RAINFALL EVENT ANALYSIS FOR DRAINAGE INFRASTRUCTURE DESIGN IN GREATER COLOMBO WATERSHED

RAINFALL EVENT ANALYSIS FOR DRAINAGE INFRASTRUCTURE DESIGN IN GREATER COLOMBO WATERSHED

Welhenage Keerthirathne

138659T

Department of Civil Engineering

University of Moratuwa Sri Lanka

August 2014

RAINFALL EVENT ANALYSIS FOR DRAINAGE INFRASTRUCTURE DESIGN IN GREATER COLOMBO WATERSHED

Welhenage Keerthirathne

138659T

Thesis Submitted in Partial Fulfilment of the Requirements for the

Degree of Master of Engineering in Water Resources Engineering and Management

Supervised by Professor N.T.S.Wijesekera

UNESCO Madanjeet Centre for South Asia Water Management (UMCSAWM) Department of Civil Engineering

> University of Moratuwa Sri Lanka

> > August 2014

DECLARATION

I declare that this is my own work. This thesis does not incorporate without acknowledgement of any material previously submitted for a Degree or Diploma in any other University or institute of higher learning to the best of my knowledge and belief it does not contain any material previously published or written by another person expect where the acknowledgment is made in text.

Also I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (Such as articles or books)

W.H.Keerthirat	hne	Date	
The above candid supervisions	University of Mo	esearch for the Masters oratuwa, Sri Lanka. s & Dissertations k	s thesis under my
Professor N.T.	 S Wijesekera	Date	

ACKNOWLEDGEMENTS

The Author would like to express his sincere gratitude to the supervisor, the Senior professor N.T.S. Wijesekera, B.Sc.Eng, Hons (Sri Lanka), PG.Dip (Moratuwa), M.Eng(Tokyo), D.Eng(Tokyo), MICE(UK), FIE(SL) for his continuous encouragement, guidance and commitment extended throughout the study. Without his effort and support, this would not have been accomplished in a successful manner.

Author takes this opportunity to thank his Course Coordinator Dr. R.L.H. Rajapaksha and staff of UNESCO Madanjeet Singh Center for South Asia Water Management, University of Moratuwa for assistance extended.

Author wishes to express his thanks to Eng (Mrs) Srimathe Senadeera, the General Manager of Sri Lanka Land Reclamation & Development corporation, Eng R.C. Fernando, Deputy General Manager and the staff for facilitating him to pursue studies leading to a Masters degree.

Author takes this opportunity to thank to Late Shri Madanjeet Singh, the founder of UNESCO Madanjeet Singh Center for South Asia Water Management South Asia Foundation (SAF) and staff for providing a full scholarship.

Author has greatest regards to his parents, W.H Gunadasa and K.M.D. Gimara Harmy for their dedication to bring up him and educate to provide services to the society.

Finally the Author likes to express his heartfelt thanks to his two daughters Geethma & Amawindi and his wife Nisha for the understanding, encouragement, commitment and patience during the entire study period.

ABSTRACT

Since the magnitude and temporal distribution of rain events directly influence the streamflow in watersheds, due focus should be given when selecting the most appropriate storm patterns for the design of hydraulic structures. Design storm can be based on either observed patterns or predetermined distribution such as Alternating Block Method. Lack of recent IDF curves and the concerns that had been raised with ongoing climate variability, engineers worldwide are inclined to use pattern based design events rather than IDF based pattern because they are said to reflect the recent and site specific situations.

The present study evaluated fifteen-minute rainfall records of Colombo Meteorological Station for a period of thirty years in order to identify the impact of guideline based and pattern based design storms on runoff responses. Event separation for the study was carried out by using a Minimum Inter event Time (MIT) of 6hrs. Two hundred twenty one events were extracted from continuous data and grouped into five based on event duration. Event analysis was carried out by developing dimensionless mass curves of each event and then analysing the percentile curves representing the dimensionless mass curves.

Six design events for event durations 6, 12, 18, 24 and 36hrs were developed from percentile curves. Corresponding Alternating Block Method (ABM) and Uniform Intensity distributions for each duration were developed using IDF curve. Eight design hyetographs corresponding to a ten year Avetage Recurrence Interval (ARI) for each event duration were developed. A mathematical model for a sub catchment in Colombo watershed was developed using SCS HEC HMS model and the runoff response for each design event was evaluated.

A Criticality Indicator was introduced to capture the influence of the design rainfall patterns on both critical parameters of a hydrograph, Namely the flood peak and its time of occurrence. This indicator helped to identify the effects of a flood peak from a particular design rainfall pattern reaching the basin outlet.

Envelope design rainfall pattern developed after analysing the historical data produced the most critical rainfall pattern when the event duration is closer to the time of concentration of the watershed. It was observed that there is a high variation in runoff response with the variation of temporal distribution corresponding an event. Runoff response for Alternating Block Method based pattern and the pattern developed with Envelope curves were found as the most consistent when compared with other design events. Therefore, hydraulic structure designs based on limited observed data were found as associated with high uncertainty. This study also concluded that in the absence of sufficiently analysed past rainfall data, Alternating Block Method would stand out as the most suitable design hyetograph. The present work also caution the use of design patterns based on selected events since they would certainly lead to underestimation of flood peaks.

Table of Content

1		INTRODUCTION	1
	1.1	General	1
	1.2	Objectives	6
	1.2.1	Overall objectives	6
	1.2.2	Specific objectives	6
2		METHODOLOGY	7
3		LITERATURE REVIEW	9
	3.1	Event Separation	9
	3.2	Event Selection	11
	3.3	Design Rainfall Pattern	13
	3.4	Length of Datasets	15
	3.5	Temporal Pattern and Design Storm	16
	3.6	Temporal Pattern and Design Storm	17
	3.7	Design Return Period	18
4		DATA AND DATA CHECKING	20
	4.1	Study Area	20
	4.2	Land Use Pattern	20
	4.3	Rainfall Data	23
	4.4	Data Checking University of Moratuwa, Sri Lanka.	26
	4.4. 1	Grily datalectronic Theses & Dissertations	26
	4.4.2	Monthly dataw.lib.mrt.ac.lk	31
	4.4.3	Seasonal & annual data	34
5		ANALYSIS AND RESULTS	37
	5.1	Event Separation Criteria	37
	5.2	Event Selection Criteria	37
	5.2.1	General	37
	5.2.2	Time of concentration values	38
	5.2.3	Selection of design recurrence interval	38
	5.2.4	Threshold depth of rain events	39
	5.3	SelectedRain Events	39
	5.4	Time Distribution of Rain Events	41
	5.5	Storm Variability Within Categories	47
	5.6	Development of Design Hyetograph	48
	5.6.1	•	48
	5.6.2	•	48
	5.7	Runoff Modelling	52
	5.8	Estimated Runoff	5/1

5.8	Streamflow response: category-1(6hr)	57
5.8	Streamflow response: category-2(12hr)	58
5.8	Streamflow response-category-3(18hr)	59
5.8	Streamflow response-category-4(24hr)	60
5.8	Streamflow response-category-5 (36hr)	61
5.9	Comparision of Peak Flow	62
5.10	Comparision of Time to peak	65
5.11	Summary of Results	67
5.1	1.1 Major consideration	67
5.1	1.2 Selected rainfall events	67
5.1	1.3 Design rainfall events	67
5.1	1.4 Peak runoff response	70
5.1	1.5 Time to Peak	71
6	DISCUSSION	72
6.1	Event Seperation and Categorisation	72
6.2	Selection of Minimum Inter Event Time (MIT)	72
6.3	Design Rainfall Patterns	73
6.4	Stremflow Responce	76
6.4		76
6.4	University of Moratuwa Sri Lanka	76 76
	6.4.3 Flectronic Theses & Dissertations	
6.4		77
6.4		78
6.4	1 ' 1 '	79
7	CONCLUSIONS	86
8	RECOMMENDATIONS	87
9	REFERENCES	88
10	Appendix A Time of Concentration of Sub Watershed	93
16	Appendix B Variation of daily Rainfall Data	98
17	Appendix C Inter-Annual Rainfall	115
18	Appendix D Typical Runoff Curve Numbers for Urban Catchment	122
23	Appendix E Rainfall Events	125
24	Appendix F Probability Distribution of Observed Events	180
26	Appendix G Dimensionless Mass Curve of Design Events	195
31	Appendix H Time Distribution of Envelope Curve	205
32	Appendix I Intensity Duration Frequency Curve for Colombo	209
33	Appendix J Design Hyetograph	212
34	Appendix K Catchment Response for Design Storms	225

LIST OF TABLES

Table 3.1: Guideline Recommended ARI for Urban Drainage	19
Table 4.1: Land Use Pattern and CN Value for Selected Sub Watershed	21
Table 4.2: Details of Rainfall Data	23
Table 4.3: Summary of Missing and Unacceptable Data periods	27
Table 4.4: Distribution of Monthly Missing and Unacceptable Data	28
Table 4.5: 15minutes Aggregated Daily Data	29
Table 4.6: Standard Gauge Daily Data	30
Table 4.7: Aggregated 15minutes Daily Data	31
Table 4.8: Aggregated Standard Daily Rainfall Data	33
Table 5.1: Summary of Design Recurrence Interval for Urban Drainage	38
Table 5.2: Parameters to Determine Design Rainfall Events	39
Table 5.3: Event Summary for Analysis	41
Table 5.4: Design Temporal Distributions and Abbreviations	47
Table 5.5: Cumulative Rainfall for Pattern Based Events of Category 4	49
Table 5.6: 24hr, 10yr ARI Hyetograph of Alternating Block Method	51
Table 5.7: Total Depth and Intensity of Design Events to 10 Year ARI for Each Categor	ry 52
Table 5.8: Details of Watershed Selected for Runoff Comparison	54
Table 5.9: Streamflow Hydrograph for 10yr ARIDesign Event Category 1(6hr)	57
Table 5.10: Streamflow Hydrograph for 10yr ARI Design Event Category 2(12hr)	58
Table 5.11: Streamflow Hydrograph for 10yr ARI Design Event Category 3(18hr)	59
Table 5.12: Streamflow Hydrograph for 10yr ARI Design Event Category 4(24hr)	60
Table 5.13: Streamflow Hydrograph for 10yr ARI Design Event Category 5 (24hr)	61
Table 5.14: Variation of Relative position of Qp with Design Events	64
Table 5.15: Variation of Relative Position of (II) of Different Rainfall Events with	Event
Duration (Flectronic Theses & Dissertations	66
Duration Table 5.16. Event Summary Table	67
Table 5.17: Variation of Peak Rainfall in Each Design Rainfall Distribution	68
Table 5.18: % Variation of Peak Rainfall in Each Design Rainfall Distribution	69
Table 5.19: Variation of Time to Peak Rainfall in Each Event Duration	69
Table 5.20: % Variation of Time to Peak Rainfall in Each Event Duration	70
Table 5.21: Variation of Peak Runoff with Event Pattern and Duration	71
Table 5.22: Variation of Time to peak in Runoff Response of Design Event	71
Table 6.1: Runoff Response for Design Events and Percentage Criticality of E	
(Category 1)	81
Table 6.2: Variation of Criticality with Rain Event Categories	82

TABLE OF FIGURES

Figure 1.1: Study Area and Stream Network	4
Figure 1.2: Selected Watershed for Runoff Comparison	5
Figure 2.1: Methodology Flow Chart	7
Figure 4.1: Land Use Map of Colombo Watershed	22
Figure 4.2: Location Map for Meteorological Station	25
Figure 4.3: Distribution of Monthly Average Rainfall In The Study Area	26
Figure 4.4: Variation of Aggregated 15 minutes Daily Rainfall	32
Figure 4.5: Variation of Aggregated Daily Rainfall Data	32
Figure 4.6: Comparison of Average Rainfall Pattern with Two Method	34
Figure 4.7: Monthly Average Seasonal Rainfall-Maha	35
Figure 4.8: Monthly Average Seasonal Rainfall-Yala	35
Figure 4.9: Annual Rainfall Variation	36
Figure 5.1: Event Distribution in Each Year	40
Figure 5.2: Time Distribution of Observed Curve for Events-Category 1(6hr)	42
Figure 5.3:Time Distribution of Observed Curve for Events-Category 2(12hr)	43
Figure 5.4: Time Distribution of Observed Curve for Events-Category 3(18hr)	44
Figure 5.5: Time Distribution of Observed Curve for Events-Category 4(24hr)	45
Figure 5.6:Time Distribution of Observed Curve for Events-Category 5(36hr)	46
Figure 5.8: Estimated Streamflow Hydrographs for Design Event Category-1(6hr)	55
Figure 5.9: Estimated Streamflow Hydrographs for Design Event Category-2(12hr)	55
Figure.5.10:Estimated Streamflow Hydrographs for Design Event Category-3(18hr)	56
Figure 5.11: Estimated Streamflow Hydrographs for Design Event Category-4(24hr)	56
Figure 5.12: Estimated Streamflow Hydrographs for Design Event Category - 5(36hr)	57
Figure 5.13: Variation of Peak Streamflow rate with Event Duration	62
Figure 5.14: Variation of Streamflow Peak with Rainfall pattern for Different Event Duration	63
Figure 5.15: Variation of Relative position of Qp with Design Events Duration	64
Figure 5.16: Variation of Time to Peak of Different Rainfall Patterns for Event Duration	65
Figure 5.17: Variation of Time to Peak (T _p) with Event Duration	65
Figure 5.18. Variation of Relative Position of Events Tp with Event Ducation	66
Figure 5.19: Variation of Peak Rainfall in Each Design Rainfall Distribution	68
Figure 5.20: % Variation of Peak Rainfaff in Each Design Events	69
Figure 5.21: Variation of Time to Peak with respect to Events Total Duration	70
Figure 6.1:Comparison of Uniform & Median Curve Rainfall Pattern	75
Figure 6.2: The Runoff Response and Criticality of each event (Category 1 Events)	81
Figure 6.3: Variation of % of Criticality with Event category	84
Figure 6.4: Comparison of ABM, Envelope, UPC and Uniform Distribution	85