WATER ENERGY EFFICIENCYIMPROVEMENTIN EASTERN PROVINCE OF SRI LANKA

T.Ismail

Reg.No.08/8612

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Degree of Master of Engineering in Energy Technology

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

September 2014

WATER ENERGY EFFICIENCYIMPROVEMENTIN EASTERN PROVINCE OF SRI LANKA

T.Ismail

Reg.No.08/8612

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Thesis submitted in partial fulfillment of the requirements for the degree Master of Engineering in Energy Technology

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

September 2014

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief.it does not contain any material previously published or written by another person except where the acknowledgement is made in the text

Also, I hereby grant to University of Moratuwa the non- exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

Signature:

Date: 25.09.2014

The above candidate has carried out research for the Masters under my supervision.

ABSTRACT

Energy efficiency improvements at water facilities can significantly reduce the cost since the energy costs typically constitute about 25% to30% of the operations and maintenance cost. Thus this analysis is based on a collection of information from the water facilities of NWSDB Eastern province. This provides the information from January, 2013 to December, 2013 for the four regions namely Ampara, Akkaraipaththu, Batticaloa andTrincomalee in the Eastern Province.

Bench mark analysis and Project Appraisal Committee reports were considered in planning, designing and implementation stages to minimize energy Usage. This will ensure the proper capital investment and future operational and maintenance cost.

Also, this analysis will help NWSDB to investigate the energy saving techniques and to develop bench mark for each pump for the energy consumption per cubic meter of water. It can contribute to cost reduction and saving could be utilized for the development of the country in investing other development works and improve infrastructures.

THIS REPORT

IS

DEDICATED TO

PROTECT ENVIRONMENT

ACKNOWLEDGEMENT

I greatly acknowledge for the advice given by the Professors, Senior lecturers and lecturers of Department of Mechanical Engineering, my supervisors Prof.RahulaAttalage, Dr. InokaManthilakeand Course Coordinator Dr.HimanPunchihewa of University of Moratuwa.

Also, my sincere thankstoDGM (East), DGM (M&E) and their staff for the assistance given in compiling the Data.

My special thanks to National Water Supply and Drainage Board for funding this course.

In addition, I express my sincere thanks to others who have helped in numerous ways to accomplish this task.

LIST OF CONTENTS

		Page
Decl	aration	i
Abst	ract	ii
Dedi	cation	iii
Ackr	nowledgement	iv
List	of Contents	V
List of Figures		viii
List of Tables		ix
Abbr	reviation	Х
1.0	Introduction	1
	1.1 Clean drinking water	1
	1.2 Need for efficiency in water sector University of Moratuwa, Sri La	1 Internet
	1.3 Advantage of employing water energy efficiencertation	
	1.4 Aim and objectives www.lib.mrt.ac.lk	3
	1.5 Methodology	3
	1.6 Contribution to Knowledge	3
	1.7 Chapter Introductions	3
2.0	Literature Survey	4
	2.1 Pump performance	4
	2.2 Water pump types	5
	2.3 Static Head & Frictional Head	7
	2.4Water Pump Curves	8
	2.5Head –Flow Curve	9
	2.6System Characteristics	9
	2.7Pump Operating Point	9

	2.8F	Pump Characteristics	10
	2.9	Pump Efficiency	11
2.10Factors affecting pump performance 12			12
	2.11	Energy loss in Throttling	12
	2.12	2Verification of Energy Efficiency with Bench marking analysis	13
2.13	Plan	ning 13	
	2.14	Designing	13
	2.15	6 Rehabilitation / Retrofitting	14
	2.16	5 Energy Tariff and Peak hours Operation	14
3.0	Ener	gy Audit	15
4.0	Ener	gy Audit Instruments	21
	4.1	Introduction	21
	4.2	Audit Instruments used for Measurement of a pumping installation University of Moratuwa, Sri Lanka.	21
5.0	Data	Collection Electronic Theses & Dissertations	23
6.0	Effic	iency evaluation of Pumpilly System .1k	24
7.0	Energ	gy and Power costs and Transformer Load Management	26
	7.1	Energy tariff and bills	26
	7.2	Verification of monthly bills	27
	7.3	Transformer load management	29
8.0	Energ	y saving measures	30
	8.1	Reduction of Leakage	31
	8.20	Correcting inaccuracies of the pump sizing	32
	8.3	Reducing work load of pumps	32
	8.4	Replacement / Trimming the impellers	33
	8.5	Replacement of components	34
	8.6	Control Strategy	34

	8.7	Using Energy efficient motors	34
	8.8	Maintenance and operation practices	35
9.0	Proj	ect appraisal committee report	36
	9.1	Ampara water supply scheme in Ampara district	36
	9.2	Akkaraipaththu water supply scheme in Eastern RSC	38
10.0	Ene	rgy Monitoring and Targeting	46
	10.1	Relating Energy Consumption and water pumped	47
11.0	Con	clusion and recommendation	50
Refere	ences		52
Appendices 53			53

LIST OF FIGURES

Figure 1	Centrifugal pump	5
Figure 2	Pump Performance curve	7
Figure 3	Flow Chart- Methodology	20
Figure 4	Irakkamam pump curve	37
Figure 5	Efficiency Vs Motor speed Curve	71
Figure 6	Specific Energy Vs Monthfor Eastern RSC	72
Figure 7	Maximum Demand (kVA) Vs Month for Eastern RSC	73

LIST OF TABLES

		Page
Table 1	Pumping system change to match the Demand	37
Table 2	Energy Usage	38
Table 3	Pump Data – Akkaraippaththu Region	39
Table 4	Capacitor bank for Nintavur Pump House	43
Table 5	Cost saving for Karaitivu Pump house	44
Table 6	VSD for Addalaichchenai pumps	44
Table 7	Capacitor bank for Irakkamam Pump House	44
Table 8	VSD for Pottuvil H/L pumps	44
Table 9	Capacitor bank for Pottuvil H/L pumps	45
Table 10	Pump operation data – Batticaloa Region	54
Table 11	Pump operation data-AkkaraippaththuRegion University of Moratuwa, Sri Lanka.	56
Table 12	Pump prevation data Trincom a Ter Region Dissertations	58
Table 13	Pump operation data – Ampara Region	59
Table 14	Pump operation details with calculations – Batticaloa Region	62
Table 15	Pump operation details with calculations-AkkaraippaththuRegion	64
Table 16	Pump operation details with calculations–Trincomalee Region	65
Table 17	Pump operation details with calculations – Ampara Region	68
Table 18	Pump data for efficiency calculations	71

ABBREVIATIONS

DGM	Deputy General Manager
H/L	High Lift
L/L	Low Lift
NRW	Non Revenue Water
NWSDB	National Water Supply & Drainage Board
O&M	Operation & Maintenance
PAC	Project Appraisal Committee
RSC	Regional Support Center
SCADA	Supervisory Control and Data Acquisition
SEC	Specific Energy Consumption
VSD	Variable Speed Drive

