ANALYSIS OF WOOD CHIP COMBUSTION SYSTEM FOR HOT AIR GENERATION IN THE INDUSTRIAL DRYING PROCESS

A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science by

J.K.A.T.Rajika

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

University of Moratuwa 2015

Declaration

I declare that this is my own work and this thesis/dissertation1 does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis/Dissertation under my supervision. WWW.lib.mrt.ac.lk

Signature of the supervisor:

Date

To my parents Charlotte Gamage and late Siripala Jayawickrama University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

A two-dimensional steady state packed bed CFD model is developed for the combustion of wood chip in a moving grate. The model is validated using an industrial moving bed hot air generator used in Tea industry. Various empirical models have used for thermophysical property modeling. For this purpose free-board region of the hot air generator is also simulated including volatile reactions and turbulent combustion. Modeling and simulation carried out using open source CFD software OpenFOAM. Radiation heat incident on the packed bed is unknown and it is assumed in the first packed bed simulation. Therefore, CFD simulation involves number of iterative runs of the packed bed model and free board model to obtain the radiation temperature incident on packed bed due to free board heat. According to the validation results the developed packed bed model can be used to predict temperature of the packed bed wood chip combustion of thermally thin wood particles. The gas compositions could not be validated using the model. Further improvements to the model have suggested.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgments

This work is supported by SRC Research Grant numbered:SRC/LT/2012/19 by University of Moratuwa, Faculty of Engineering. The dissertation would not have been possible without my Supervisor Dr.M.Narayana who introduced me new fields of Engineering, guidance and great patience on me. You opened doors in CFD modeling and simulation of biomass combustion field for me. A special thank should go to Eng.N.K.Edirisinghe, Eng.Bharatha Udaya and all other members of NERD centre for providing me facilities for validation purposes and other relevant data. I am very much gratefult to the head of the Chemical and Process Engineering Department Dr.P.G.Rathnasiri, Technical officers and Lab attendants Mr.C.L.Gunarathna, Mr.Dananjaya Epa, Mr.M.T.A.J.Kumara, Mr.Sunil Dayananda and other academic and non-academic staff for facilitating me the flexible working and computational environment. I should be thankful to my friends K.D.Nishanthi, Sureshini Warnasooriya and M.A.M Jinasena for pursuading me for an MSc. A very special thank should go to other P.G mates inlcuding K.C.Niranjan, Uditha, Bhagya Herath, Sachini Thilakarathna, Gayani Jayatunga and Imesha Samarathunga for the fruitful discussions we had on many matters came across during research period. Finally, I am deeply indebted to my mother Charlotte Gamage, sisters Hiranthi Nadeeka Jayawickrama, Madhuri Jayawickrama, Chandima Jayawickrama and Brother in-laws Pramod Weerasinghe, Manjula jayaweera and L.U.Edirisinghe for helping me in every occasions.

Table of Contents

Declarat	tion		i
Abstrac	t		iii
Acknow	ledgme	nts	v
List of F	igures		v
List of T	ables		vii
СНАРТ	ER 1:	INTRODUCTION	1
1.1	Backgr	ound and Motivation	1
	1.1.1	Biomass as renewable energy source	2
	1.1.2	Use of CFD for design and optimizing furnaces	2
	1.1.3	Problem Statement Moraturya Sri Lanka	4
1.2	Objecti	Ve Electronic Theses & Dispertations	4
1.3	Genera	Approachlib.mrt.ac:lk	5
СНАРТ	ER 2:	LITERATURE REVIEW	8
2.1	Biomas	ss Combustion and modeling	8
	2.1.1	Drying models	9
	2.1.2	Devolatilization models	10
	2.1.3	Char combustion models	10
	2.1.4	Volatile combustion	11
2.2	Modeli	ng packed bed combustion of biomass	11
	2.2.1	Packed bed combustion models	13
		2.2.1.1 According to dimensional variations	13
		2.2.1.2 According to the treatment for the biomass	14
2.3	Chemi	cal kinetics	17
2.4	Turbule	ence modeling	18

	2.4.1	Favre-averaged equations	18
	2.4.2	standard $k - \varepsilon$ model	19
	2.4.3	Wall Functions	20
	2.4.4	Low-Reynolds number $k - \varepsilon$ model	21
2.5	Turbul	ence/combustion interaction models	22
2.6	Radiat	ion modeling	25
СНАРТ	TER 3:	MATHEMATICAL MODEL FOR THE PACKED-BED COMBUS-	ı
		TION OF WOOD-CHIP	27
3.1	Model	Assumptions	27
3.2	Govern	ning equations	29
		3.2.0.1 Gas phase	29
		3.2.0.2 solid phase	31
3.3	Bound	ary conditions	32
3.4	Chemi	cal and physical properties modeling	33
	3.4.1	Combustion properties of biomass	33
		3.4.1.1 Composition	33
		3.4.1.2 Moisture content	33
		3.4.1.3 Volatiles Moratiuwa Sri Lanka	34
		1 ^{3.4} Lectronisty heses & Dissertations	34
	Address and	3.4.1.5 Heating value	35
	3.4.2	Thermal conductivity of the bed	35
	3.4.3	Mass diffusivity of the bed	37
	3.4.4	Specific heat capacity of the bed	37
	3.4.5	Pressure drop	38
	3.4.6	Particle shrinkage	38
	3.4.7	Particle size and shape	39
СНАРТ	TER 4:	CFD SIMULATION METHOD	40
4.1	Finite	volume approach	40
4.2	Pressu	re correction	41
	4.2.1	Rhie-Chow method	42
4.3	SIMPL	E algorithm	43

CHAP	FER 5:	INTRODUCTION TO OPENFOAM	45
5.1	Introdu	uction to OpenFOAM	45
5.2	Histor	ry of OpenFOAM	45
5.3	OpenF	FOAM C++ library	46
		5.3.0.1 OpenFOAM lists and fields	47
		5.3.0.2 Mesh generation	48
		5.3.0.3 Defining a <i>geometricField</i> in OpenFOAM	50
		5.3.0.4 Boundary Conditions	52
		5.3.0.5 Equation discretization	53
5.4	Runni	ng a case	54
	5.4.1	"system" sub directory	54
	5.4.2	"constant" sub directory	56
	5.4.3	Time directories $(0, \ldots)$	56
	5.4.4	other directories or files	57
	5.4.5	Community developed additional OpenFOAM tools	57
CHAP	FER 6:	DEVELOPING A NEW SOLVER IN OPENFOAM	59
6.1	Compi	iling applications and libraries	59
		6.1.0.1. Compiling with wmake Sri Lanka	60
6.2	Rhie-6	Chow method in OpenFOAM. Dissertations	63
6.3	Steps	of developing a new solver	65
			71
	Let of	CFD MODELING OF HOT AIR GENERATOR SYSTEM	71
/.1	пот ан 7 1 1	Poolead had modeling and simulation	71
	/.1.1	7 1 1 1 Therma physical properties modeling	75
		7.1.1.2 Chamical kinetics modeling	75 75
		7.1.1.2 Chemical Kinetics modering	נו רר
		7.1.1.4 Boundary conditions	יי רר
7.2	Eroo h	7.1.1.4 Boundary conditions	91
1.2			01
	7.2.1		01
	1.2.2		01 02
	1.2.3	Thermo physical properties	83 02
	1.2.4		03

	7.2.5	Combustion properties	84
	7.2.6	Chemistry properties	84
СНАРТ	ER 8:	R ESULTS AND D ISCUSSION	85
8.1	Simula	tion results of packed bed-free board	85
	8.1.1	Mesh Refinement	85
	8.1.2	Evaluation of simulation results	92
	8.1.3	Validation of Results	93
8.2	Comme	ents on the model	95
	8.2.1	Ash density	95
	8.2.2	Interface between packed bed-free board	95
	8.2.3	Radiation heat flux	95
	8.2.4	Simulation time	96
8.3	Drawba	acks of the model	96
8.4	Optimi	zation of packed bed combustion	97
СНАРТ	ER 9:	CONCLUSION AND FURTHER STUDIES	99
Referen	ces		100

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

1.1	Typical hot air generator system	6
1.2	Integral approach of the model	7
2.1	macro model mesh	15
2.2	Single particle modeling	16
2.3	Particle resolved macro scale models	16
2.4	Conceptual diagram of PaSR Reactor	23
2.5	Two steps occurring in a cell with turbulence and chemistry	24
3.1	heat and mass transfer between solid and gas	28
3.2	combustion process in the packed bed (model)	29
3.3	Modeling gas phase and solid phase separate using $porosity(\varepsilon)$	30
3.4	packed bed boundary conditions	32
4.1	one dimensional grid having checker board pressure field	41
4.2	SIMPLE agetteronic Theses & Dissertations	44
5.1	hexahedral cells in a mesh with part of polyMesh data	49
5.2	A geometricField <type> and its operators</type>	54
5.3	Typical case file structure in OpenFOAM	55
6.1	Header files, source files, compilation and linking	60
6.2	Directory structure of an application	61
7.1	Conventional hot air generator system in Tea factories	72
7.2	Hot air generator after retrofitting	73
7.3	Schematic diagram of simulation case structure	74
7.4	Packed bed with dimensions and boundaries	79
7.5	Free board with dimensions and boundaries	81
8.1	Packed bed gas outlet(interface) temperature with iterations	86
8.2	Radiation temperature incident on packed bed	86

8.3	Mesh refinement results(Temperature at packed bed outlet	87
8.4	Residual mapping of packed bed simulation with 300*300 mesh	87
8.5	Velocity at packed bed outlet along the grate	88
8.6	Mass fractions of CO, CO_2, H_2O and O_2 at packed bed outlet	88
8.7	Gas phase and solid phase temperature of packed bed at steady state .	89
8.8	Packed bed porosity at steady state	89
8.9	Gas component mass fraction at steady state	90
8.10	Moisture, volatile, char and ash mass fractions in solid phase at steady	
	state	91
8.11	Temperature of the gas at inlet to the heat exchangers with the height	
	from the packed bed	94
8.12	Temperature along a vertical line starting from edge of the flame at	
	packed bed -free board interface	94
8.13	Temperature at packed bed outlet with different input conditions	98

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

1.1	Energy Consumption of Sri Lanka (thousand toe)	3
1.2	Industrial Energy consumption of Sri Lanka (thousand toe)	3
2.1	volatile combustion reaction models in literature	12
2.2	Westbrook-Dryer mechanism (WD)	18
5.1	defining mesh of the geometry	48
5.2	fvMesh stored data	50
5.3	S.I. base units of measurement	51
6.1	Optional compilation arguments to wmake	62
7.1	solvers and basic boundary conditions of each case	75
7.2	Empirical models used for thermo-physical properties and their values	76
7.3	Chemical kinetic models for reactions of combustion	77
7.4	Properties of biomass for simulation	78
7.5	Utimate and Proximate analysis of biomass	79
7.6	packed bed boundary conditions	80

Nomenclature

Abbreviations

Bi	Thermal Biot number
CFD	Computational Fluid Dynamics
FV	Finite Volume
NERDC	National Engineering Research and Development Centre
OpenFOAM	Open Source Field Operation and Manipulation CFD tool box
Pa	Pascal
PaSR	Partially Stirred Reactor
PDEs	PartanDifferentiabEquationsuwa, Sri Lanka.
Pr	Prandlt number WWW.lio.mrt.ac.lk
PSR	Perfectly Stirred Reactor
Re	Reynolds number
toe	tonnes of oil equivalent
Subscripts	
0	initial, reference (temperature in degrees Rankine)
a	Activation
b	bed
с	convective

char	char combustion
dry	drying reaction
G	grate
g	gas phase
i	i-th component
mix	mixing due to turbulence
р	particle
pyr	pyrolysing
S	solid phase
surf	surface
vol	volatile
x	x-direction (horizontal) Moratuwa, Sri Lanka. Electronic Theses & Dissertations
y 🦉	y-direction(vertical).ac.lk

Symbols

l	length scale (m)
λ	thermal conductivity (W/mK)
$\lambda_{e,0}$	effective thermal conductivity of a quiescent bed(without fluid flow) (W/mK)
λ_e	effective thermal conductivity of bed (W/mK)
μ	dynamic viscosity (kg/ms)
μ_0	reference viscosity in centipoise at reference temperature To (kg/mms)

μ_t	eddy viscosity (kg/ms)
v	kinematic viscosity (m2/s)
ω	reaction rate (kg/m3s)
Ω_D	Diffusion collision integral
ρ	density (kg/m3)
\$ <i>ij</i>	rate of deformation (m2/s)
$\sigma_{\!AB}$	Binary pair characteristic length(dimensionless)
τ	integration time step (s)
ũ _i	density weighted mean velocity (m/s)
ε	rate of dissipation of turbulent kinetic energy per unit mass (m2/s3)
θ	velocity scale (m/s)
ξ <i>c_p</i>	mixture fraction of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
E	porosity of the bed
А	pre-exponential factor(1/s)
А	volumetric particle surface (m2/m3)
c	concentration (kg/m3) or (mol/m3)
D	mass diffusion coefficient (m2/s)
d	particle diameter (m)
E	Energy (J/mol)
Н	evaporation heat (J/kg)

h	specific sensible enthalpy/heat transfer coefficient (J/kg,W/m2K)
J	Joule
К	Kelvin/Equilibrium constant
k	Thermal conductivity (W/mK), turbulent kinetic energy (m2/s2)
kg	kilogram
Μ	moisture content(wet basis)
М	molecular weight (g/mol)
Р	pressure (kg/m/s2)
Q	heat transferred to the solid phase by convection and radiation (W/m3)
R	universal gas constant (J/molK)
r	reaction rate (kg/m3s) University of Moratuwa, Sri Lanka.
т	Electronic Theses & Dissertations
t	temperature (K)
U,V	velocity vector (m/s)
V	volume (m3)
V	velocity component (m/s)
Y	mass fraction