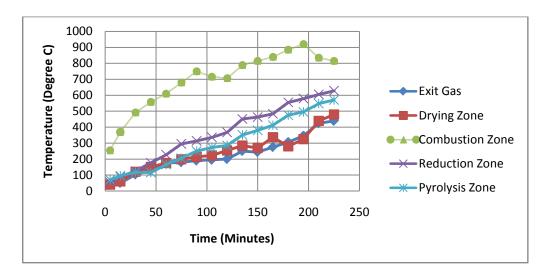
References

- [1] Ecotricity. The End Of Fossil Fuels
- Available: <u>https://www.ecotricity.co.uk/our-green-energy/energy-independence/the-</u><u>end-of-fossil-fuels</u>
- [2] T. N. Academics. *Need to know about Energy* Available: <u>http://needtoknow.nas.edu/energy/</u>
- [3] T. B. Reed and D. Jantzen, "Generator Gas, The Swedish Experience from 1939-1945," *Solar Energy Research Institute, Colorado, USA*, 1979.
- [4] S. Bhattacharya, R. Attalage, M. A. Leon, G. Amur, P. A. Salam, and C. Thanawat, "Potential of biomass fuel conservation in selected Asian countries," *Energy conversion and Management*, vol. 40, pp. 1141-1162, 1999.
- [5] A. K. Rajvanshi, "Biomass gasification," *Alternative energy in agriculture*, vol. 2, pp. 82-102, 1986.
- [6] S. B. o. S. Lanka, "Sri LankaSocio-Economic Data 2010," 2010.
- [7] D. Gunarathne, "Optimization of the performance of down-draft biomass gasifier installed at National Engineering Research & Development (NERD) Centre of Sri Lanka," KTH, 2012. Electronic Theses & Dissertations
- [8] A. Abeygunawardanab". Clifficidia fourth plantation crop of Sri Lanka," 2009.
- [9] P. McKendry, "Energy production from biomass (part 1): overview of biomass," *Bioresource technology*, vol. 83, pp. 37-46, 2002.
- [10] A. Kumar, D. D. Jones, and M. A. Hanna, "Thermochemical biomass gasification: a review of the current status of the technology," *Energies*, vol. 2, pp. 556-581, 2009.
- [11] G. Fischer and L. Schrattenholzer, "Global bioenergy potentials through 2050," *Biomass and bioenergy*, vol. 20, pp. 151-159, 2001.
- [12] M. Parikka, "Global biomass fuel resources," *Biomass and Bioenergy*, vol. 27, pp. 613-620, 2004.
- [13] R. D. Perlack, L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes, and D. C. Erbach, "Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply," DTIC Document2005.

- [14] L. Maio. (2006). *Energias Renováveis*. Available: http://www.minerva.uevora.pt/odimeteosol/energias.htm
- [15] M. van der Hoeven, "World Energy Outlook 2013," 2013.
- [16] V. Strezov and T. J. Evans, *Biomass processing technologies*: CRC Press, 2014.
- [17] P. McKendry, "Energy production from biomass (part 2): conversion technologies," *Bioresource technology*, vol. 83, pp. 47-54, 2002.
- [18] S. V. Vassilev, D. Baxter, L. K. Andersen, and C. G. Vassileva, "An overview of the chemical composition of biomass," *Fuel*, vol. 89, pp. 913-933, 2010.
- [19] S. C. Capareda, *Biomass energy conversion*: INTECH Open Access Publisher, 2011.
- [20] S. Gupta and P. Manhas, "Percentage generation and estimated energy content of municipal solid waste at commercial area of Janipur, Jammu," *Environment Conservation Journal*, vol. 9, pp. 27-31, 2008.
- [21] A. J. Tsamba, W. Yang, and W. Blasiak, "Pyrolysis characteristics and global kinetics of coconut and cashew nut shells," *Fuel Processing Technology*, vol. 87, pp 523-530, 2006.
 [21] A. J. Tsamba, W. Yang, and W. Blasiak, "Pyrolysis characteristics and global kinetics of coconut and cashew nut shells," *Fuel Processing Technology*, vol. 87, pp 523-530, 2006.
 [21] A. J. Tsamba, W. Yang, and W. Blasiak, "Pyrolysis characteristics and global kinetics of coconut and cashew nut shells," *Fuel Processing Technology*, vol. 87, pp 523-530, 2006.
 [21] B. Basiak, "Dissertations of coconut and cashew nut shells," *Fuel Processing Technology*, vol. 87, pp 523-530, 2006.
- [22] P. Raman, J. Muralij D. Sakthivadivel, and V. Vigneswaran, "Performance evaluation of three types of forced draft cook stoves using fuel wood and coconut shell," *Biomass and Bioenergy*, vol. 49, pp. 333-340, 2013.
- [23] T. K. Rout, "Pyrolysis of coconut shell," 2013.
- [24] K. Sivakumar and N. K. Mohan, "Performance analysis of downdraft gasifier for agriwaste biomass materials," *Indian Journal of Science and Technology*, vol. 3, pp. 58-60, 2010.
- [25] F. A. Ola and Jekayinfa, "PYROLYSIS OF MANGO STONE SHELL: EFFECT OF HEATING TEMPERATURE AND RESIDENCE TIME ON PRODUCT YIELDS " 2014.
- [26] B. Prabir, "Biomass gasification and pyrolysis practical design and theory," *Published by Else¬ vier Inc*, 2010.
- [27] P. Schapfer and J. Tobler, "Theoretical and practical investigations upon the driving of motor vehicles with wood gas," *Bern, Switzerland*, 1937.
- [28] P. Samy Sadaka and P. Eng, "1. Gasification."


- [29] J. Schoeters, K. Maniatis, and A. Buekens, "The fluidized-bed gasification of biomass: experimental studies on a bench scale reactor," *Biomass*, vol. 19, pp. 129-143, 1989.
- [30] A. Ergudenier, "Gasification of wheat straw in a dual-distributor type fluidized bed reactor," Thesis (Ph. D.)--Technical University of Nova Scotia, 1993.
- [31] D. C. Elliott and L. J. Sealock Jr, "Low temperature gasification of biomass under pressure," in *Fundamentals of thermochemical biomass conversion*, ed: Springer, 1985, pp. 937-950.
- [32] M. Voloch, R. Neuman, M. Ladisch, R. Peart, and G. Tsao, "The effects of oxygen and temperature on gas composition from gasification of corn cobs," *Paper, American Society of Agricultural Engineers*, 1983.
- [33] D. S. Scott, J. Piskorz, M. A. Bergougnou, R. Graham, and R. P. Overend, "The role of temperature in the fast pyrolysis of cellulose and wood," *Industrial & engineering chemistry research*, vol. 27, pp. 8-15, 1988.
- [34] S. Alves and J. Figueiredo, "A model for pyrolysis of wet wood," *Chemical Engineering Science*, vol. 44, pp. 2861-2869, 1989.
- [35] R. Font, A. Marcilla, J. Devesa, and E. Verdu, "Gaseous hydrocarbons from flash pyrolysis of almond shells," *Industrial & engineering chemistry* research, voE 27,550,1143 [1149;3988] Dissertations www.lib.mrt.ac.lk
- [36] S. Sadaka, A. Ghaly, and M. Sabbah, "Development of an air-steam fluidized bed gasifier," *Misr Journal of Agricultural Engineering*, vol. 15, p. 47, 1998.
- [37] P. J. van den Enden and E. S. Lora, "Design approach for a biomass fed fluidized bed gasifier using the simulation software CSFB," *Biomass and bioenergy*, vol. 26, pp. 281-287, 2004.
- [38] P. Quakk, H. Knoef, and H. Stassen, "Energy from biomass: a review of combustion and gasification technology," *World Bank Technical Paper*, 1999.
- [39] S. Rowland, "Design and testing of a small-scale updraft gasifier for gasification of eastern redcedar," Oklahoma State University, 2010.
- [40] P. Yadav, P. Sharma, B. Gupta, and M. Pandey, "Construction of an Updraft Biomass Gasifier and Composition Analysis for Different Biomass Fuels," in *International Journal of Engineering Research and Technology*, 2013.
- [41] S. Ojolo and J. Orisaleye, "Design and Development of a Laboratory Scale Biomass Gasifier," *Journal of Energy*, vol. 4, p. 33, 2010.

- [42] S. J. Ojolo, S. M. Abolarin, and O. Adegbenro, "Development of a laboratory scale updraft gasifier," *International Journal of Manufacturing Systems*, vol. 2, pp. 21-42, 2012.
- [43] G. Maschio, A. Lucchesi, and G. Stoppato, "Production of syngas from biomass," *Bioresource Technology*, vol. 48, pp. 119-126, 1994.
- [44] L. Waldheim and T. Nilsson, "Heating value of gases from biomass gasification," *Report prepared for: IEA bioenergy agreement, Task,* vol. 20, 2001.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

APPENDICES

Appendix –A: Temperature profiles summary of gasifier zones

Figure. A-1: Temperature profile of different zones of gasifier for coconut shell

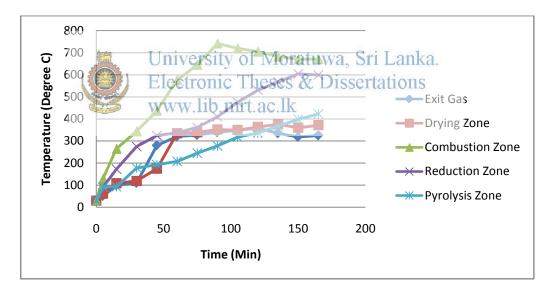


Figure. A-2: Temperature profile of different zones of gasifier for Mango Pit Shell

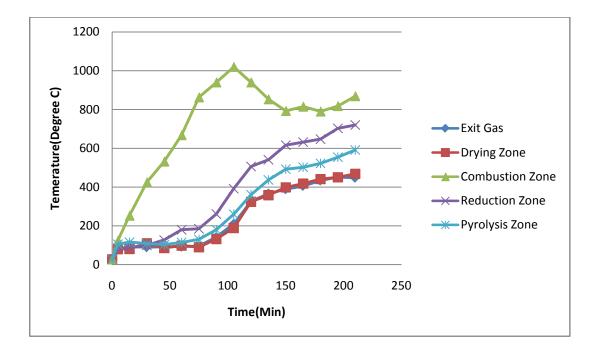


Figure. A-3: Temperature profile of different zones of gasifier for Ginisyria

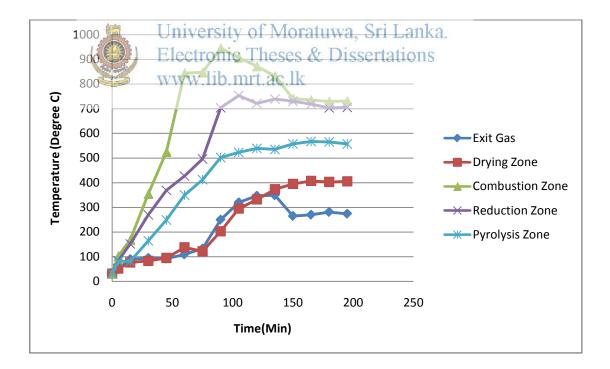


Figure. A-4: Temperature profile of different zones of gasifier for Mixture

Appendix –B : Elemental analysis results detail

Sample	Weight of sample(gm)	Weight of Empty Crucible (gm)	Weight of crucible with sample before drying (gm)	Weight after drying in oven (gm)	Moisture removed (gm)	%by wt. of Moisture removed
Mango Pit	5	16.10	21.10	20.25	0.85	17
Coconut Shell	5	15.39	20.39	19.85	0.54	10.8
Ginisyria	5	15.63	20.63	19.95	0.68	13.6
Mixture	5	36.50	41.05	40.47	0.58	11.6

Table B-1: Tabulated results of moisture contents of biomass feed stock

Table B-2: Tabulated results of ash contents of biomass feed stock

Sample	Weight	Weight of	Weight of	Weight	Wt of ash	
	of	Empty	crucible	after	(gm)	by wt.
	sample(Crucible	with	taking	(wt after	
1 Alexandre	gmUnive	rst of Mo	rample, Sri	framka.	muffle-wt	
	Electr	onic These	s & Dissert	muffle furnace	of empty)	
Mango Pit	5 WWW.	lib.21rt.ac.l	\$24.21	19.28	0.07	1.4
Coconut Shell	5	19.63	24.63	20.24	0.61	12.2
Ginisyria	5	19.61	24.61	19.91	0.3	6
Mix	5	19.19	24.19	19.57	0.38	7.6

Table B-3: Volatile matters determination of different biomass

Sample	Weight of sample(gm)	Weight of Empty Crucible (gm)	Weight of crucible with sample	Weight after taking from muffle furnace	Loss in weight
Mango Pit	5.0	26.17	31.17	26.98	4.19
Coconut Shell	5.0	21.58	26.58	22.79	3.79
Ginisyria	5.0	26.16	31.16	27.11	4.05
Mix	5.0	21.58	26.58	22.46	4.12

Volatile Matters percentage calculated according to this formula

VM% = loss in weight on ignition – loss in weight from moisture x 100

Weight of sample

Volatile Matter on dry ash free basis %

```
VM_{daf}% =loss in weight on ignition – loss in weight from moisture x100
```

Weight of sample –(Calculated wt. of ash + calculated wt. of moisture)

Table B-4: Volatile matters of different biomass

Property	Coconut shell	Mango Shell	Ginisyria	Mixture
Volatile Matter %	65	67	67.4	70.8
Volatile Matter on dry ash free basis %	84.4	81.9	83.8	87.6

Table B-5: Fixed carbon of different biomass

	University of N	Moratuwa. Sr	i Lanka.	
Property	Electronic the	Mango Shell Ses & Dissert	Ginisyria ations	Mixture
Fixed Carbon %	www.lib.mrt.a 19.08	<mark>c.lk</mark> 11.06	14.63	11.21

Table B-6: Moisture Contents on dry basis of different biomass

Sr.No	Component	Moisture content on Dry Basis (%)
1	Mango Shell	14.52
2	Coconut Shell	9.74
3	Ginisyria	11.97
4	Mixture	10.39

I. Moisture content on dry basis

Formula: $MC_w \times 100/MC_w + 100$ [42]

- 1. Mango shell : 17x100/17+100=1700/117 =14.52%
- 2. Coconut shell: 10.8x100/10.8+100= 1080/110.8 =9.74%
- 3. Ginisyria : 13.6x100/13.6+100= 1360/113.6 =11.97%
- 4. Mixture : 11.6x100/11.6+100=1160/111.6 = 10.39%

II. Fixed carbon Calculation (volatile matters % basis)

Formula =100-(Moisture % +Ash %+ Volatility %)

1.	Ma	ango Pit= 100-(14.52+1.4+65)		=19.08
2.	Co	conut shell= 100-(9.74+12.2+67)	=11.06	
3.	Gir	nisyria=100-(11.97+6+67.4)	=14.63	
4.	Mi	xture= 100-(10.39+7.6+70.80)	=11.21	
III	•	Calculation of Wt. percent of c	arbon in the f	uel
	C%	6 = DMMFC+0.9(DMMFVOL-14)x(vol+FC)/10	0
	a.	Mango Pil n2260019(7713A14)x(84.08)/160i L	a #48 .1
	b.(Coconut Shenf=114.140.5(85.83-1	4) 278.966 40	0130.6
	c.	Ginisyria = 17.83+0.9(82.16-14).	x(82.03)/100	=50.4
	d.	Mixture= 13.66+0.9(86.33-14)x(82.01)/100	=53.52
IV	•	Calculation of percentage of ni	trogen in the f	uel
	N_2	%= ((2.1-0.012xDMMFVOL)x(V	OL+FC)/100	
	a.	Mango Pit= (2.1-0.012x77.3)x(8	4.08)/100	= 0.98
	b.	Coconut shell= (2.1-0.012x85.83	3)x(78.06)/100	= 0.83
	С	$Ginisvria = (2 \ 1-0 \ 012x \ 82 \ 16)x(8)$	2.03)/100	=0.911

- c. Ginisyria= (2.1-0.012x82.16)x(82.03)/100 = 0.911
- d. Mixture =(2.1-0.012x86.33)x(82.01)/100 =0.87

V. Calculation of percentage of hydrogen in fuel

H₂% =(DMMFVOLx7.35/DMMFVOL+10)-0.013x(VOL+FC)

- a. Mango Pit= (77.3x7.35/77.3+10)-0.013(84.08)= 6.50-1.09= 5.41
- b. Coconut= (85.83x7.38/85.83+10)-0.013(78.06) = 6.609-1.014 = 5.6

- c. GINISYRIA= (82.16x7.35/82.16+10)-0.013(82.03)=6.55-1.066=5.48
- d. Mixture= (86.33x7.35/86.33+10)-0.013(82.01)= 6.586-1.066 = 5.52

Percentage of O₂ in Fuel:Formula: 100- Ash-S-H₂-C-Moisture-N₂

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk