.3.2 Location Identification for AR installation

The SAIDI calculations for the identified locations were done in the same manner as described in section 4.2 in the previous chapter. A sample SAIDI values for few of the identified AR locations on Matara Feeder 7 are tabulated in table 5.4.

5.3.3 Data Analysis for Matara Feeder 7

The inpits needed forsity of thective function with the calculations are given below Esectronic heses \& Dissertations www.lib.mrt.ac.lk

- Auto tripping rate of the feeder
- $\lambda_{f}=12.5$ failures $/$ month
- Auto Tripping percentage of the Feeder
$-\lambda_{i}=63.0 \%$
- Temporary Fault percentages of line sections (Annexure 6)
- Retail and Bulk consumer accounts
- No. of Retails consumers $=35,352$
- No. of Bulk consumers $=22$
- Retail and Bulk energy consumption
- Retail Energy Consumption $=1,952,627.4 \mathrm{kWh}$
- Bulk Energy Consumption $=1,765,690.9 \mathrm{kWh}$
- Exchange rate of 1 US Dollar to Sri Lankan Rupees $=132.90$ LKR
- Cost for the utility for one hour power interruption
- For retail consumers

$$
\begin{aligned}
f_{\text {retail }} & =\frac{E N S \times E C_{\text {bulk }}}{24 \times 30 \times N_{\text {bulk }}}=\frac{1.2 \frac{U S D}{\mathrm{kWh}} \times 132.90 \frac{\mathrm{LKR}}{U S D} \times 1,952,627.4 \mathrm{kWh}}{24 \times 30 \times 8,941} \\
f_{\text {retail }} & =12.15 \frac{\mathrm{LKR}}{\mathrm{hr}}
\end{aligned}
$$

- For bulk consumers

$$
\begin{aligned}
& f_{\text {bulk }}=\frac{E N S \times E C_{\text {retail }}}{24 \times 30 \times N_{\text {retail }}}=\frac{1.2 \frac{\$}{\mathrm{kWh}} \times 132.90 \frac{\mathrm{LKR}}{\$} \times 1,765,690.9 \mathrm{kWh}}{24 \times 30 \times 8} \\
& f_{\text {bulk }}=17,393.37 \frac{\mathrm{LKR}}{\mathrm{hr}}
\end{aligned}
$$

- Price of Lanka Auto Diesel $=95$ LKR/liter
- Fuel Cost for the Crew $\mathrm{Cab}=0.109 \mathrm{liter} / \mathrm{km}$
- Maintenance cost for the Crew $\mathrm{Cab}=17.54 \mathrm{LKR} / \mathrm{km}$

Table 5.4 SAIDI values calculated for identified locations on Matara Feeder 7

Section	Distance from GSS (km)	$\begin{aligned} & \text { Sin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Aug } \\ \mathbf{2 0 1 2} \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \text { Oct } \\ 2012 \end{array}$	$\begin{gathered} \text { Nov } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Consumers
1	29.644	MT 345	1.0817	8.4436	-	0.2776	2.5310	1.3906	1.8392	-	0.5823	-	-	11.1667	543.00
2	29.83	MK 410	1.1099	8.7000	-	0.2833	2.5833	1.4167	1.8667	-	0.5833	-	-	11.1667	166.00
3	29.83	MK 415 MK 420	1.0893		En	peesisil	$y^{2.5664}$	140972	$\text { [ut } 857 \text { g }$	Sril	$9: 5805$	-	-	11.1667	611.00
4	29.64	$\begin{gathered} \text { MK } 410 \\ \hline \text { MK } 415 \\ \hline \text { MK } 420 \end{gathered}$	1.0937	8.5544	WW	W. 2819	12540	4. $111{ }^{6}$	1.8595		0.5811	-	-	11.1667	777.00
5	28.43		1.0888	8.5089	-	0.2801	2.5540	1.4027	1.8511	-	0.5816	-	-	11.1667	1,320.00
6	28.00	Mt 344	1.0589	8.4544	-	0.2793	1.8567	-	1.8491	-	0.5806	-	-	-	425.00

A sample of SAIDI values due to line tripping for few of the identified AR locations on Galle Feeder 8 are tabulated below.
Table 5.5: SAIDI values calculated due to line tripping for identified locations on Matara Feeder 7

Section	Distance from GSS (km)	Type	$\begin{aligned} & \text { Mar } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Jun } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jul } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Aug } \\ 2012 \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2012 \end{aligned}$	$\begin{array}{r} \text { Oct } \\ 2012 \end{array}$	$\begin{aligned} & \text { Nov } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 2013 \end{gathered}$	Consumers	
1	29.644	Bulk	2.2393	10.6446			$\frac{3.1403}{}$	$\begin{gathered} 0.1288 \\ \sqrt{1028} \mathrm{C} \end{gathered}$	2.0047	2.4858	0.8183	0.4906	0.4753	2.2680	13,123.00	
		Retail	3.5933	$\begin{gathered} \left(\begin{array}{r} 3 \\ 10.5799 \\ 48150 \end{array}\right) \end{gathered}$			1.3069		2.4750	0.5833	0.1500	-	0.3250	10.00		
2	29.83	Bulk	$2.2066{ }^{5}$		$\begin{aligned} & 0.9969 \mathrm{C} \text { b. } 69471 \\ & 0.9233 \mathrm{VW} \cdot 4110 \end{aligned}$			C3.122710	9.9637	L. 9998	S0.4723	Q.814	0.4769	0.4620	2.5165	13,500.00
		Retail	3.5933				12.920.	O. 25150	1.3067	2.4750	0.5833	0.1500	-	0.3250	10.00	
3	29.83	Bulk	2.2450	10.6527	0.1002	0.6881	3.1418	0.1213	2.0047	0.4884	0.8196	0.4931	0.4778	2.2216	13,055.00	
		Retail	3.5933	7.8150	0.0233	0.4717	2.9200	0.2500	1.3067	2.4750	0.5833	0.1500	-	0.3250	10.00	
4	29.64	Bulk	2.2596	10.6778	0.1015	0.6933	3.1490	0.1046	2.0065	0.4947	0.8226	0.4995	0.4839	2.1064	12,889.00	
		Retail	3.5933	7.8150	0.0233	0.4717	2.9200	0.2500	1.3067	2.4750	0.5833	0.1500	-	0.3250	10.00	
5	28.43	Bulk	2.3114	10.7761	0.1060	0.7116	3.1762	0.0481	2.0139	0.5164	0.8332	0.5214	0.5052	1.7080	12,346.00	
		Retail	3.5933	7.8150	0.0233	0.4717	2.9200	0.2500	1.3067	2.4750	0.5833	0.1500	-	0.3250	10.00	
6	28.00	Bulk	2.2297	10.6246	0.0988	0.6825	3.1565	0.1846	2.0029	0.4815	0.8162	0.4862	0.4711	2.7057	13,241.00	
		Retail	3.5933	7.8150	0.0233	0.4717	2.9200	0.2500	1.3067	2.4750	0.5833	0.1500	-	0.3250	10.00	

5.3.4 Results from the Objective Function

With the analyzed data, the results from the objective function were obtained. On this feeder there is a gantry at Kamburupitiya and the locations identified on three outgoing feeders from the Gantry were compared separately. The following table tabulates the CoR values of Kamburupitiya Gantry - Matara side Feeder.

Table 5.6: CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Kamburupitiya Gantry - Matara side Feeder

Section No.	Distance from GSS (km)	Average Interruption Cost (LKR)	Breakdown Recovery Cost (LKR)	Remarks
1	29.64	(16,406.79)	10,336.60	$(6,070.19)$
2	29.83	(16,406.51)	10,399.64	$(6,006.87)$
3	29.83	(16,406.62)	10,399.64	$(6,006.98)$
4	29.64	(16,406.52)	10,336.60	$(6,069.93)$
5	28.43	(16,406.45)	9,911.79	$(6,494.66)$
6	28.00niver	(1 6.420 .15	Sri. 763.74 ka	$(6,656.42)$
7	3) ${ }^{3}$ 28.00lectro	nicldathest§) \&	ssetitaidus	$(6,656.44)$
8	$\pm 25.92 \mathrm{WW}$.	b. (16,440.94t)	9,036.93	(7,375.00)
9	24.78	$(16,411.74)$	8,639.33	(7,772.42)
10	24.78	(16,399.97)	8,639.33	(7,760.65)
11	24.20	(16,410.69)	8,437.78	(7,972.90)
12	24.00	(14,363.03)	8,368.05	$(5,994.98)$
13	23.70	(16,410.03)	8,264.42	$(8,145.61)$
14	23.70	(14,362.89)	8,264.42	$(6,098.47)$
15	22.06	(14,362.83)	7,692.19	$(6,670.64)$
16	23.34	(16,418.62)	8,139.52	$(8,279.11)$
17	22.50	(16,418.50)	7,846.03	$(8,572.47)$
18	20.84	(16,416.92)	7,265.36	$(9,151.56)$
19	20.84	(16,411.12)	7,265.36	$(9,145.76)$
20	20.84	(14,162.42)	7,265.36	$(6,897.06)$
21	19.70	15,424.35	6,867.40	22,291.75
22	19.70	$(10,079.69)$	6,867.40	$(3,212.29)$

23	18.58	(11,573.17)	6,478.37	$(5,094.80)$
24	17.58	$(16,419.18)$	6,131.29	$(10,287.89)$
25	17.47	(11,573.96)	6,093.14	$(5,480.82)$
26	16.57	(16,414.30)	5,777.72	$(10,636.58)$
27	16.92	$(16,416.34)$	5,899.58	$(10,516.75)$
27*	16.87	(10,942.05)	5,882.25	$(5,059.80)$
28	15.64	(10,942.55)	5,452.43	$(5,490.12)$
29	28.59	27,362.41	9,968.87	37,331.28
30	28.22	27,362.70	9,838.22	37,200.92
31	28.00	27,358.34	9,764.68	37,123.02
32	26.92	27,353.29	9,386.21	36,739.51
33	26.67	$(16,412.94)$	9,299.46	(7,113.48)
34	26.16	(16,417.10)	9,120.34	$(7,296.76)$
35	24.34	29,727.41	8,485.55	38,212.96
36	23.52	29,726.70	8,200.75	37,927.44
37	2. 23.B4niver	(16.4.146)	Sim 140.01 k	$(8,271.46)$
38	중) ${ }^{2}$ 21.94lectrc	nic34,hosed \&	chic6alefs	39,763.45
39	- 21.8才WW.11	b. $1132 \mathrm{~L}, 10 \mathrm{c} .5 \mathrm{k}$	7,591.80	39,693.33
40	21.61	32,101.34	7,534.61	39,635.95
41	19.99	32,100.69	6,971.97	39,072.66
42	19.74	(16,418.55)	6,883.75	(9,534.79)
43	17.00	32,100.25	5,928.77	38,029.02
44	18.91	(16,402.51)	6,593.51	(9,809.00)
45	19.01	(16,401.46)	6,627.50	(9,773.95)
46	17.31	$(16,401.71)$	6,035.99	$(10,365.72)$
47	17.14	2,109.76	5,975.25	8,085.01
48	17.00	9,928.63	5,928.77	15,857.40
49	16.31	9,928.29	5,686.57	15,614.86
50	15.60	9,927.45	5,439.18	15,366.63
51	14.60	23,475.57	5,089.86	28,565.43

The rows highlighted in color 'Green' are the locations on the spur lines. From the locations on main lines Location No. 50 has the minimum CoR and from the locations
on spur lines Location No. 47 has the minimum CoR. The location No. 50 and No. 47 are finalized as optimal locations (which are highlighted in color 'Yellow') on Kamburupitiya Gantry - Matara side Feeder

- Kamburupitiya Gantry - Semidale side Feeder

Table 5.7: CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Kamburupitiya Gantry - Semidale side Feeder

Section No.	Distance from GSS (km)	Average Interruption Cost (LKR)	Breakdown Recovery Cost (LKR)	Remarks
52	30.32	(13,795.92)	10,572.24	$(3,223.68)$
53	29.80	(13,795.93)	10,390.02	$(3,405.91)$
54	28.75	$(5,526.62)$	10,025.29	4,498.67
55	28.26	$(7,137.33)$	9,855.48	2,718.15
56	26.65	$(7,137.38)$	9,291.58	2,154.20
57	26.39	$(7,137.41)$	9,200.92	2,063.51
58	25.78	(7,137.41)	8,988.01	1,850.60
59		$(7,137.42)$ y of Morat	$\begin{gathered} 8,963.67 \\ \text { Sri Lanka. } \end{gathered}$	1,826.25
60	(3) ${ }^{3}$ 23. 22 lectr	nic 7 H2eses \&	ssertaltoms	1,064.92
61	(3) $23.68 W W$	0.mizx? de. 8 \%	8,240.64	26,055.51
62	22.99	14,695.97	8,016.50	22,712.47
63	22.31	(13,934.31)	7,779.04	$(6,155.26)$
64	21.52	15,359.96	7,503.09	22,863.05
65	23.21	(13,940.22)	8,092.48	$(5,847.75)$
66	21.93	(13,940.26)	7,647.80	$(6,292.46)$
67	21.92	$(13,940.48)$	7,642.15	$(6,298.33)$
68	21.16	(13,940.27)	7,377.91	$(6,562.36)$
69	20.97	$(13,940.33)$	7,312.40	$(6,627.94)$
70	19.39	10,929.99	6,761.78	17,691.78
71	18.89	$(13,937.75)$	6,587.44	$(7,350.31)$
72	18.24	10,929.50	6,361.14	17,290.64
73	17.31	10,920.93	6,036.16	16,957.10
74	15.84	$(13,925.94)$	5,524.88	$(8,401.06)$
75	15.04	10,278.77	5,245.79	15,524.56

The rows highlighted in color 'Green' are the locations on the spur lines. From the locations on main lines Location No. 75 has the minimum CoR and from the locations on spur lines Location No. 59 has the minimum CoR. The location No. 60 and No. 59 are finalized as optimal locations (which are highlighted in color 'Yellow') on Kamburupitiya Gantry - Semidale side Feeder.

- Kamburupitiya Gantry - Andaluwa side Feeder

Table 5.8: CoR, Average CoI and $\mathrm{B}_{\text {cost }}$ for Kamburupitiya Gantry - Andaluwa side Feeder

Section No.	Distance from GSS (km)	Average Interruption Cost (LKR)	Breakdown Recovery Cost (LKR)	Remarks
76	34.85	(316,398.36)	12,152.74	(304,245.63)
77	34.80	(316,398.22)	12,134.33	$(304,263.89)$
78	33.79	(316,398.41)	11,783.16	(304,615.25)
79	37.68	$(316,399.84)$	13,138.96	$(303,260.88)$
80	36.B8niver	sity 16,389.8Aat	, \$2;	$(303,715.08)$
81	35. Filect	nis 16,40scos)	SS¢ntationk	(304,148.85)
82	35.07 WW .1	b. (3104, $4000: 85$)	12,227.01	$(304,173.05)$
83	33.87	$(316,400.32)$	11,811.27	$(304,589.05)$
84	33.99	(316,400.62)	11,850.53	(304,550.09)
85	33.56	(316,400.95)	11,700.80	(304,700.15)
86	32.80	$(316,401.16)$	11,436.98	(304,964.17)
87	32.32	$(316,400.49)$	11,269.58	$(305,130.91)$
88	29.83	$(316,400.56)$	10,401.03	$(305,999.52)$
89	31.94	$(316,400.84)$	11,137.39	$(305,263.45)$
90	29.80	$(316,400.96)$	10,390.50	$(306,010.46)$
91	29.57	$(316,401.43)$	10,310.90	$(306,090.53)$
92	27.79	$(316,401.43)$	9,689.71	(306,711.72)
93	27.43	$(316,401.43)$	9,563.94	$(306,837.49)$
94	27.43	$(358,257.95)$	9,565.89	$(348,692.06)$
94*	27.40	$(358,259.72)$	9,554.04	$(348,705.68)$
95	34.58	$(316,398.66)$	12,059.25	(304,339.41)

96	33.94	(316,398.42)	11,832.99	(304,565.43)
97	32.19	(316,398.51)	11,224.46	$(305,174.05)$
98	31.96	(316,398.43)	11,145.38	$(305,253.05)$
99	30.67	(316,398.86)	10,693.55	$(305,705.31)$
100	30.62	(316,398.30)	10,675.94	$(305,722.36)$
101	29.55	(316,399.06)	10,304.83	$(306,094.23)$
102	34.39	(316,398.44)	11,989.90	$(304,408.54)$
103	34.15	(316,398.29)	11,908.06	$(304,490.23)$
104	33.37	(316,398.54)	11,634.03	(304,764.51)
105	32.02	(316,398.58)	11,165.81	$(305,232.77)$
106	30.97	(316,398.63)	10,800.49	$(305,598.14)$
107	31.36	$(316,400.07)$	10,934.28	$(305,465.79)$
108	30.39	(316,399.69)	10,595.36	$(305,804.33)$
109	31.22	(316,399.92)	10,886.34	$(305,513.58)$
110	30.83	(316,399.96)	10,748.64	$(305,651.32)$
$\begin{aligned} & 111 \\ & 112 \end{aligned}$		ni(e rifiteses) \&	septaprofts	$\begin{aligned} & (305,938.93) \\ & \hline(305,864.95) \end{aligned}$
113	$\pm 29.49 w .11$	b.(1166,402. ld_{6})	10,282.34	$(306,119.91)$
114	29.40	(316,402.74)	10,252.39	$(306,150.35)$
115	27.46	$(316,402.16)$	9,573.29	$(306,828.87)$
116	27.15	(357,340.94)	9,467.42	(347,873.51)
117	27.01	(316,399.73)	9,418.78	$(306,980.95)$
118	25.65	(357,574.91)	8,942.61	$(348,632.29)$
119	25.15	(357,574.39)	8,769.07	$(348,805.31)$
120	23.80	2,984,119.95	8,299.60	2,992,419.55
121	23.26	2,984,119.95	8,110.75	2,992,230.70
122	23.42	52,422.79	8,166.61	60,589.40
123	22.65	52,423.28	7,897.07	60,320.35
124	21.95	2,225,736.95	7,653.90	2,233,390.85
125	21.75	2,225,737.60	7,585.66	2,233,323.26
126	22.44	(316,378.68)	7,823.78	$(308,554.90)$
127	20.71	2,253,763.65	7,222.75	2,260,986.39

128	19.62	$2,253,782.82$	$6,842.78$	$2,260,625.60$
129	19.42	$(316,365.12)$	$6,773.05$	$(309,592.08)$
130	18.87	$18,504.37$	$6,581.20$	$25,085.57$
131	18.56	$18,504.68$	$6,471.50$	$24,976.18$
132	20.11	$(316,369.76)$	$7,010.95$	$(309,358.80)$
133	18.65	$(316,369.81)$	$6,504.10$	$(309,865.71)$
134	18.21	$20,005.03$	$6,348.87$	$26,353.90$
135	16.83	$20,005.07$	$5,868.45$	$25,873.52$
136	16.44	$(322,100.98)$	$5,733.92$	$(316,367.06)$
137	16.07	$16,696.22$	$5,601.77$	$22,297.98$
138	15.95	$(520,730.24)$	$5,562.79$	$(515,167.46)$
139	15.20	$57,578.97$	$5,300.92$	$62,879.89$
140	15.10	$(316,377.10)$	$5,265.88$	$(311,111.22)$
141	14.67	$58,358.88$	$5,114.30$	$63,473.19$

The rows highlighted in color 'Green' are the locations on the spur lines. From the
 locations on spuw ines Lectronic Theses \& Dissertaticht . The location No. 137 and No. 123 are finalized as optimal locations (which are highlighted in color 'Yellow') on Kamburupitiya Gantry - Andaluwa side.

All the finalized optimal locations of Matara Feeder 7 are marked on the figure 5.4.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Figure 5.3 Finalized Optimal Locations on Matara Feeder 7

Chapter 6

Protection Co-ordination of Fuses with the Auto Recloser

6.1 Present Scenario

Distribution feeders are mostly protected against electrical fault by DDLO fuses of type K. However, at present the rating of the fuses is selected considering only the electrical load on the line, thus loosing co-ordination. If fuses were properly selected protection co-ordination can be achieved, so that the temporary faults are cleared by the A / R and permanent faults are cleared by the fuses, thus improving the reliability of supply. The reliability of the network cannot be achieved only by optimally positioning the ARs, also by maintaining proper protection co-ordination between the protection devices.

6.2 Theoretical Background of Protection Co-ordination

 Electronic Theses \& Dissertations

Fusectonent typically yibayer minimum melting time and a total clearing time. The minimum melting time is the time characteristic in which the fuse element first begins to melt due to the fault current. The total clearing time is the time in which the fuse element will completely melt thus isolating the faulty section.

Wherever, there is more than one fuse on a spur line, they should be selected to coordinate with each other in such a way that total clearance time for a main fuse should not exceed 75% of the minimum melting time of the backup fuse as shown in the following graph. The fuses co-ordinate with other fuses with the time vs current curves are shown in Annex 4.

Figure 6.1 Backup Fuse and Main Fuse on a Feeder

Figure 6.2 Fuse to Fuse co-ordination from TC curve

6.2.2 Fuse - Auto Recloser Co-ordination

Reclosers also have several operating curves and for this particular application two curves namely Curve for the $1^{\text {st }}$ trip and the curve for the $2^{\text {nd }}$ trip.
 selected eperdtingurvescoflthests as shomsint tha digsre and the principle of operation is described ibelow.t.ac. 1 k

- When fault take place at the downstream of a fuse, OC curve for the $1^{\text {st }}$ trip of the AR will operate and interrupts the fault current.
- After the reclose time the AR will restore the power and if the fault persists the fault current will be interrupted by the fuse, as OC curve for the $2^{\text {nd }}$ trip of the AR is in function after the $1^{\text {st }}$ trip.

One curve is selected for Earth Fault which is typically 10 times lower than the curve for the $2^{\text {nd }}$ trip. At the same time Recloser curves should maintain 0.3 sec time discrimination with the Time-Current Curve of the Circuit Breaker at the GSS. This is illustrated with real time values in the graph given in Annex 5.

Figure 6.3 Fuse - AR co-ordination from TC curve

6.3 How a distribution Network which is properly co-ordinated should work for faults (

 www.lib.mrt.ac.lkLet's consider a properly co-ordinated feeder as sketched below.

CB at the GSS

Auto Recloser

Figure 6.4 Properly co-ordinated distribution feeder

Table 6.1 Operation of Protection devices for permanent and temporary faults

Fault Location	Permanent Fault	Temporary Fault	
		Fault current less than the thermal rating of fuses	Fault current exceeds thermal rating of fuses
Location 1	Over Current Relay of GSS CB operates	Earth Fault Relay of GSS CB operates	Earth Fault Relay of GSS CB operates
Location 2	Fuse (A) Should operates	Earth Fault Relay of GSS CB operates	($)$ Should operates
Location 3	Fuse (@) should operate.	Earth Fault Relay of Auto Recloser operates.	At the onset of the fault AR operates. If the fault persists fuse (@) should operate.
Location 4	Fuse (0) should鸹 \qquad operate. Electronic www.lib.m	Earth Fault Relay of Auto f Mectostur operates. Sank Theses \& Dissertation t.ac.1k	At the onset of the fault AR operates. If the fault persists fuse (a) should operate.
Location 5	Fuse (@) should operate.	Earth Fault Relay of Auto Recloser operates.	At the onset of the fault AR operates. If the fault persists fuse () should operate.
Location 6	Over Current Relay of Auto Recloser operates.	Earth Fault Relay of Auto Recloser operates.	Earth Fault Relay of Auto Recloser operates.

The recommendations and conclusions on how to select a fuse are given in Chapter 7. The following part describes the fuse selection done for Matara Feeder 7 according to the recommendations given in the Chapter 7 and the fuses were changed on November 2014.

6.4 Pilot Project: Matara Feeder 7

6.4.1 Overview of Feeder 7 of Matara GSS

Table 6.2 General statistics of Matara Feeder 7

Parameter	Description
Conductor type	Lynx
Total Line length	193.949 km
No of SS	143
CSCs covered by the feeder	Hittetiya CSC, Kamburupitiya CSC, Mulatiyana Sub CSC, Hakmana CSC
No of AR	01
No of Fuses	47

Table 6.3 Protection settings of Matara Feeder 7 Circuit Breaker

Description	Over Current Protection	Earth Fault Protection
Current Setting	1.05 A	0.1 A
TMS Unive	ity of Moratuwa, Sri	Lanka. 0.1
(Eves) Electr	nic Thoersas ioxersesserta	tions Normal Inverse
Instantarreous Setting WW.	b. mrt.ac. 4 A	0.4 A
CT Ratio	400:1	400:1

There are one A / R and 47 fuses in the above feeder. The AR is installed on the main feeder at Kamburupitiya Gantry, 14 km from the GSS (Figure 3.2). The A/R covers only the feeder going towards Andaluwa side from the gantry. No $\mathrm{A} /$ Rs are connected to the other 2 outgoing feeders from the gantry.

Table 6.4 Protection settings of Kamburpitiya Gantry - Andaluwa side AR

Description	Over Current Protection	Earth Fault Protection
Curve for the 2 ${ }^{\text {nd }}$ Tripping		
Current Setting	400 A	40 A
TMS	1	1
Curve	Non Standard Curve -112	Non Standard Curve -112
Instantaneous Setting	1400 A	140
Curve for the 1 ${ }^{\text {st }}$ Tripping		
Current Setting	400 A	
TMS	1	
Curve	Non Standard Curve -101	
Instantaneous Setting	1400 A	

6.4.2 Proposed Fuse ratings for the already installed fuses on Matara Feeder 7

The proposed fuse ratings for the Matara Feeder 7 are tabulated on the following table and more descriptive color chart is also given in figure 6.5.

Table 6.5 Proposed Fuse Ratings

No	Name	Series Position	Fuse Rating (A)	Subs Connected
1	Kamburupitiya Tapping	$1{ }^{\text {st }}$	40	2
2	Thumbe DDLO	$1{ }^{\text {st }}$	40	2
3	Narandeniya DDLO	$2^{\text {nd }}$	15	1
4	Iriyathota DDLO	$2^{\text {nd }}$	15	1
5	Ovitigamuwa DDLO	$1^{\text {st }}$	40	3
6	Karaputugala DDLO	$2^{\text {nd }}$	25	1
7	Miriswatta DDLO	$1^{\text {st }}$	40	1
8	Witiyala Tapping	$1^{\text {st }}$	40	1
9	Malimbada DDLO	$1{ }^{\text {st }}$	65	4
10	Thalagahagoda Tapping	$2^{\text {nd }}$	40	1
11	Ogaspe Tapping	$2^{\text {nd }}$	40	1
12	Ullala DDLe University of Morsatuwa, Sri Ladsoa. Kahaglawapping Electronic These nad 2 Dissertations			5
13				2
14	Udadamana Tapping		40	1
15	Polathugoda Tapping	$1^{\text {st }}$	40	1
16	Middellawala DDLO	$1^{\text {st }}$	50	3
17	Nemmahena Tapping	$1^{\text {st }}$	40	2
18	Wilpita DDLO	$1^{\text {st }}$	40	1
19	Yahamulla Tapping	$1^{\text {st }}$	65	7
20	Kithanwala Tapping	$2^{\text {nd }}$	40	1
21	Nisansalagama Tapping	$2^{\text {nd }}$	40	2
22	Batugoda DDLO	$1{ }^{\text {st }}$	40	1
23	Balakawela DDLO	$1^{\text {st }}$	50	3
24	Akuressa DDLO	$1^{\text {st }}$	100	9
25	Paraduwa DDLO	$2^{\text {nd }}$	65	4
26	Kirimetideniya DDLO	$3^{\text {rd }}$	40	1
27	Pitigalahena DDLO	$3^{\text {rd }}$	40	1
28	Sapudgoda DDLO	$1{ }^{\text {st }}$	40	1
29	Gatara DDLO	$1^{\text {st }}$	50	2

30	Kotahore Tapping	$1^{\text {st }}$	65	4
31	Abimandala DDLO	$2^{\text {nd }}$	25	1
32	Ransegoda Tea Factory Tapping	$2^{\text {nd }}$	40	2
33	Ransegoda Tapping	$1^{\text {st }}$	40	1
34	Rathkekulawela Tapping	$1^{\text {st }}$	40	1
35	Arambegoda Tapping	$1^{\text {st }}$	65	3
36	Bentishena DDLO	$2^{\text {nd }}$	40	1
37	Beragama DDLO	$1^{\text {st }}$	65	3
38	Ranagala DDLO	$2^{\text {nd }}$	40	1
39	Mulatiyana DDLO	$1^{\text {st }}$	100	35
40	Deiyandara DDLO	$2^{\text {nd }}$	65	7
41	Belpamulla DDLO	$3^{\text {rd }}$	40	1
42	Radawela DDLO	$3^{\text {rd }}$	40	4
43	Keluwelketiya DDLO	$4^{\text {th }}$	25	1
44	Danhena DDLO	$2^{\text {nd }}$	65	4
45	Malmorahena Tapping	$3^{\text {rd }}$	40	1
46	Athapatkenanda Tappting risity of Vgratulwa, sril Lallua. Bammunयmana DDEO tronic Theses \& Dissertations			5
47				1
48	Ratnayake Tea Factory Tapping		40	2
49	Kudapana DDLO	$2^{\text {nd }}$	65	4
50	Mawaralawatta DDLO	$2^{\text {nd }}$	65	7
51	Ahalakanda side DDLO	$3^{\text {rd }}$	40	1
52	Mawarala DDLO	$3^{\text {rd }}$	40	4
53	Ketapolakanda Tapping	$4^{\text {th }}$	25	2
54	Puwakgahahena Tapping	$4^{\text {th }}$	25	1
55	Gammedagama DDLO	$4^{\text {th }}$	25	1
56	Halgahapola DDLO	$3^{\text {rd }}$	40	1

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Recommended Fuse Ratings for Matara Feeder 7 - Matara Grid Substation

Discussion, Conclusion and Recommendation

7.1 Discussion

Each and every research paper which was studied by me on optimal positioning of protective devices on a distribution feeder has considered technical and economical factors when deciding the optimal location. However the method and the constraints used for the solution and derived mathematical model is different from one another.

In the research paper "Allocation of protective devices in distribution circuits using nonlinear programming models and genetic algorithms", the mathematical model is formulated to improve the SAIFI value of the network and the permanent and temporary fault index in each section of the circuit and the number of customers are considered. [1]

The work has been carried out in "Optimized placement of control and protective devices in dectric distribution systems through reactive tabu search algorithm" research paper, and theobjective function is the sum of placement of switches and protective devices and the cost of interruption due to permanent and temporary faults. The results give optimal locations for all the protective devices in the network such as Auto Reclosers, Fuses and Sectionlizers. [2]
"Optimal Feeder Switches and Pole Mounted RTUs Relocation on Electrical Distribution System considering Load Profile" technical research paper, annual load curve changing and failure rate changing data are used to represent the optimal location for the feeder switches and pole mounted RTUs. [4]

The research paper "Distribution Reliability Improvement through Optimal Location of Load Break Switches in 33 kV Network" present a method to decide best number of load break switches considering the nature of different zones the line is going through and the distribution of customers the line is serving. The mathematical model gives the sum of cost of unserved energy due to interruptions and cost of breakers in an annual basis. [5]

This objective function of this research has been derived using the SAIDI value of each substation and the energy consumption of bulk and retail consumers connected to a feeder. The sum of Breakdown recovery cost and the cost of interruption (derived by using the SAIDI value for bulk and retail consumers connected to the feeder) gives the objective function. The optimal location is the location with minimum cost. For the locations on main lines and spur lines, the location with the minimum Cost of Reliability should be considered separately and obtain the optimal location. As CEB distribution network is a simple network compared to the systems used in the research papers referred, no special algorithm is used.

7.2 Conclusions

When selecting the optimal location from the derived objective function following conclusions were finalized.

1. When selecting optimal locations for an $A R$, the priority should be given to Temporary Fatilts ocectilon afy Mortiontwa, Sri Lanka.
en most of the spur theses \& Dissertations a feeder, at the starting point of the spur a www.11b.mrt.ac. 1 k
DDLO has been installed. As a result of this when there is either a temporary or a permanent fault occur downstream the fuse, the fuse will operate and interrupt the consumers connected downstream. When a fuse is blown that cannot be identified as whether it is due to permanent fault or temporary fault. The calculated SAIDI values for a specific location include the interruption due to both types of faults. So the SAIDI should be multiplied by the temporary fault percentage of that section where the location is situated and get the SAIDI value for the temporary faults.
b. After obtaining the SAIDI value for temporary faults, then another correction needed to be done. This SAIDI value contains the interrupted hours due to line tripping occurred due to the operation of CB at the GSS. From the SAIDI value at a specific location, the SAIDI value due to line tripping should be reduced.
2. When coordinating the protection devices in the distribution network, the protection should be arranged in such a way where the ARs respond to temporary devices and the Fuses respond to permanent devices.
3. When selecting locations on the feeder to search for the optimal location, it is suitable to select only the locations where fuses are already installed.

7.3 Recommendations

7.3.1 Recommendations for Optimal Location of Auto Reclosers

- Introduce a proper method and a database to record the accurate details of the interruptions, interrupted substations and interrupted hours.
- Research to find the Energy Not Served (ENS) for Sri Lanka in the present developments and economy.
- Develop a software program for this study using Excel Macro, as it can be used in any computer without any additional cost.
- This study yas devetopehte finhezeeptimalidgeatigntoins series. Hence, further develop to find thernumberiof foptimalllocations to install ARs on a feeder.

7.3.2 Recommendations for Fuse selection

- It is not possible to select a fuse for a DDLO on the feeder between GSS and the AR that coordinate with both the breaker at GSS and the AR. Therefore there is no any use of having a DDLO on the main feeder before the AR.
- The maximum rating of a fuse on a spur line between the GSS and the AR is 125A.
- The maximum number of fuses in series on a spur line, not covered by AR should be limited to 3 or 4 and some of the possible combinations are as follows.

Table 7.1 Proposed Fuse Ratings which are not connected after an AR

Combination	$1^{\text {St }}$ Fuse	$2^{\text {nd }}$ Fuse	$3{ }^{\text {rd }}$ Fuse	$4^{\text {th }}$ Fuse	$5^{\text {th }}$ Fuse
01	125	80	50	25	12
02		65	40	15	-
03		50	25	12	-
04		40	15	-	-
05		25	12	-	-
06	100	65	40	15	-
07		50	25	12	-
08		40	15	-	
$\begin{aligned} & -65 \mathrm{~K}-25 \mathrm{~K} \\ & -50 \mathrm{~K}-15 \mathrm{~K} \end{aligned}$		Combinations are also possible			

- The maximum number of fuses in series on a spur line, covered by AR should be limited to 3 and the possible combinations are as follows. 125 A K-type fuse is not possible. Refer Annex 8.

University of Moratuwa, Sri Lanka.

Combihatoin	${ }^{\text {Stifuse }}$	$2^{\text {nd }}$ Fuse	$3^{\text {rd }}$ Fuse
01	100	65	40
02		50	25
03		40	-
04	80	50	25
05		40	-
06		25	-

REFERENCES

[1] Luis G.W. da Silva, Rodrigo A.F. Pereira, Jose R.S. Mantovani, "Allocation of protective devices in distribution circuits using nonlinear programming models and genetic algorithms", Sao Paulo State University, August 2003
[2] Luis G.W. da Silva, Rodrigo A.F. Pereira, Juan R. Abbad, Jose R.S. Mantovani, "Optimized placement of control and protective devices in electric distribution systems through reactive tabu search algorithm", Sao Paulo State University, April 2007
[3] M.R. Haghifam, H. Falaghi, M. Ramezani, M. Parsa, G. Shahryari, "Enhancemen in Distribution Systems using Optimal Allocation of Switching Devices", Tarbiat Modarres University, Iran, May 2003
[4] P. Jintagosonwit, P. Jintakosonwit, N. Wattanapongsakorn, "Optimal Feeder Switches and Pole Mounted RTUs Relocation on Electrical Distribution System considering Load Profile", KMUTT, Thailand, June 2005
[5] Prof. H.Y.R. Perera, S.P. Thushara, "Distribution Reliability Improvement through Optimal Location of Load Break Switches in 33 kVNetwork", University of Moratuwa, Sri Lanka, April 2012
[6] P. Raesaar, E. Tiigimagi, J. Valtin, "Assessment of electricity supply
 Uni wersity of Elebnotogy, EstondesMay $20086 e^{2}$ tations
[7] Wenytian Li, WxWxpected Energy Not Served (EENS) Study for Vancouver Island Transmission Reinforcement Project" British Colombia Transmission Corporation, January 2006
[8] Nexant SARI/Energy, "Economic Impact of Poor Power Quality on industry: Review of Studies, Sri Lanka", Nexant SARI/Energy, November 2003
[9] Ceylon Electricity Board, "Price List of Materials-2011", Ceylon Electricity Board, 2015
[10] "Summary of 33 kV Line Tripping" from System Control Branch, CEB.
[11] Chao Shun Chen,Chai Hung Lin,Hui Jen Chuange and Chai Wen Hung, "Optimal Placement of Line Switches for distribution Automatio Systerm using immune algorithm", IEEE Transactions on Power Systems,Vol.21,August 2008
[12] Taigo Alencar,Anselmo Rodrigues and Maria da Guia da Silva, "Switches allocation in distribution network using particle swarm optimization based on fuzzy expert systems", $17^{\text {th }}$ Power System Computation Conference, Sweden, August 2011

Annexure 1-Auto Recloser Location-Region 4

GSS	Feeder No	Distance to AR (km)	AR Location	Auto Recloser Name	Distance to AR from the previous AR(km)	AR location	Auto Recloser Name
Ambalangoda	Feeder 1	15.132	Thanabaddegama Tapping	Thanabaddegama	15.868	Ketandola	Ketandola
	Feeder 2	28.228	Thalgaswala Gantry	Udugama	9.017	Udugama Bar Junction	Bar Junction AR
				Thalgaswala			
				Kurundugaha			
	Feeder 3	9.903	Nindana Gantry	Karandeniya AR			
				Gonapinuwala AR			
				Meetiyagoda AR			
	Feeder 4	5.184	Magala Gantry	Elpitiya side AR	13.471	Ahungalla PSS	Induruwa side
							Balapitiya side
	Feeder 6	9.36	Uragasmanhadiya	Uragasmanhandiya			
Galle	Feeder 1		Universi Indigasketiya Pump House Electron		Sri Lank sertations		
	Feeder 2	12.398 Ck	Citrus	Citrus	5.396	Mabotuwana	Mabotuwana Tapping
	Feeder 3	10.214 -	WWāulugala. 10	dONaulúgala			
	Feeder 4	14.986	Mawella Gantry	Mawella			
	Feeder 5	18.18	Gonapinuwala Gantry	PSS side	1.089	Gonapinuwala PSS	Nalagasdeniya side
				Baddegama side			Pinkanda side
	Feeder 6	12.751	Udumullagoda	Udumullagoda			
	Feeder 7	19.183	Baddegma Gantry	Wanduramba			
				Elpitiya			
				Goonapinuwala			
		6.22	Thotagoda	Thotagoda AR			
Matara	Feeder 2	9.065	Thlijjawila Gantry	Semidale side	12.372	Hikgoda	Hikgoda AR
		12.694	Semidale Gantry	Imaduwa side			
	Feeder 3	17.535	Pitadeniya Gantry	Rathmale Side			
				Dandeniya Side			
				Matara Side	10.038	Gandara	Gandara
				Tangalle Side			
	Feeder 6	10.296	Udukawa Gantry	Thelijjawila side			
				Load star factory			
				Galbokka side	7.64	Galbokka PSS	Ahangama Side 11 kV
							Matara Side 11 kV
	Feeder 7	14.597	Kamburupitiya Gantry	Andaluwa side			

Annexure 2.1 - Customer Interruption Duration for Ambalangoda Feeder 3

\sin no	Interrupted Hours												Consumers	
	Feb-13	Jan-13	Dec-12	Nov-12	Oct-12	Sep-12	Aug-12	Jul-12	Jun-12	May-12	Apr-12	Mar-12		
AG 95	0.45	0.63	0.23	0.35	0.56	0.006	0.04	0.89	0.24	0.02	0.98	0.005	1	
AG 90	2.7911	2107.9968	48.112	13.392	416.2928	88.66	18.3768	1045.122	1.2597	17.9826	8383.926	4.27	247	
AG 100	2.5086	1886.1024	42.486	1.095	365.9348	19.8338	25.4664	10395.63	136.869	161.1206	10316.833	0.021	222	
AG 105	2.4521	1367.9897	68.6664	359.8776	3261.1032	628.1496	0.6264	3140.77	16.2945	160.3677	8719.7438	10.7532	217	
AG 130	163.3025	11467.654	1815.044	118.7315	2311.0935	3310.8966	4973.6007	790.9239	3728.0634	21409.531	20719.13	6818.6628	415	
AG 120	159.0957	37.1907	94.9311	67.3767	2158.0164	1967.6787	3075.2784	1651.305	3312.938	6251.5724	18411.997	6020.596	387	
AG 110	507.6492	3.1176	146.4406	0.2165	37.7576	2248.2226	4023.648	1700.511	1.5516	3649.539	23661.008	50.138	433	
AG 140	1823.7344	2849.8764	24.708	745.764	8311.2746	1901.3738	10314.744	4610.104	16970.757	5559.723	2.006	4.352	349	
AG 146	1055.5712	12.4419	1940.5545	33.165	0.7437	1042.9086	5876.1118	1206.493	2.6136	46.5696	441.3391	3.0618	202	
AG 145	930.1568	0.8366	11.7882	2612.6616	1024.4229	459.4566	5214.352	2345.024	71.7325	2707.915	417.8125	158.0182	178	
AG 160	3467.6628	11639.606	613.1032	98063.711	6672.7465	19841.176	3689.5628	15203.31	6871.856	25127.585	7019.2743	71.9758	636	
AS 315	2.6703	596.2122	17.121	7.3401	84.2112	1958.1952	250.063	15.3416	30.5308	3399.0534	79.9084	2.6625	129	
AS 313	1.3936	480.6672	251.3368	5.9176	68.4216	849.7528	604.4143	42.5081	24.7612	2346.8859	64.1784	73.9724	104	
AS 310	4.8776	1668.4698	647.316	20.4271	417.1545	8622.0498	2089.0436	323.4063	2510.4052	20775.021	4264.402	297.891	364	
AS 305	59.8584	929.334	24.2452	75.309	1719.1005	2309.697	1205.3145	0	1116.5476	15415.473	81.446	161.568	196	
AS 302	55.5828	1540.0112	693.056 1 或包 70.2884				$1-\frac{92.2 .9948}{102.3454} \\| W_{1485.853}^{27.7886} \mathbf{1}^{1}$		141.4967 $\mathrm{K}^{2810.1346}$		28.9744	152.3115	182	
AS 320	97.0884	1673.3794					199.4418	d.	1094.695	2747.5025	362			
AS 300	284.2386	2366.7786	$\left.-39.3176 \quad 5) \frac{183.445}{571.7118}\right)^{1053.8528}$		${ }^{2} 211.7066$	${ }^{7956.0492} 8417.4965 \mathrm{SC}(17.2857$			$\begin{array}{r} 3458.0777 \\ 4346.6844 \end{array}$	23.0256	4063.7584	5054.511	479	
AS 290	1527.96	3380.032			949.7954							1012.6248	14316.624	642
AS 275	1.05	0.54	0.3 \% 0.55			$\frac{0.32}{}{ }^{1962.339}$	0.76	$11^{0.23}$	0.88	0.54	0.33	0.43	0.98	1
AS 001	4.5087	1741.635	$482.774{ }^{\text {che }}$		139.601		65.142	0	163.3325	5035.4995	294.1176	369.759	399	
AS 276	0.23	0.88	0.54	0.33	0.43	0.98	1.05	0.54	0.3	0.55	0.32	0.76	1	
AS 280	0.55	0.34	0.24	0.32	0.67	0.56	0.76	0.45	0.88	0.66	0.32	0.67	1	
AS 220	0.76	0.45	0.88	0.66	0.32	0.67	0.55	0.34	0.24	0.32	0.67	0.56	1	
AS 240	0.23	0.35	0.56	0.006	0.04	0.89	0.24	0.02	0.98	0.005	0	0	1	
AS 210	1535	4191.4199	12659.427	19.479	2415.3976	1622.0703	2421.5464	2233.6	5912.3961	6251	8837.344	2693.15	913	
AS 230	16981.776	13515.115	10811.5	90.7649	6055.661	958.2135	2386.848	2849.98	20046.831	548.5053	3736.9524	1437.0741	720	
AS 200	619.6905	72.039	72.216	641.8527	2035.3743	4170.584	4844.3676	17085.59	15137.034	242.382	104.404	7976.423	891	
AS 190	3789.4932	31981.32	12682.025	2354.2365	3976.236	86.9056	106.428	2890.388	8989.0642	905.5215	21929.393	512.4504	603	
AS 193	50.2752	426.4176	169.6592	23.7402	40.164	0.8808	0.905	19.696	5.2832	4.6437	113.6238	1.8172	8	
AS 194	12391.315	2562.8792	43.1376	71.1776	2202.6786	2.162	963.8413	5243.012	1259.0886	6643.329	6381.6216	6780.1575	477	
AS 198	8291.2752	24751.091	33.7513	4536.6744	381.75	89.64	4046.864	6343.195	8368.1648	1161.2205	3732.624	591.744	507	
AS 180	3782.1042	1209.604	9617.08	849.026	2828.3514	92.6936	2.9011	2740.392	125.0762	12363.222	2298.5837	191.7426	441	
AS 170	5711.9453	3292.989	14.8035	3796.4589	3714.3301	320.0733	278.7218	17563.41	11974.651	30909.097	15434.689	523.5267	703	
AS 250	128.8185	3686.4423	6149.4378	9.9187	752.4154	2341.482	13826.772	897.605	3360.71	669.2004	4849.922	817.2495	785	
AS 260	1054.1844	2845.9125	51.5533	111.384	661.2522	2588.8032	73.0235	4341.721	3122.1531	622.1068	668.414	976.374	618	
AS 265	3444.5162	0	57.8144	25.515	1058.3992	921.5448	99.8568	1817.733	13683.478	1150.4289	2341.78	264.8701	409	
AS 270	530.5125	21.484	558.8984	44.2656	4691.3706	432.224	8955.5466	93.577	5703.7508	22.5492	3175.5213	487.6828	525	

Annexure 2.2-Customer Interruption Duration for Galle Feeder 8

Sin No	Interrupted hours												Customers
	Feb-13	Jan-13	Dec-12	Nov-12	Oct-12	Sep-12	Aug-12	Jul-12	Jun-12	May-12	Apr-12	Mar-12	
GB 300	8.1396	1834.5312	68.8296	39.6372	3521.9988	1622.8226	6070.7226	1240.713	645.4311	1730.76	0	347.9588	204
GB 310	885.1492	9061.2907	1541.4956	1182.5137	28577.697	27054.086	34524.858	3289.514	1176.1463	883.2447	4454.0495	2946.7255	527
GB 320	163.4584	1977.9032	66.552	3143.7457	29648.164	9042.8484	131943.2	1040.023	3817.8222	10620.511	115.2542	4243.1788	707
GB 321	10.1992	418.6626	447.866	1323.12	854.9471	8.5407	4607.0884	1669.023	902.7845	1163.9088	142.4686	909.2526	152
GB 330	5.3176	1.4996	2.1712	102.8537	972.7643	300.5571	4449.6973	35.1256	128.9426	359.7522	4.0043	148.3178	23
GB 410	0.09	0.24	0.02	0.98	0.005	0.45	0.63	0.23	0.35	0.56	0.006	0.04	1
GB 420	0.09	0.24	0.02	0.98	0.005	0.45	0.63	0.23	0.35	0.56	0.006	0.04	1
GB 421	0.09	0.24	0.02	0.98	0.005	0.45	0.63	0.23	0.35	0.56	0.006	0.04	1
GB 490	72.4878	4287.892	466.9888	396.7722	11475.596	36.972	3861.0945	2989.722	980.0192	726.1903	1836.7776	169.25	523
GB 530	5.2269	191.9936	116.194	32.006	1249.9584	1023.2576	5234.9056	571.5968	82.0736	691.4944	1.3716	223.6878	131
GB 600	3.2123	573.3426	10133.783	1586.2528	3432.88	150.228	10759.251	2001.306	1018.033	2341.344	72.4073	142.6403	353
GB 620	9.1707	1129.128	214.061	307.0629	1310.5845	87.604	5769.0648	16.023	221.8586	1092.4272	583.407	368.244	231
GB 630	32.5875	46.275	18.988	1382.3788	6303.8074	101.184	18514.636	2183.21	4477.6569	6904.5225	2714.6875	2241.246	375
GB 680	18.9126	1965.4045	3.0845	0	1345.9716	0	2.4505	72.9072	905.9184	920.9664	409.5706	10.4796	158
GB 730	0.8463	369.5355	2612.3916	410.0824	887.4775	298.4436	129.843	6.615	0	16.3891	14.841	37.647	93
GB 740	165.4448	13051.447	482.5126	20155.879	53675.238	168.9778	63069.699	10009.88	11165.188	21632.391	37429.633	12438.494	848
GB 760	0	433.008	1.8335	229.8624	1054.4346	1513.521	2597.5782	75.6512	364.1372	1064.2176	0	300.15	194
GB 770	0.09	0.24	0.02 限	0.98 T	10,005	0,45	0.63	0.23	0.35	0.56	0.006	0.04	1
GB 870	0.09	0.24	0.02	0.98	0.005	0.45	0.63	0.23	0.35	d. 0.56	0.006	0.04	1
GB 920	1.8333	0	05	, 0	0	0	0	0	0	0	0	0	1
GB 921	229.1172	2376.4212	171.7524	52.8683	2613.4964	49.3498	2627.7924	110 C	757.507	48.816	696.87	554.6688	228
GG 375	26162.928	1066.0632	32.538	107.0871	5376.6464	217.854	2618.5592	2000.597	6788.068	4623.9952	277.02	67.124	495
GG 380	102.924	7720.488	22.9608	574.4456	1358,6065	28.3585	15.4825	128.6345	139.3568	405.7012	739.3924	1564.56	216
GG 382	0.89	0.24	0.02	0.98 W	0.005	10.45.	- 0.0 .63	0.23	0.35	0.56	0.006	0.04	1
GG 385	1.6936	7472.6304	69.5836	38.3104	5885.7564	108.5072	45.7452	866.9376	1495.584	175.1464	89.886	43.7644	292
GG 395	0.029	127.956	1.1915	0.5248	80.6268	1.4864	0.6288	12.0408	20.772	2.4496	0.633	0.1541	5
GG 450	0.9978	1.0833	0.3972	0.53	1	0.48	0.1635	0	0	0.24	0.503	0.3036	50
GG 540	136.3946	132.1848	46.0192	178.3742	15449.226	18782.398	5587.9461	980.7864	216.504	181.116	36.4046	422.964	398
GG 545	28539.898	20.9223	4.536	4192.5762	9454.0281	648.6285	3.663	167.962	102.7026	378.045	4925.0672	20.0838	568
GG 550	519.0915	26.7652	12.5628	91.465	4444.006	164.7232	7491.768	9808.681	1498.599	1537.5365	740.304	175.3856	555
GG 560	1062.657	18395.002	197.372	158.5056	68797.155	389.2166	43189.132	604.1964	3817.8675	2985.9821	556.92	955.259	1065
GG 570	214.578	609.855	85.0272	3269.6745	13622.902	9791.4201	29659.96	772.3795	2824.372	43650.228	5237.2584	4319.84	546
GG 580	0.09	0.24	0.02	0.98	0.005	0.45	0.63	0.23	0.35	0.56	0.006	0.04	1
GG 590	0.52	0.11	2.11	0.45	2.9	0.88	0.86	0	0	0.25	0.52	0.32	53

Annexure 2.2-Customer Interruption Duration for Matara Feeder 7

Sin No.		Interrupted Hours												Customers
		Mar-12	Apr-12	May-12	Jun-12	Jul-12	Aug-12	Sep-12	Oct-12	Nov-12	Dec-12	Jan-13	Feb-13	
K	435	2,198.93	2,508.80	0.00	63.75	1,211.25	187.50	420.00	1,864.50	131.83	0.00	0.00	245.92	227
K	440	2,346.18	2,676.80	0.00	68.00	1,292.00	200.00	448.00	1,980.00	140.00	0.00	0.00	260.00	240
K	430	2,365.82	2,755.20	0.00	69.98	1,329.68	205.83	461.07	2,037.75	144.67	0.00	0.00	269.75	249
K	432	29.45	33.60	0.00	0.85	16.15	2.50	5.60	24.75	1.75	0.00	0.00	3.25	3
K	010	251.10	2,444.70	0.00	80.47	534.87	0.00	532.00	0.00	166.25	0.00	0.00	0.00	287
K	020	704.70	6,820.80	0.00	223.27	1,484.07	0.00	1,467.20	0.00	460.83	0.00	0.00	0.00	797
K	025	310.50	3,001.50	0.00	98.03	651.63	0.00	645.87	0.00	204.17	0.00	0.00	0.00	356
K	050	8,633.50	4,089.00	0.00	134.02	890.82	0.00	2,967.07	318.00	279.42	400.00	0.00	0.00	481
K	030	325.80	3,175.50	0.00	104.55	694.95	0.00	688.80	0.00	217.00	558.00	0.00	0.00	376
K	035	220.50	2,148.90	0.00	70.27	467.07	0.00	462.93	0.00	1,645.83	375.00	0.00	0.00	252
K	045	209.70	2,035.80	0.00	66.30	440.70	0.00	440.53	0.00	137.67	354.00	0.00	0.00	237
K	040	106.20	1,035.30	0.00	34.00	226.00	0.00	225.87	0.00	70.58	181.50	0.00	0.00	121
K	060	404.10	3,958.50	0.00	129.20	858.80	0.00	856.80	0.00	267.75	688.50	0.00	0.00	460
K	055	286.20	2,766.60	0.00	90.67	602.67	0.00	604.80	0.00	189.58	487.50	0.00	0.00	325
K	090	448.20	4,402.20	0.00	144.22	960.50	0.00	953.87	0.00	298.67	768.00	0.00	0.00	516
K	100	0.90	8.70	0.00	0.28	1.88	0.00	1.87	0.00	0.58	1.50	0.00	0.00	1
K	070	288.00	5,012.47	0.00	92.65	617.73	0.00	617.87	0.00	194.83	501.00	723.67	3,649.90	339
K	065	302.40	5,592.40	0.00	96.90	644.10	0.00	640.27	0.00	201.25	517.50	747.50	3,725.27	346
K	075	215.10	3,919.60	0.00	67.72	450.12	0.00	446.13	0.00	139.42	358.50	517.83	2,573.23	239
K	080	285.30	5,012.47	0.00	91.80	610.20	0.00	604.80	0.00	191.92	492.00	715.00	3,553.00	330
K	085	331.20	5,790.80	0.00	106.82	710.02	0.00	709.33	0.00	224.00	574.50	838.50	4,166.70	387
K	105	45.00	435.00	0.00	14.17	0.00	0.00	93.33	0.00	29.17	75.00	0.00	0.00	50
K	107	106.20	1,035.30	40.00	[34.00	226.00	0.00	. 225.87	0.00	72,58	181.50	0.00	0.00	122
K	410	184.25	1,444.20	20.00	$\int_{47.03}$	428.83	235.10	309.87	1. 0.001	96.83	0.00	0.00	1,853.67	166
K	420	365.15	2,862.30	O8.00	94.07	857.67	470.33	619.73	0.00	193.67	0.00	0.00	3,729.67	334
K	415	300.38	2,340.30	3.00	$\square 77.92$	710.42	B91.00	515,20]	-0,00	161.00	0.00	0.00	3,093.17	277
T	345	587.37	4,584.90	0.00	150.76	1,374.33	755.08	998.67	So.do	316)17	0.00	0.00	6,063.50	543
T	344	450.02	3,593.10	S,00	118.72	789.12	0.00	785.87	0.00	246.75	0.00	0.00	0.00	425
K	385	15.63	121.80	10.00		\%26.37	0,00	26.13	0.00	8.17	0.00	0.00	0.00	14
K	380	419.87	3,288.60	0.00	Mios.80	123.20	0.00	- 724.27	0.00	228.08	0.00	0.00	0.00	391
K	375	304.85	5,073.75	0.00	78.77	525.45	0.00	520.80	0.00	162.75	0.00	0.00	0.00	280
K	373	1,280.53	3,986.63	318.25	418.75	428.80	0.00	377.07	0.00	118.42	0.00	0.00	1,098.67	206
K	370	3.35	18.45	0.00	0.28	1.88	0.00	1.87	0.00	2.33	0.00	0.00	0.00	4
K	367	429.92	7,915.05	0.00	122.12	811.72	0.00	808.27	0.00	254.33	0.00	0.00	0.00	438
K	365	185.37	3,062.70	0.00	46.75	312.63	0.00	309.87	0.00	96.83	0.00	0.00	0.00	166
K	360	441.08	6,549.75	0.00	101.15	674.23	0.00	668.27	0.00	211.17	0.00	0.00	0.00	363
K	340	374.08	2,923.20	0.00	1,019.63	2,501.20	0.00	625.33	0.00	196.00	0.00	0.00	0.00	338
K	353	270.23	2,114.10	0.00	922.83	2,976.75	0.00	459.20	0.00	492.00	0.00	576.33	329.33	247
K	350	398.65	3,219.00	0.00	1,408.73	4,544.10	0.00	700.00	0.00	760.00	0.00	886.67	508.00	381
K	355	232.27	1,835.70	0.00	802.30	2,587.95	0.00	399.47	0.00	428.00	0.00	501.67	288.00	216
K	345	341.70	2,670.90	0.00	1,163.90	3,766.50	0.00	576.80	0.00	620.00	0.00	730.33	418.67	314
K	337	32.38	252.30	0.00	87.48	214.60	0.00	54.13	0.00	16.92	0.00	0.00	0.00	29
K	335	1.12	8.70	0.00	3.02	7.40	0.00	1.87	0.00	0.58	0.00	0.00	0.00	1
K	330	1.12	8.70	0.23	0.28	1.88	0.00	1.87	0.00	0.58	0.00	0.00	0.00	1
K	320	618.63	4,828.50	129.97	158.38	1,052.78	0.00	1,047.20	0.00	330.75	0.00	0.00	0.00	573
K	310	158.57	1,270.20	34.30	42.22	282.50	0.00	278.13	0.00	87.50	0.00	0.00	0.00	153
K	315	254.60	2,001.00	53.90	66.02	438.82	0.00	436.80	175.50	137.08	0.00	0.00	0.00	235
K	295	1,319.27	3,254.80	640.67	88.40	589.48	0.00	589.87	0.00	184.33	0.00	0.00	0.00	320
K	300	341.70	2,697.00	72.33	88.12	585.72	0.00	580.53	0.00	182.00	0.00	0.00	0.00	313
K	290	282.52	2,201.10	59.27	71.97	478.37	0.00	476.00	0.00	149.33	0.00	0.00	0.00	257
B	600	437.40	4,236.90	488.00	787.32	919.07	0.00	912.80	0.00	286.42	0.00	0.00	0.00	492
B	610	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
B	620	364.50	3,532.20	407.00	659.60	770.28	0.00	769.07	0.00	241.50	0.00	0.00	0.00	416
B	630	383.40	3,732.30	431.00	700.02	817.37	0.00	812.00	0.00	253.75	0.00	0.00	0.00	441
B	640	367.20	3,567.00	411.00	666.07	775.93	0.00	772.80	0.00	242.67	0.00	0.00	0.00	419
B	650	0.00	0.00	0.00	1.62	1.88	0.00	1.87	0.00	0.58	0.00	0.00	0.00	1

B	660	492.30	4,776.30	550.00	892.40	1,041.48	0.00	1,032.27	0.00	324.33	0.00	0.00	0.00	561
B	655	198.00	1,931.40	223.00	360.52	421.87	0.00	423.73	0.00	133.58	0.00	0.00	0.00	230
B	670	339.30	3,314.70	381.00	617.57	719.43	0.00	713.07	0.00	222.83	0.00	0.00	0.00	383
B	185	355.50	3,462.60	398.00	645.05	751.45	0.00	744.80	0.00	233.92	0.00	0.00	0.00	405
B	685	0.90	8.70	1.00	1.62	1.88	0.00	1.87	0.00	0.58	0.00	0.00	0.00	1
B	680	320.40	3,105.90	358.00	578.77	674.23	0.00	672.00	0.00	211.17	0.00	0.00	0.00	364
B	675	4.50	43.50	5.00	8.08	9.42	0.00	9.33	0.00	2.92	0.00	0.00	0.00	5
B	690	412.20	4,010.70	462.00	746.90	871.98	0.00	866.13	0.00	270.67	0.00	0.00	0.00	467
B	693	216.00	2,096.70	241.00	389.62	453.88	0.00	453.60	0.00	142.92	0.00	0.00	0.00	249
B	700	169.20	1,626.90	189.00	305.55	357.83	0.00	354.67	0.00	110.83	0.00	0.00	0.00	191
B	695	120.60	1,165.80	135.00	219.87	256.13	0.00	253.87	0.00	79.92	0.00	0.00	0.00	139
B	710	333.90	3,253.80	377.00	609.48	713.78	0.00	711.20	0.00	224.00	0.00	0.00	0.00	386
B	725	39.60	391.50	45.00	72.75	84.75	0.00	87.73	0.00	27.42	0.00	0.00	0.00	47
B	720	164.70	1,618.20	189.00	305.55	355.95	0.00	352.80	0.00	110.25	0.00	0.00	0.00	191
B	715	88.20	861.30	99.00	160.05	186.45	0.00	184.80	0.00	57.75	0.00	0.00	0.00	100
B	730	495.90	4,793.70	552.00	892.40	1,041.48	0.00	1,032.27	0.00	322.58	0.00	0.00	0.00	556
B	735	0.90	8.70	1.00	1.62	1.88	0.00	1.87	0.00	0.58	0.00	0.00	0.00	1
B	740	45.90	443.70	51.00	82.45	96.05	0.00	95.20	0.00	29.75	0.00	0.00	0.00	53
K	220	387.90	3,819.30	440.00	125.52	839.97	0.00	836.27	0.00	262.50	0.00	0.00	0.00	452
K	305	107.10	1,044.00	240.00	34.28	227.88	292.42	224.00	0.00	430.00	0.00	685.67	641.30	121
K	215	58.50	574.20	134.00	19.27	128.07	164.33	128.80	0.00	247.25	0.00	391.00	365.70	69
K	210	591.87	1,696.50	0.00	55.82	371.02	1,122.90	367.73	0.00	165.00	1,178.10	600.60	1,566.15	197
K	140	1,030.40	2,949.30	0.00	96.33	642.22	1,943.70	636.53	0.00	284.17	2,034.90	1,043.47	2,742.75	345
K	130	1,278.80	3,645.30	0.00	119.57	798.53	2,416.80	1,565.10	0.00	353.33	2,534.70	1,292.20	3,402.60	428
K	135	3.12	17.40	0.17	0.57	3.77	15.07	7.40	0.00	2.50	24.35	9.10	59.35	3
K	147	3.07	8.70	0.00	0.28	1.88	5.70	1.87	0.00	0.83	5.95	3.03	7.95	1
K	143	199.33	565.50	Ifoce 0.00	118,98	26.18	3817.90	126.93	0.904	52.50	410.55	209.30	548.55	69
K	150	591.87	1,679.10	cret 0.00	54.97	365.37	1,122.90	369.60	$0.00)$	165.83	1,190.00	609.70	1,605.90	202
K	180	1,134.67	3,323.40	0,00	109.93	730.73	2,211.60	1,251.20	1,368.50	488.75	2,326.45	1,189.07	3,550.10	393
K	175	484.53	1,545.77	- 0.00	$\square 45.05$	299.45	$\square 917.70$	518.40	570.50	203.75	969.85	500.50	1,490.50	165
K	182	407.87	1,330.53	0,00	38.53	256.13	780.96	435.20	49.50	172,50	821.10	418.60	1,255.63	139
K	183	389.47	1,104.90	0.00	36.27	241.07	735.30	416.00	455.00	162.50	773.50	394.33	1,174.33	130
K	160	1,521.07	4,367.40	- -0.00	143.37	1,121.63	2,884.20	942.67	0.00	420.83	3,004.75	1,537.90	4,030.65	507
K	170	1,223.60	3,532.20	- 0,00	W115.32	2,665.85	5,168.90	761.60	0.00	341.67	2,439.50	1,243.67	3,275.40	412
K	165	1,131.60	3,227.70	- 0.00	106.82	711.90	2,154.60	705.60	0.00	315.83	2,255.05	1,149.63	3,005.10	378
K	168	300.53	870.00	0.00	28.90	192.10	632.70	209.07	0.00	93.33	666.40	342.77	898.35	113
K	185	591.87	1,705.20	0.00	56.38	374.78	1,134.30	371.47	0.00	166.67	1,190.00	606.67	1,590.00	200
K	186	303.60	878.70	0.00	28.90	192.10	587.10	192.27	0.00	87.50	624.75	318.50	834.75	105
K	187	1,855.33	5,350.50	0.00	175.38	1,167.67	3,545.40	1,161.07	0.00	520.00	3,712.80	1,901.90	5,000.55	629
K	190	1,751.07	5,011.20	0.00	165.47	1,099.87	3,340.20	1,093.87	0.00	493.33	3,522.40	1,804.83	4,738.20	596
K	195	472.27	1,339.80	12.83	43.92	640.67	2,536.83	560.58	935.17	129.17	922.25	1,562.15	2,674.23	157
K	197	3.07	8.70	0.08	0.28	4.13	16.37	3.62	6.03	0.83	5.95	9.95	17.03	1
K	200	1,475.07	4,106.40	39.58	135.43	1,975.73	7,856.00	1,750.47	2,926.17	409.17	2,921.45	4,915.30	8,414.47	494
L	385	3.07	8.70	0.00	0.28	1.88	5.70	1.87	0.00	0.83	5.95	3.03	17.03	1
L	390	953.73	2,749.20	0.00	89.53	602.67	1,824.00	597.33	0.00	267.50	1,909.95	973.70	2,551.95	321
L	375	1,066.22	2,157.60	0.00	70.27	467.07	268.67	462.93	0.00	143.50	0.00	0.00	0.00	247
L	380	2,577.05	5,280.90	0.00	172.55	1,148.83	660.83	1,140.53	0.00	356.42	0.00	0.00	0.00	610
L	383	241.73	495.90	0.00	16.15	107.35	61.75	106.40	0.00	33.25	0.00	0.00	0.00	57
L	365	4.32	8.70	0.00	0.28	1.88	1.08	1.87	0.00	0.58	0.00	0.00	0.00	1
L	360	1,286.37	2,653.50	0.00	86.42	574.42	330.42	569.33	0.00	178.50	0.00	0.00	0.00	306
L	370	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
L	400	779.10	2,592.60	0.00	84.43	561.23	323.92	558.13	0.00	174.42	0.00	0.00	0.00	299
L	405	2.65	8.70	0.00	0.28	1.88	1.08	1.87	0.00	0.58	0.00	0.00	0.00	1
L	410	1,354.15	4,480.50	0.00	146.20	969.92	557.92	965.07	0.00	301.58	0.00	0.00	0.00	517
L	415	132.50	435.00	0.00	14.17	94.17	54.17	93.33	0.00	29.17	0.00	0.00	0.00	55
L	420	241.15	809.10	0.00	26.92	178.92	102.92	177.33	0.00	55.42	0.00	0.00	0.00	95
L	430	908.95	3,010.20	0.00	98.32	653.52	375.92	647.73	0.00	201.83	0.00	0.00	0.00	346
L	440	1,091.80	3,662.70	0.00	120.42	802.30	461.50	795.20	0.00	248.50	0.00	0.00	0.00	426
L	450	127.20	426.30	0.00	14.17	94.17	54.17	93.33	0.00	29.17	0.00	0.00	0.00	50
L	444	251.75	843.90	0.00	28.05	186.45	107.25	184.80	0.00	57.75	0.00	0.00	0.00	99
L	443	564.45	1,896.60	0.00	61.77	410.57	236.17	406.93	0.00	126.58	0.00	0.00	0.00	219

L	445	1,433.65	4,750.20	0.00	154.98	1,030.18	593.67	1,022.93	0.00	316.75	0.00	0.00	0.00	543
L	447	469.05	1,583.40	0.00	51.57	346.53	199.33	343.47	0.00	106.17	0.00	0.00	0.00	182
L	442	320.65	1,078.80	0.00	35.42	235.42	135.42	233.33	0.00	72.92	0.00	0.00	0.00	124
L	460	850.65	2,844.90	0.00	92.65	615.85	354.25	610.40	0.00	190.75	0.00	0.00	0.00	327
L	350	1,346.20	4,558.80	0.00	149.03	990.63	569.83	981.87	0.00	303.92	0.00	0.00	0.00	521
L	353	980.50	3,288.60	0.00	107.38	713.78	410.58	707.47	0.00	221.08	0.00	0.00	0.00	379
L	352	164.30	556.80	0.00	18.13	120.53	69.33	119.47	0.00	37.33	0.00	0.00	0.00	64
L	354	209.35	704.70	0.00	22.95	152.55	87.75	151.20	0.00	47.25	0.00	0.00	0.00	81
L	355	628.05	2,096.70	0.00	68.28	453.88	261.08	449.87	0.00	140.58	0.00	0.00	0.00	241
L	342	280.90	930.90	0.00	31.17	207.17	119.17	205.33	0.00	64.17	0.00	0.00	0.00	110
L	345	773.80	2,575.20	0.00	83.87	557.47	320.67	552.53	0.00	172.67	0.00	0.00	0.00	294
L	344	198.75	661.20	0.00	22.10	146.90	84.50	145.60	0.00	45.50	0.00	0.00	0.00	77
L	346	201.40	678.60	0.00	22.10	146.90	84.50	145.60	0.00	45.50	0.00	0.00	0.00	78
L	349	492.90	1,618.20	0.00	52.70	350.30	201.50	347.20	0.00	108.50	0.00	0.00	0.00	186
L	347	781.75	2,601.30	0.00	84.72	563.12	323.92	558.13	0.00	174.42	0.00	0.00	0.00	299
L	348	588.30	2,001.00	0.00	65.17	433.17	249.17	429.33	0.00	133.58	0.00	0.00	0.00	229
L	340	1,523.75	5,098.20	0.00	166.60	1,109.28	642.42	1,106.93	0.00	345.92	0.00	0.00	0.00	593
L	330	1,264.05	4,202.10	0.00	136.85	911.53	526.50	907.20	0.00	282.92	0.00	0.00	0.00	485
L	335	535.30	1,774.80	0.00	58.37	389.85	224.25	386.40	0.00	120.75	0.00	0.00	0.00	207
L	325	580.35	1,940.10	0.00	63.18	419.98	242.67	418.13	0.00	130.67	0.00	0.00	0.00	224
L	320	972.55	3,262.50	0.00	106.53	711.90	409.50	705.60	0.00	219.92	0.00	0.00	0.00	377
L	323	588.30	1,974.90	0.00	64.32	427.52	245.92	423.73	0.00	131.83	0.00	0.00	0.00	226
L	324	400.15	1,357.20	0.00	44.48	295.68	170.08	309.87	0.00	96.83	0.00	0.00	0.00	166

University of Moratuwa, Sri Lanka.
Electronic Theses \& Dissertations
www.lib.mrt.ac.lk

Gonapinuwala Other Subs SAID															Relevant SAIDI														
$\begin{gathered} \text { Temp } \\ \% \end{gathered}$	Secti on	$\begin{gathered} \text { Typ } \\ \text { e } \\ \hline \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { Jan- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Dec- } \\ 12 \\ \hline \end{gathered}$	Nov12	$\begin{gathered} \text { Oct- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sep- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Aug- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Jul- } \\ 12 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Jun- } \\ 12 \\ \hline \end{array}$	May12	Apr12	Mar12	Temp Fault \%	Secti on	$\begin{gathered} \text { Typ } \\ \text { e } \\ \hline \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Jan- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Dec- } \\ 12 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Nov- } \\ 12 \\ \hline \end{array}$	$\begin{gathered} \text { Oct- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Sep- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Aug- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Jul- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Jun- } \\ 12 \\ \hline \end{gathered}$	May12	$\begin{gathered} \text { Apr- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Mar- } \\ 12 \\ \hline \end{gathered}$
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	1	1	B	-	-	-	-	-	-	-	-	-	-	-	-
$.584$	1	R	5.07	9.80	4.48	8.60	4.88	5.83	6.51	8.22	$\begin{gathered} 10.4 \\ 2 \end{gathered}$	13.14	$\begin{gathered} 12.9 \\ 1 \end{gathered}$	4.41			R	0.01	8.53	0.19	0.05	1.69	0.36	0.07	4.23	0.01	0.07	$\begin{gathered} 33.9 \\ 4 \end{gathered}$	0.02
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	1	2	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01
	2	R	5.07	9.80	4.48	8.60	4.88	5.83	6.51	8.22	$\begin{gathered} 10.4 \\ 2 \end{gathered}$	13.14	$\begin{gathered} 12.9 \\ 1 \end{gathered}$	4.41			R	0.01	8.53	0.19	0.05	1.69	0.36	0.07	4.23	0.01	0.07	$\begin{gathered} 33.9 \\ 4 \end{gathered}$	0.02
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.94	3	B	-	-	-	-	-	-	-		-	-		-
	3	R	5.15	9.85	4.54	8.70	4.71	5.87	6.60	7.40	$\begin{gathered} \hline 10.5 \\ 6 \end{gathered}$	13.31	$\begin{gathered} \hline 12.3 \\ 0 \end{gathered}$	4.48			R	0.01	7.41	0.25	0.82	8.26	1.48	0.06	$\begin{gathered} 30.8 \\ 3 \end{gathered}$	0.35	0.73	$\begin{gathered} \hline 43.3 \\ 6 \end{gathered}$	0.02
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.97	4	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01
	4	R	5.24	9.88	4.62	8.86	4.77	5.98	6.72	7.46	$\begin{gathered} 10.7 \\ 6 \end{gathered}$	13.56	$\begin{gathered} 11.8 \\ 9 \end{gathered}$	4.56			R	0.01	7.82	0.23	0.55	5.89	1.07	0.06	$\begin{gathered} 21.2 \\ 6 \end{gathered}$	0.23	0.49	$\begin{gathered} 39.9 \\ 7 \end{gathered}$	0.02
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.9	5	B	-	-	-		-	-		-	-	-	-	
	5	R	5.12	9.22	4.40	8.70	4.80	5.66	6.22	8.35	$\begin{gathered} 10.2 \\ 8 \end{gathered}$	11.70	$\begin{gathered} 12.1 \\ 5 \end{gathered}$	3.96			R	0.39	$\begin{gathered} 27.6 \\ 3 \\ \hline \end{gathered}$	4.37	0.29	5.57	7.98	$\begin{gathered} \hline 11.9 \\ 8 \\ \hline \end{gathered}$	1.91	8.98	51.59	$\begin{gathered} \hline 49.9 \\ 3 \\ \hline \end{gathered}$	16.43
	6	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	$\begin{gathered} \mathrm{MOI}^{0.9} \\ \mathrm{BSOS}^{0.9} \\ \mathrm{AC}_{0}^{0.97} \mathrm{~K} \end{gathered}$		B	-	-	-	-	-	-	-	-	-	-	-	-
		R	5.27	9.49	4.52	8.96	4.78	5.68	6.16	8.47		11.5		3.61					$\begin{gathered} 14.3 \\ n^{2} 5 \end{gathered}$	2.38	$\frac{0.23}{1} 2$	5.57	6.58	$\begin{gathered} 10.0 \\ 4 \\ \hline \end{gathered}$	3.05	8.78	34.49	$\begin{gathered} 48.7 \\ 9 \\ \hline \end{gathered}$	16.01
	7	B	0.45	0.63	0.23	0.35	0.56	0.012	0.04	0.8	0.24	0.02	98	0.01				-					-	-	-	-	-	-	-
		R	5.11	$\begin{gathered} \hline 10.0 \\ 9 \\ \hline \end{gathered}$	4.53	8.72	$4!98$	5.75	6.30	8.29	${ }^{10.5}$,	11.9 15	4.47					0	0	19.00	0.09	5.19	9.29	3.93	0.00	8.43	$\begin{gathered} 54.6 \\ 4 \\ \hline \end{gathered}$	0.12
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01			B	-	-	-	-	-	-	-	-	-	-	-	-
	8	R	5.41	9.82	4.67	9.27	4.94	570	6.06	8.63	10.6	11.67	9.59	73.73.		8	R	0.67	9.32	1.67	0.15	3.65	6.09	9.78	3.35	5.70	25.35	$\begin{gathered} 50.8 \\ 4 \end{gathered}$	10.44
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.9	9	B	-	-	-	-	-	-	-	-	-	-	-	
	9	R	4.98	9.92	4.32	8.57	4.90	5.74	6.05	8.18	$\begin{gathered} 10.3 \\ 9 \end{gathered}$	13.09	$\begin{gathered} 13.4 \\ 6 \end{gathered}$	4.40			R	5.23	0.06	9.61	0.16	0.00	5.16	$\begin{gathered} 29.0 \\ 9 \\ \hline \end{gathered}$	5.97	0.01	0.23	2.18	0.02
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.9	10	B	-	-	-		-	-	-	-	-	-		-
	10	R	4.97	9.96	4.43	8.74	4.40	5.75	5.43	8.05	9.38	13.02	$\begin{gathered} \hline 13.8 \\ 1 \\ \hline \end{gathered}$	4.52			R	5.23	5.19	3.57	1.41	$\begin{gathered} 15.0 \\ 9 \\ \hline \end{gathered}$	5.34	$\begin{gathered} 29.3 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 30.8 \\ 0 \\ \hline \end{gathered}$	10.17	0.80	0.01
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	11	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01
	11	R	5.72	9.93	4.93	9.77	4.89	5.96	6.40	7.89	$\begin{gathered} 11.2 \\ 9 \end{gathered}$	12.32	7.82	3.95			R	0.44	8.78	1.15	0.29	4.45	4.30	6.31	9.75	3.75	16.48	$\begin{gathered} 46.9 \\ 6 \end{gathered}$	6.72
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.93	12	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01
	12	R	5.74	$\begin{gathered} 10.1 \\ 7 \\ \hline \end{gathered}$	4.99	$\begin{gathered} 10.1 \\ 8 \\ \hline \end{gathered}$	4.39	5.99	5.28	7.76	$\begin{gathered} 10.3 \\ 4 \end{gathered}$	12.43	8.16	4.14			R	1.50	7.98	1.69	0.54	6.82	4.53	$\begin{gathered} 11.4 \\ 5 \end{gathered}$	9.93	9.78	15.07	$\begin{gathered} 36.6 \\ 7 \end{gathered}$	5.22
		B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	13	B	-	-	-	-	-	-	-	-	-	-	-	-
	13	R	4.96	9.36	4.57	1.37	4.55	4.50	6.42	7.39	10.2	11.61	$\begin{gathered} 13.4 \\ 0 \end{gathered}$	4.54			R	5.45	$\begin{gathered} 18.3 \\ 0 \end{gathered}$	0.96	$\begin{gathered} 154 . \\ 19 \end{gathered}$	$\begin{gathered} 10.4 \\ 9 \end{gathered}$	$\begin{gathered} 31.2 \\ 0 \\ \hline \end{gathered}$	5.80	$\begin{gathered} 23.9 \\ 0 \end{gathered}$	$\begin{gathered} 10.8 \\ 0 \\ \hline \end{gathered}$	39.51	$\begin{gathered} 11.0 \\ 4 \end{gathered}$	0.11
	14	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	14	B	-	-	-	-	-	-	-	-	-	-	-	-
		R	4.96	9.49	4.63	1.19	4.54	4.52	6.10	7.31	$\begin{gathered} 10.3 \\ 4 \end{gathered}$	11.56	$\begin{gathered} 13.5 \\ 5 \end{gathered}$	4.59			R	5.40	$\begin{gathered} 14.3 \\ 0 \end{gathered}$	0.77	$\begin{gathered} 123 . \\ 68 \end{gathered}$	9.46	$\begin{gathered} 24.9 \\ 4 \end{gathered}$	$\begin{gathered} 10.9 \\ 4 \end{gathered}$	$\begin{gathered} 21.5 \\ 6 \end{gathered}$	8.53	34.20	9.14	0.28
	15	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.94	15	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01
		R	5.77	9.84	5.32	1.34	3.99	4.52	4.84	6.69	10.4	10.73	8.09	4.44			R	2.47	9.55	1.46	31.0	7.47	9.59	11.3	12.8	9.47	19.81	29.8	4.00

Kahatapitiya

$\begin{gathered} \text { Temp } \\ \% \end{gathered}$	Secti on	$\begin{gathered} \text { Typ } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Jan- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Dec- } \\ 12 \end{gathered}$	Nov12	$\begin{gathered} \hline \text { Oct- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sep- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Aug- } \\ 12 \end{gathered}$	$\begin{array}{\|c} \hline \text { Jul- } \\ 12 \\ \hline \end{array}$	$\begin{gathered} \text { Jun- } \\ 12 \\ \hline \end{gathered}$	May12	Apr12	Mar12	Temp Fault \%	Secti on	$\begin{gathered} \text { Typ } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Jan- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Dec- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Nov- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Oct- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sep- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Aug- } \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { Jul- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Jun- } \\ 12 \end{gathered}$	May12	$\begin{gathered} \text { Apr- } \\ 12 \end{gathered}$	Mar12	
	15	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.9	15	B	-	-	-	-	-	-	-	-	-	-	-	-	
		R	5.22	10.1	3.73	9.05	4.98	6.01	6.66	8.56	10.5	13.34	13.5	4.43			R	1.68	4.59	13.8	0.02	2.65	1.78	2.65	2.45	6.48	6.85	9.68	2.95	
	16	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.9	16	B	0.76	0.45	0.88	0.66	0.32	0.67	0.55	0.34	0.24	0.32	0.67	0.56	
		R	5.22	10.1	3.73	9.05	4.98	6.01	6.66	8.56	10.5	13.34	13.5	4.43			R	1.68	4.59	13.8	0.02	2.65	1.78	2.65	2.45	6.48	6.85	9.68	2.95	
	17	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.9	17	B	0.76	0.45	0.88	0.66	0.32	0.67	0.55	0.34	0.24	0.32	0.67	0.56	
		R	4.12	9.63	3.06	9.58	4.78	6.29	6.86	8.83	9.47	14.08	14.0	4.58			R	11.3	10.8	14.3	0.07	5.19	1.58	2.94	3.11	15.9	4.16	7.70	2.53	
	18	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01		18	B	-	-	-	-	-	-	-	-	-	-	-		
		R	5.28	10.4	4.70	8.98	5.00	5.80	6.46	7.39	9.77	13.78	14.2	4.01			R	0.70	0.08	0.08	0.72	2.28	4.68	5.44	19.1	16.9	0.27	0.12	8.95	
	19	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	19	B	0.76	0.45	0.88	0.66	0.32	0.67	0.55	0.34	0.24	0.32	0.67	0.56	
		R	4.40	10.3	3.29	10.2	4.98	6.42	6.97	8.01	8.88	15.18	15.1	4.23			R	7.58	7.02	9.30	0.04	3.36	1.02	1.91	2.01	10.2	2.69	4.98	1.64	
	20	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.96	20	B	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	-	-	
		R	4.98	9.77	4.40	8.45	4.83	5.73	6.39	8.15	10.2	12.90	13.2	4.33			R	-		-	-	-	-		-	-	-	-		
	21	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.96	21	B	-	-	-	-	-	-	-	-	-	-	-	-	
		R	4.55	8.28	4.57	8.43	4.98	5.94	6.33	7.99	10.0	13.31	13.5	4.46			R	16.3	48.8	0.07	8.95	0.75	0.18	7.98	12.5	16.5	2.29	7.36	1.17	
	22	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	$\frac{10.24}{10.2}$				$\sqrt{0.961} d 221 \mathbb{H}_{R}^{B}$			-1	$\frac{0}{27.7}$	0.081					-	-	-	-		
		R	3.74	8.39	4.73	8.74	5.00	0	6.49	7.87		13.29	13.5	4.09				2.63				0.09	5.09	11.7	9.78	7.93	10.2	7.49		
	23	B	0.45	0.63	0.23	0.35	0.56	0.0	30.04	0.89	0.24		0.98	0.01	SO.96	Cl_{23}	$\int_{R}^{B_{1}^{t}}$		6.28	536	202	2.97	-	-		-	-	-	-	
		R	4.98	9.75	4.39	8.45	4.83,	5.74	6. 6.39	8.16	10.2	12.91	13.2	4.34				5.02					0.11	0.11	2.46	0.66	0.58	14.2	0.23	
	24	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.0	0.98	0.01	$10^{0.96} \mathrm{~K}$	24	B	-	-	-	-	-	-	-	-	-	-	-		
		R	3.74	8.36	4.72	8.74	5.00	6.t7	6.49	7.88	10.2	13.30	13.5	4.09.			R	20.9	27.9	0.25	4.67	2.65	0.09	5.05	11.7	9.71	7.87	10.3	7.43	
	25	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.96	25	B	-	-	-	-	-	-		-	-	-	-		
		R	3.62	6.14	3.91	8.98	4.92	6.47	6.81	8.03	10.0	13.88	12.3	4.25			R	15.3	37.4	8.11	4.38	4.14	0.11	3.21	9.09	11.6	5.46	20.1	4.94	
	26	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	26	B	0.50	0.40	0.72	0.33	0.18	0.78	0.40	0.18	0.61	0.16	0.34	0.28	
		R	2.58	5.90	2.49	11.2	5.12	7.46	7.59	7.83	8.41	16.79	14.3	4.11			R	10.6	18.8	8.84	1.72	3.66	0.67	2.41	4.75	10.8	3.77	10.8	2.92	
	27	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.93	27	B	-	-	-	-	-	-	-	-	-	-	-		
		R	4.81	10.0	4.64	8.61	4.80	6.02	6.71	7.25	9.87	11.23	12.8	4.53			R	8.13	4.68	0.02	5.40	5.28	0.46	0.40	24.9	17.0	43.97	21.9	0.74	
	28	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.93	28	B	-	-	-	-	-	-	-	-	-	-	-	-	
		R	4.68	10.3	4.03	8.84	4.75	6.22	6.95	7.28	10.2	10.64	13.0	4.67			R	8.30	3.94	8.42	4.06	5.72	0.36	0.25	17.7	10.5	37.83	15.5	0.63	
	29	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	29	B	0.50	0.40	0.72	0.33	0.18	0.78	0.40	0.18	0.61	0.16	0.34	0.28	
		R	1.81	6.17	1.69	12.2	5.03	8.42	8.58	6.49	8.12	13.95	14.1	4.58			R	10.1	15.5	8.75	2.23	4.11	0.60	1.94	7.58	10.7	11.17	11.8	2.42	
	30	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	30	B	0.50	0.40	0.72	0.33	0.18	0.78	0.40	0.18	0.61	0.16	0.34	0.28	
		R	1.97	6.32	1.07	13.4	5.45	8.98	7.66	7.04	8.51	15.29	14.9	4.94			R	8.81	14.1	8.63	1.94	3.70	0.91	3.97	6.74	9.93	9.83	11.1	2.24	
	31	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	31	B	0.50	0.40	0.72	0.33	0.18	0.78	0.40	0.18	0.61	0.16	0.34	0.28	
		R	2.00	6.47	1.15	14.6	5.83	9.40	8.32	7.04	8.82	16.54	16.1	5.24			R	8.15	13.2	7.84	1.78	3.45	1.22	3.62	6.77	9.48	9.01	10.2	2.18	
	32	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	32	B	0.50	0.40	0.72	0.33	0.18	0.78	0.40	0.18	0.61	0.16	0.34	0.28	
		R	1.60	6.86	1.22	15.5	6.03	9.83	8.81	7.20	7.30	17.38	16.8	5.52			R	8.17	12.5	7.39	1.68	3.40	1.28	3.42	6.63	10.8	8.65	9.94	2.09	
	33	B	0.45	0.63	0.23	0.35	0.56	0.01	0.04	0.89	0.24	0.02	0.98	0.01	0.95	33	B	0.50	0.40	0.72	0.33	0.18	0.78	0.40	0.18	0.61	0.16	0.34	0.28	
		R	1.65	7.45	1.23	16.8	5.78	10.6	8.11	7.80	7.00	18.86	17.7	5.91			R	7.67	11.6	6.95	1.57	3.79	1.24	4.36	6.19	10.8	8.06	9.67	2.01	

Cost of Interruption

$\begin{gathered} \text { Sectio } \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \end{gathered}$	Jan-	$\begin{gathered} \text { Dec- } \\ 12 \\ \hline \end{gathered}$	Nov12	$\begin{gathered} \text { Oct- } \\ 12 \end{gathered}$	Sep-	$\begin{gathered} \text { Aug- } \\ 12 \end{gathered}$	Jul-12	$\begin{gathered} \text { Jun- } \\ 12 \\ \hline \end{gathered}$	May- 12	$\begin{gathered} \text { Apr- } \\ 12 \\ \hline \end{gathered}$	Mar- 12	Avg	Sectio n	$\begin{gathered} \text { Typ } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Jan- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Dec- } \\ 12 \\ \hline \end{gathered}$	Nov12	$\begin{aligned} & \text { Oct- } \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Sep- } \\ 12 \\ \hline \end{gathered}$	Aug- 12	$\begin{gathered} \text { Jul- } \\ 12 \end{gathered}$	Jun-	$\begin{gathered} \text { May- } \\ 12 \\ \hline \end{gathered}$	Apr- 12	$\begin{gathered} \text { Mar- } \\ 12 \\ \hline \end{gathered}$
	(488.	(586.	(262.	(417.	(573.			(892.	(324.	(126.	(603.		(371.4	1	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
1	8)	6)	6)	7)	0)			6)	0)	7)	0))		R	-2.95	2.81	-2.42	-4.97	-1.17	-3.05	-3.73	0.57	-6.08	-7.60	26.40	-2.56
														2	B	0.19	0.26	0.10	0.15	0.23	0.00	0.02	0.37	0.10	0.01	0.41	0.00
2	277.1	485.6	128.8	178.0	380.1	(38.6)	(24.0)	622.1	84.4	(92.7)	$\text { . } 9$	(32.4)	252.8		R	-2.95	2.81	-2.42	-4.97	-1.17	-3.05	-3.73	0.57	-6.08	-7.60	26.40	-2.56
	(489.	(609.	(262.	(408.	(486.			(538.	(320.	(119.	(502.		(325.4	3	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
3	4)	1)	5)	4)	1)			0)	7)	4)	1))		R	-2.99	1.22	-2.41	-4.31	5.01	-2.04	-3.80	$\begin{gathered} \hline 24.6 \\ 6 \end{gathered}$	-5.84	-7.08	33.58	-2.59
														4	B	0.17	0.24	0.09	0.14	0.22	0.00	0.02	0.34	0.09	0.01	0.38	0.00
4	252.7	439.4	116.4	164.6	409.1	(30.5)	(28.0)	813.2	72.4	(91.4)	$\text { . } 2$	(33.9)	264.6		R	-3.05	1.81	-2.47	-4.65	2.93	-2.45	-3.86	$\begin{gathered} \hline 16.2 \\ 6 \\ \hline \end{gathered}$	-6.07	-7.44	31.83	-2.64
5	(484.	(352.	(209.	(415.	(525.	48.5		$(929$.	(209.		(442.		(229.3	5	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
5	4)	3)	4)	7)	6)	48		0	3)		2)				R	-2.64		1.37	-4.8	2.21	3.87	7.16	3.16	2.08	39.60	37.84	12.48
6	(485.	(522.	(235.	(418.	(525.	7	36.6		(212.		$\mathrm{S}_{(447 .}$		$\frac{1}{(267.2}$	6		N0.2	-0.37	-0.1	10	0.3	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
		6)	6)	5)	4)		-		3)	21.5	9)			1	37	0.50	510	2.22	2.61	5.43	2.21	1.87	24.29	37.43	12.30
7	(474.	(708.	(261.	(419.	(596.				T325.	20.4)	(380.)	2)	(34.0	$\underline{6}$	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
	4)	9)	5)	5)	4)			0)							R	-1.93	-5.89	-2.34	-5.09	-2.83	1.32	4.69	1.31	-6.17	-0.04	42.20	-2.51
8	(483.	(588.	(245.	(422.	(551.			(913.	(254.		(409.		(292.3	7	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
	2)	$9)$	9)	0)	0)))		6)				R	-2.55	2.65	-1.23	-5.28	0.40	2.16	5.26	2.02	-1.11	16.00	40.16	7.21
9	(422.	(706.	(142.	(416.	(596.	12.2	278.6	(876.	(323.	(124.	$(1,05$	(40.9)	(368.0	8	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	1.80	-5.74	6.12	-4.86	-2.86	1.29	22.65	0.60	-6.06	-7.44	-5.89	-2.56
	(422.	(642.	(219.	(401.	(401.						(1,07		(303.8	9	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
10	0)	3)	9)	7)	9)	14.5	287.4	2)	74.2	2.0	7.3)	(41.9))		R	1.80	-1.14	0.62	-3.83	11.01	1.45	23.27	4.80	$\begin{gathered} 22.2 \\ 5 \end{gathered}$	1.55	-7.34	-2.62
											1,173			9*	B	0.16	0.23	0.08	0.13	0.20	0.00	0.01	0.33	0.09	0.01	0.36	0.00
11	239.2	428.2	118.2	141.7	368.1	12.2	56.6	619.8	106.8	131.3	. 3	60.4	288.0		R	-2.93	2.54	-1.78	-5.43	1.37	0.60	2.25	4.65	-3.04	8.46	40.05	4.08
12	237.5	391.9	116.6	129.6	382.9	13.6	129.9	590.1	184.3	106.8	989.5	37.2	275.8	10	B	0.16	0.22	0.08	0.12	0.19	0.00	0.01	0.31	0.08	0.01	0.34	0.00
	237.5	391.9	116.6	129.6	382.9						989.5		275.8		R	-1.96	1.49	-1.34	-5.44	3.78	0.72	7.57	4.70	3.06	6.76	29.34	2.44
13	(415.2)	$\begin{gathered} (458 . \\ 6) \end{gathered}$	$\begin{aligned} & (253 . \\ & 2) \end{aligned}$	$\begin{gathered} 1,699 \\ .7 \end{gathered}$	$\begin{gathered} \text { (453. } \\ 9) \end{gathered}$	373.7	(15.0)	$\begin{gathered} (626 . \\ 1) \end{gathered}$	(178.1)	412.4	$\begin{aligned} & \text { (936. } \\ & 7 \text {) } \end{aligned}$	(40.7)	(74.3)	11	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	2.28	$\begin{gathered} 11.9 \\ 2 \end{gathered}$	-1.75	$\begin{gathered} 145.6 \\ 8 \end{gathered}$	7.31	27.01	1.76	$\begin{gathered} \hline 18.3 \\ 9 \end{gathered}$	4.30	30.75	2.66	-2.54

14	(415. 8)	(513.1)	(256. 4)	$\begin{gathered} 1,293 \\ .9 \end{gathered}$	(467.6)	289.9	56.2	$\begin{aligned} & (656 . \\ & 7) \end{aligned}$	$\begin{gathered} (209 . \\ 6) \end{gathered}$	341.8	(963. 3)	(38.9)	$\begin{gathered} (128.3 \\) \end{gathered}$	12	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	2.24	8.04	-1.97	$\begin{gathered} 116.8 \\ 0 \end{gathered}$	6.33	21.05	6.83	$\begin{gathered} 16.2 \\ 1 \end{gathered}$	2.06	25.73	0.76	-2.41
15	257.9	427.1	115.0	611.2	405.3	93.2	134.1	653.6	184.5	185.7	921.8	19.4	334.1	13	B	0.16	0.22	0.08	0.12	0.20	0.00	0.01	0.32	0.09	0.01	0.35	0.00
															R	-1.05	3.23	-1.73	28.40	4.69	6.37	7.82	8.13	2.78	12.35	23.34	1.17

$\begin{gathered} \text { Sectio } \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Jan- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Dec- } \\ 12 \end{gathered}$	Nov12	$\begin{gathered} \text { Oct- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Sep- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Aug- } \\ 12 \end{gathered}$	Jul-12	$\begin{gathered} \text { Jun- } \\ 12 \end{gathered}$	$\begin{gathered} \text { May- } \\ 12 \end{gathered}$	Apr-12	$\begin{gathered} \text { Mar- } \\ 12 \end{gathered}$	Avg	Sectio n	Typ	Feb-	$\begin{gathered} \text { Jan- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Dec- } \\ 12 \end{gathered}$	Nov12	$\begin{aligned} & \text { Oct- } \\ & 12 \end{aligned}$	$\begin{gathered} \text { Sep- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Aug- } \\ 12 \end{gathered}$	$\begin{aligned} & \text { Jul- } \\ & \hline 12 \end{aligned}$	$\begin{gathered} \hline \text { Jun- } \\ 12 \\ \hline \end{gathered}$	May12	Apr12	Mar12
16	(468.8)	$\begin{gathered} (644 . \\ 9) \end{gathered}$	(64.3)	$\begin{gathered} (421 . \\ 8) \end{gathered}$	(560. 3)	(30.4)	(57.1)	(920. 5)	$\begin{gathered} (233 . \\ 8) \end{gathered}$	(33.1)	(949.2)	0.1	(365.3)	14	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	-1.53	-1.33	11.69	-5.26	-0.26	-1.74	-1.24	2.55	0.34	-0.94	1.77	0.36
17	695.3	121.0	$\begin{gathered} 1,433 . \\ 4 \end{gathered}$	701.5	(15.7)	$\begin{gathered} 1,110 . \\ 0 \end{gathered}$	879.0	(341. 8)	174.7	511.5	191.1	953.2	534.4	15	B	0.42	0.08	0.75	0.46	-0.01	0.67	0.53	0.18	0.10	0.31	0.10	0.56
															R	-1.53	-1.33	11.69	-5.26	-0.26	-1.74	-1.24	2.55	0.34	-0.94	1.77	0.36
18	826.5	58.0	1,344.	0.3		1,035.		(372.	$\underset{277.7}{0}$				509.1			U,	0.96	0.69	0.42	C. 03	0.63	0.49	0.20	0.09	0.29	0.06	0.52
			1			${ }^{2}$		ξ^{50}	-1									1.		2.09	-2.19	-1.24	2.23	9.41	-4.31	-0.97	-0.30
	(480.	(710.	(266.					(683.					(362)		B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
19	8)	8)	1)	8)	5)	10.2	18.6)		\%		1)	,			R	-2.39	-6.02	-2.67	-4.55	-0.71	1.15	1.50	$\begin{gathered} 14.2 \\ 9 \end{gathered}$	$\begin{gathered} 10.7 \\ 7 \end{gathered}$	-7.78	-8.18	6.34
20	745.4	66.6	$\begin{gathered} 1,210 . \\ 0 \end{gathered}$	579.3	(64.8)	980.6	769.6	(404. 1)	186.3	379.8	(9.1)	838.8	439.9	18	B	0.46	0.04	0.66	0.39	-0.04	0.60	0.47	0.21	0.08	0.28	0.03	0.50
															R	-2.57	0.25	6.45	-5.96	0.11	-2.83	-2.35	2.87	4.07	-6.44	-4.37	-1.00
21	(112. 4)	$\begin{gathered} (170 . \\ 3) \end{gathered}$	593.1	$\begin{gathered} (408 . \\ 0) \end{gathered}$	$\begin{gathered} (535 . \\ 0) \end{gathered}$	$\begin{gathered} 1,310 . \\ 3 \end{gathered}$	275.4	$\begin{gathered} (920 . \\ 9) \end{gathered}$	$\begin{gathered} 1,178 . \\ 5 \end{gathered}$	$\begin{gathered} (118.1 \\) \end{gathered}$	$\begin{gathered} (1,083 . \\ 2) \end{gathered}$	(40.6)	(2.6)	19	B	-0.04	-0.05	0.37	-0.20	-0.29	0.80	0.19	0.50	0.74	-0.01	-0.57	0.00
															R	-2.91	-5.71	-2.57	-4.93	-2.82	-3.35	-3.73	4.76	-5.98	-7.54	-7.76	-2.53
22	$\begin{gathered} (263 . \\ 9) \end{gathered}$	(76.6)	(265. 2)	$\begin{gathered} (303 . \\ 9) \end{gathered}$	$\begin{gathered} (588 . \\ 0) \end{gathered}$	(52.5)	9.3	(791. 9)	$\begin{gathered} (111 . \\ 8) \end{gathered}$	$\begin{gathered} (100.2 \\) \end{gathered}$	(991.9)	(26.8)	$\begin{gathered} (296 . \\ 9) \end{gathered}$	20	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	13.04	$\begin{gathered} 39.1 \\ 0 \end{gathered}$	-2.61	3.13	-2.23	-3.31	3.49	6.60	9.02	-5.71	-1.27	-1.55
23	(194. 4)	$\begin{gathered} (343 . \\ 9) \end{gathered}$	$\begin{gathered} (266 . \\ 5) \end{gathered}$	(360.4)	(564. 4)	(55.4)	(28.6)	(800. 3)	$\begin{gathered} (199 . \\ 1) \end{gathered}$	(28.6)	(955.1)	56.2	$\begin{gathered} \text { (311. } \\ 7) \end{gathered}$	21	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	17.99	$\begin{gathered} 20.0 \\ 9 \end{gathered}$	-2.69	-0.89	-0.55	-3.52	0.79	6.00	2.81	-0.62	1.35	4.35
24	(403. 4)	(31.9)	3.6	(379. 7)	$\begin{gathered} (532 . \\ 7) \end{gathered}$	(51.6)	(90.8)	(920. 4)	$\begin{gathered} (314 . \\ 3) \end{gathered}$	$\begin{gathered} (118.5 \\) \end{gathered}$	(903.5)	(37.7)	(315.1)	21*	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	3.12	42.2 8	16.52	-2.26	1.70	-3.25	-3.63	2.55	-5.39	-7.02	5.02	-2.33

	(196.	(341.	(264.	(360.	(564.	(55.4)		(801.	(200.		(951)	55.5	7)	22	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
25	0)	0)	2)	6)	2)			3)	1)						R	17.88	20.2 9	-2.53	-0.90	-0.54	-3.52	0.75	5.93	2.74	-0.68	1.38	4.30
26	$\begin{gathered} (269 . \\ 5) \end{gathered}$	$\begin{gathered} (176 . \\ 6) \end{gathered}$	$\begin{gathered} (152 . \\ 5) \end{gathered}$	(363. 1)	$\begin{gathered} (541 . \\ 7) \end{gathered}$	(57.6)	(52.8)	$\begin{gathered} (829 . \\ 2) \end{gathered}$	$\begin{gathered} (165 . \\ 1) \end{gathered}$	(60.9)	(806.6)	26.1	(287. 4)	23	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	12.65	$\begin{gathered} 31.9 \\ 9 \end{gathered}$	5.42	-1.08	1.06	-3.67	-0.93	3.94	5.22	-2.92	11.92	2.21
27	473.4	204.2	$\begin{gathered} 1,006 . \\ 1 \end{gathered}$	109.3	$\begin{gathered} (265 . \\ 9) \end{gathered}$	$\begin{gathered} 1,176 . \\ 1 \end{gathered}$	554.6	$\begin{gathered} \text { (601. } \\ 9) \end{gathered}$	799.4	148.7	(419.4)	442.6	302.3	23*	B	0.21	0.00	0.54	0.11	-0.16	0.72	0.34	0.35	0.43	0.14	-0.26	0.26
															R	8.56	$\begin{gathered} 14.0 \\ 4 \end{gathered}$	6.76	-4.97	0.42	-3.74	-2.19	0.15	5.15	-6.30	1.74	0.31
28	$\begin{gathered} (380 . \\ 6) \end{gathered}$	(646.1)	(266. 4)	(346. 4)	$\begin{gathered} (525 . \\ 5) \end{gathered}$	(49.3)	(89.6)	$\begin{gathered} (610 . \\ 5) \end{gathered}$	(92.1)	475.0	(786.2)	(32.2)	(279. 1)	24	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	4.75	-1.42	-2.69	0.10	2.21	-3.08	-3.54	19.5 0	$\begin{gathered} 10.4 \\ 2 \end{gathered}$	35.21	13.37	-1.94
29	(377. 2)	$\begin{gathered} (658 . \\ 2) \end{gathered}$	(149. 3)	$\begin{gathered} (366 . \\ 3) \end{gathered}$	$\begin{gathered} (519 . \\ 2) \end{gathered}$	(52.2)	(93.5)	(707. 4)	(181. 1)	397.9	(874.5)	(35.0)	(301. 3)	25	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	0.52	-0.14	-0.01	-0.57	0.00
															R	4.98	-2.28	5.64	-1.31	2.66	-3.29	-3.82	$\begin{gathered} 12.6 \\ 1 \end{gathered}$	4.09	29.72	7.08	-2.13
30	473.1	168.8	1,024.	14.0	(255.	1,180.		(549.							B	0.21	0.01	0.54	0.11	-0.16	0.73	0.35	0.35	0.43	0.14	-0.26	0.26
			9		7)	7		8)		11	S	O								0.92	-4.35	-3.19	3.33	5.38	2.35	2.88	-0.40
31	454.5	140.1	1,015.	94.0	(268.	1,166			786.9	240.3	(421.3)	426.9	11.			1	-	d)11	-0.16	0.72	0.34	0.35	0.43	0.14	-0.26	0.26
															R	7.22	9.48	7.40	-6.06	0.26	-4.40	-0.78	2.16	4.26	0.21	1.60	-0.80
32	445.5	144.7	$\begin{gathered} 1,030 . \\ 7 \end{gathered}$	94.2	(267. 3)	$\begin{gathered} 1,194 . \\ 3 \end{gathered}$	578.9	0)	$801: 9$	227.5	$-(429.2)$	$1721 .$	3978	$\frac{5}{27}$	B	0.21	0.01	0.55	0.11	-0.16	0.74	0.35	0.35	0.44	0.14	-0.25	0.26
															R	6.58	8.83	6.77	-6.86	-0.12	-4.33	-1.42	2.32	3.85	-1.09	0.23	-0.99
33	449.0	131.2	$\begin{gathered} 1,024 . \\ 2 \end{gathered}$	85.5	(269. 6)	$\begin{gathered} 1,191 . \\ 5 \end{gathered}$	572.2	(564. 1)	832.8	215.8	(437.9)	430.4	305.1	28	B	0.21	0.01	0.55	0.11	-0.16	0.74	0.35	0.35	0.44	0.14	-0.25	0.26
															R	6.82	7.87	6.31	-7.47	-0.29	-4.53	-1.90	2.10	6.05	-1.93	-0.39	-1.24
34	442.0	106.5	1,005.	67.3	$\begin{gathered} (266 . \\ 1) \end{gathered}$	$\begin{gathered} 1,171 . \\ 3 \end{gathered}$	583.3	(578. 9)	823.4	191.8	(456.1)	421.0	292.5	29	B	0.21	0.01	0.54	0.11	-0.16	0.73	0.35	0.35	0.43	0.14	-0.26	0.26
															R	6.32	6.59	5.82	-8.36	0.18	-5.02	-0.63	1.26	6.12	-3.44	-1.28	-1.56

$\begin{aligned} & \text { Sectio } \end{aligned}$	$\begin{gathered} \text { Feb- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Jan- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Dec- } \\ 12 \\ \hline \end{gathered}$	Nov12	$\begin{gathered} \text { Oct- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sep- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Aug- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Jul- } \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { Jun- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { May- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Apr- } \\ 12 \end{gathered}$	Mar12	Avg	$\begin{gathered} \text { Sectio } \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \text { Typ } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Feb- } \\ 13 \end{gathered}$	$\begin{gathered} \text { Jan- } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Dec- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Nov- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Oct- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Sep- } \\ 12 \end{gathered}$	$\begin{gathered} \text { Aug- } \\ \hline 12 \end{gathered}$	$\begin{gathered} \hline \text { Jul- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Jun- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { May- } \\ 12 \end{gathered}$	Apr12	$\begin{gathered} \text { Mar- } \\ 12 \\ \hline \end{gathered}$
35	(485)	(640)	(263)	(413)	(472)	113	(6)	$\begin{gathered} (952 \\) \end{gathered}$	(243)	988	$\begin{aligned} & (1,07 \\ & 9) \end{aligned}$	(29)	$\begin{gathered} (290 \\) \end{gathered}$	30	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.66	-1.01	-2.48	-4.62	5.99	8.49	2.42	-4.83	-0.32	71.67	-7.46	-1.74
36	(485)	(615)	(239)	(414)	(490)	68	(13)	$\begin{gathered} (950 \\) \end{gathered}$	(281)	560	$\begin{aligned} & (1,08 \\ & 2) \end{aligned}$	(30)	$\begin{gathered} \text { (331 } \\ \text {) } \end{gathered}$	31	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.69	0.77	-0.71	-4.68	4.76	5.27	1.89	-4.63	-3.03	41.26	-7.69	-1.76
37	(488)	(646)	(263)	(417)	(588)	148	(67)	$\begin{gathered} \text { (951 } \\ \text {) } \end{gathered}$	(320)	223	$\begin{gathered} (1,07 \\ 6) \end{gathered}$	(41)	$\begin{gathered} (374 \\) \end{gathered}$	32	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.92	-1.39	-2.47	-4.93	-2.23	10.97	-1.93	-4.69	-5.81	17.31	-7.25	-2.54
38	(488)	(644)	(232)	(417)	(588)	59	(13)	$\begin{gathered} (946 \\) \end{gathered}$	(320)	182	$\begin{gathered} (1,07 \\ 6) \end{gathered}$	(31)	$\begin{gathered} (376 \\) \end{gathered}$	32*	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.92	-1.25	-0.23	-4.91	-2.20	4.59	1.90	-4.40	-5.79	14.40	-7.22	-1.86
39	(489)	(649)	(251)	(418)	(589)	100	(46)	$\begin{gathered} (950 \\) \end{gathered}$	(321)	188	$\begin{gathered} (1,07 \\ 7) \end{gathered}$	(37)	$\begin{gathered} (378 \\) \end{gathered}$	33	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.94	-1.60	-1.57	-4.97	-2.27	7.56	-0.46	-4.62	-5.87	14.78	-7.33	-2.28
40	(490)	(650)	(246)	(420)	(586)	194	(30)	$\begin{gathered} (946 \\) \end{gathered}$	(270)	448	(992)	(34)	$\begin{gathered} (335 \\) \end{gathered}$	34	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-3.03	-1.71	-1.26	-5.10	-2.06	14.24	0.67	-4.39	-2.27	33.28	-1.27	-2.07
41	(490)	(642)	(245)	(420)	(553)	143	(27)	$\begin{gathered} (950 \\ \text {) } \end{gathered}$	$(2 \overline{7} 8)$	475	Q0S	(3)	(337	35	1		$-\frac{0.37}{}$	$$	$\begin{gathered} -0.20 \\ 214 \end{gathered}$	$\begin{gathered} -0.33 \\ -0.28 \\ \hline 0 . \end{gathered}$	0.00 10.61	-0.02 0.90	-0.52	-0.14 -2.83	-0.01 35.24	-0.57 -3.98	0.00 -2.06
42	(489)	(649)	(265)	(417)	(519)		(54)		(318)	(1129)	(1)04		1392	36	${ }_{8}$	10.26	SU	[10	101	$S^{0.33}$	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.98	-1.63	-2.61	-4.95	2.69	3.02	-1.04	-1.94	-5.64	-7.74	-5.20	4.35
43	(492)	(648)	(257)	(425)	(538)	133	(53)	$\begin{gathered} 930 \\ 1 \end{gathered}$	(279)	201	$(1,02$ 6)		${ }^{4658} \mathrm{CO} \mathrm{C}_{37}$		B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-3.15	-1.54	-2.04	-5.46	1.29	9.85	-0.93	-3.26	-2.87	15.70	-3.68	1.71
44	(489)	(642)	(255)	(399)	(585)	116	34	$\begin{gathered} (919 \\) \end{gathered}$	(238)	(112)	$\begin{gathered} (1,06 \\ 8) \end{gathered}$	249	$\begin{gathered} (359 \\) \end{gathered}$	38	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.98	-1.10	-1.87	-3.65	-2.00	8.66	5.27	-2.47	0.02	-6.53	-6.68	18.05
45	(488)	(646)	(259)	(423)	(549)	144	(26)	$\begin{gathered} (930 \\) \end{gathered}$	(269)	133	$\begin{gathered} (1,04 \\ 1) \end{gathered}$	92	$\begin{gathered} (355 \\) \end{gathered}$	40	B	-0.26	-0.37	-0.13	-0.20	-0.33	0.00	-0.02	-0.52	-0.14	-0.01	-0.57	0.00
															R	-2.92	-1.41	-2.14	-5.37	0.51	10.65	0.95	-3.24	-2.14	10.86	-4.77	6.91
46	1,120	148	210	453	(90)	1,150	272	441	532	397	(403)	1,511	479		B	0.68	0.13	0.14	0.31	-0.03	0.70	0.19	0.30	0.36	0.30	-0.17	0.91
														41	R	-2.91	-5.71	-2.57	-4.93	-2.82	-3.35	-3.73	-4.76	-5.98	-7.54	-7.76	-2.53
47	494	227	226	466	(32)	1,373	346	493	604	666	(346)		516		B	0.31	0.15	0.15	0.32	-0.02	0.72	0.20	0.32	0.37	0.30	-0.16	0.93
												1,677		42	R	-2.98	-1.41	-2.14	-5.37	0.51	10.65	0.95	-3.24	-2.14	10.86	-4.77	6.91
48	110	502	420	288	57	1,550	1,008	218	410	844	(435)	1,499	539	43	B	0.09	0.31	0.26	0.21	0.03	0.82	0.58	0.15	0.26	0.41	-0.22	0.82
				288		1,550	1,008					1,499			R	-2.98	-1.41	-2.14	-5.37	0.51	10.65	0.95	-3.24	-2.14	10.86	-4.77	6.91
49	107	486	412	277	52	1,507	986	198	391	823	(453)	1,467	521	44	B	0.09	0.30	0.26	0.21	0.03	0.81	0.58	0.15	0.25	0.40	-0.22	0.81
															R	-3.17	-1.70	-2.20	-5.66	0.64	8.65	0.11	-3.78	-3.00	9.91	-5.60	5.67
50	401	(168)	115	89	464	833	1111	$(239$	1,070	919	(577)	1,020	420	45	B	0.26	-0.05	0.09	0.09	0.30	0.52	0.68	-0.10	0.68	0.60	-0.27	0.62
								$)$							R	-2.91	-5.71	-2.57	-4.93	-2.82	-3.35	-3.73	-4.76	-5.98	-7.54	-7.76	-2.53
51	155	298	320	232	222			131	681				530		B	0.11	0.19	0.21	0.18	0.12	0.72	0.62	0.07	0.40	0.48	-0.23	0.76
						1,327	1,051			1,021	(428)	1,355			R	-2.24	-1.72	-2.36	-4.74	0.95	6.64	-0.60	0.54	-0.54	15.00	-2.16	4.37

Annex 4.1

Annex 4.2

Fuses Co-ordinate with 100K fuse

Annex 4.3

Annex 4.4

Annex 4.6

Annex 4.5

Annex 4.7

Annex 5

Annexure 6-Temporary Fault percentage of Spur lines

Temporary Fault \% of Spurs of Matara Feeder 7			Temporary Fault \% of Spurs of Galle Feeder 8			Temporary Fault \% of Spurs of Ambalagoda Feeder 3		
No	Name of the Section	Temporary fault percentage	No	Name of the Section	Temporary fault percentage	No	Name of the Section	Temporary fault percentage
1	Halgahapola spur	90	1	Timber Corp Spur	0	1	Supem Uyana Tapping	100
2	ehelakanda spur	76	2	Ukwatta Tapping	90	2	Berathuduwa Spur	94
3	Gammedagama tapping	80	3	Welipitimodara Tapping	90	3	Daluwathumulla Spur	90
4	Mawarala spur	78	4	Wakwella Spur	95	4	Manampita Tapping	95
5	Kudapana tapping	76	5	Beraliyadolawatta	90	5	Dorala Tapping	100
6	Rathnayaka tapping	80	6	Ananda Mw Spur	0	6	Summercity Tapping	96
7	Pallewela spur	90	7	Karapitiya Spur	80	7	Thanipolgaha Tapping	95
8	Danhena Tapping	80				8	Kuleegoda Tapping	0
9	Padukkahena spur	80				9	Galagoda Spur	96
10	Atapattukanda Tapping	90				10	Keoline Factory Spur	90
11	Ranagala Tapping	80						
12	Meepawila Tapping	85						
13	Rathkekulawala spur	- 90						
14	Kotahore Tapping	90		of Mora				
15	Gatara Tapping	SP2 ${ }^{2} 90$						
16	Polgahamulla Spur	$\frac{-3)}{20}$		Theses	seltat			
17	Maragoda Spur	N90						
18	Balakawela Water Pump Tapping	96		1 C				
19	Yahamulla Tapping	- 60						
20	Nemmahena Tapping	70						
21	Pettare Tapping	80						
22	Polathugoda Tapping	90						
23	Udadamana Tapping	96						
24	Masmulla Spur	80						
25	Malimboda Tapping	90						
26	Vitiyala Tapping	94						
27	Miriswatta Tapping	100						

