FEASIBILITY STUDY OF USE OF BOTTOM ASH, BY PRODUCT OF NOROCHCHOLI COAL POWER PLANT IN HOT MIX ASPHALT CONCRETE IN SRI LANKA

Hewa Thalagahage Rangani Dammika

Department of Civil Engineering

University of Moratuwa
Sri Lanka

September 2014
FEASIBILITY STUDY OF USE OF BOTTOM ASH, BY PRODUCT OF NOROCHCHOLI COAL POWER PLANT IN HOT MIX ASPHALT CONCRETE IN SRI LANKA

Hewa Thalagahage Rangani Dammika

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree
Master of Engineering

Department of Civil Engineering

University of Moratuwa
Sri Lanka

September 2014
I declare that this is my own work and this thesis does not incorporate without
acknowledgement any material previously submitted for a Degree or Diploma in any
other University or institute of higher learning and to the best of my knowledge and
belief it does not contain any material previously published or written by another
person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce
and distribute my thesis, in whole or in part in print, electronic or other medium. I
retain the right to use this content in whole or part in future works (such as articles or
books).

Signature: Date:

The above candidate has carried out the research for the Masters/MPhil/PhD thesis/
Dissertation under my supervision.

Signature of the supervisor: Date:
Abstract

A review of recent research on bottom ash seems to indicate it has the capability to improve asphalt pavement performance when used to replace a portion of the aggregate in asphalt mixes. Bottom ash can be used as an aggregate replacement, providing a substantial savings to both highway agencies and utility companies. Bottom ash has been used as fine aggregates in asphalt paving mixtures since the early 1970's. The American Coal Ash Association reported that, over 17,200 metric tons of bottom ash was used in asphalt paving during 2006.

The research is focused on investigation of properties of bottom ash, which is the byproduct of Norochcholai coal power plant and feasibility study of use of bottom ash in hot mix asphalt concrete in Sri Lankan roads. According to the results obtained, the best mixtures are produced by blending bottom ash with well-graded, angular, rough-textured aggregate and limiting the percentage of bottom ash to 25% for wearing and 16% for binder course. Marshall Stability and flow values have been found to decrease as the percentage of Wet bottom ash is increased in the mixture.

Further, high percentage of bottom ash replacement increases optimum bitumen content, which mainly affects to high production cost. Although the cost per 1 Mt of bottom ash blended mix is higher than the conventional mix for both surface courses, its low density increases overlay area. Because of that the cost per 1 m² is lower than the conventional mix. The successful use of bottom ash in asphalt pavements in Sri Lanka would provide not only significant economic savings but also an environmental friendly solution for a waste material.
Acknowledgement

I wish to thank Prof. J.M.S.J. Bandara, Dr. W.K. Mampearachchi, and Dr. H.L.D.M.A. Judith for providing encouragement, enthusiasm and knowledge for carrying out this research.

Further, Research & Development Division, Keragala asphalt plant and Kotadeniyawa asphalt plant of Road Development Authority for providing laboratory facilities and technical supports.

Also, I would like to thank Norochcholai coal power plant for providing bottom ash material, necessary information and valuable support.
TABLE OF CONTENTS

Declaration of the candidate & Supervisor i
Abstract .. ii
Acknowledgements ... iii
Table of content ... iv
List of Figures ... v
List of Tables ... vi
List of abbreviations .. vii
1. Introduction .. 1
 1.1 General background ... 1
 1.2 Objectives ... 2
 1.3 Scope of the study .. 2
 1.4 Scope of the report ... 2
2. Literature review ... 3
 2.1 Bottom ash usage in Road construction 3
 2.2 Bottom ash properties and laboratory tests 4
 2.3 Bottom ash handling and storage 6
 2.4 Mixing, Placing and Compacting 7
 2.5 Performance of design properties 7
 2.6 Mix design methods ... 8
3. Experimental investigation of bottom ash 9
 3.1 Methodology ... 9
 3.2 Chemical composition of bottom ash 10
 3.3 Physical and mechanical properties of bottom ash 10
 3.4 Selecting suitable mix proportion for bottom ash 13
4. Development of mix design ... 20
 4.1 Properties of bitumen ... 20
 4.2 Properties of aggregates .. 21
 4.3 Marshall Mix design ... 21
 4.3.1 Marshall test for wearing course 22
 4.3.2 Marshall test for binder course 23
5. Economic feasibility of bottom ash 25
 5.1 Economical comparison .. 25
 5.2 Comparison of results with similar past study 27
 5.3 Bottom ash availability ... 28
6. Conclusions and Recommendations 29
 6.1 Conclusions .. 29
 6.2 Further studies ... 30
Reference List .. 31
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical steam generating system</td>
<td>1</td>
</tr>
<tr>
<td>3.1</td>
<td>Grading of bottom ash</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>Combined Gradation with 25% bottom ash for Wearing Course (type 1)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>according to SSCM Table 506-1</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Combined gradation for conventional wearing course (type 1)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>according to SSCM Table 506-1</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Combined gradation with 16% bottom ash for binder course</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>according to SSCM Table 506-1</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Combined gradation for conventional binder course</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>according to SSCM Table 506-1</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Combined gradation with allowable tolerance limit for wearing course</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>with 25% bottom ash</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Combined gradation with allowable tolerance limit for binder course</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>with 16% bottom ash</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1 Engineering properties of bottom ash from USA power plants 4
Table 2.2 Typical physical properties of bottom ash 5
Table 2.3 Typical mechanical properties of bottom ash 6
Table 3.1 Particle size distribution for bottom ash 10
Table 3.2 Specific gravity of bottom ash 11
Table 3.3 Combined gradation for wearing course asphalt mix with 25% bottom ash 13
Table 3.4 Combined gradation for wearing course asphalt mix for conventional mix 14
Table 3.5 Combined gradation for binder course asphalt mix with 16% bottom ash 15
Table 3.6 Combined gradation for binder course asphalt mix for conventional mix 16
Table 3.7 Job mix formula & tolerance bands for wearing course with 25% bottom ash 18
Table 3.8 Job mix formula & tolerance bands for binder course with 16% bottom ash 19
Table 4.1 Properties of bitumen 20
Table 4.2 Properties of aggregates 21
Table 4.3 Variation of optimum bitumen content and the stability value with increase of bottom ash replacement percentage 21
Table 4.4 Marshall Mix design properties for wearing course 22
Table 4.5 Material weights for 1 Mt of wearing course for conventional mix 23
Table 4.6 Material weights for 1 Mt of wearing course for bottom ash blended mix 23
Table 4.7 Marshall Mix design properties for binder course 23
Table 4.8 Material weights for 1Mt of binder course for conventional mix 24
Table 4.9 Material weights for 1Mt of binder course for bottom ash blended mix 24
Table 5.1 Cost details 25
Table 5.2 Material weights for 1 Mt of wearing course for 20% bottom ash blended mix 25
Table 5.3 Material weights for 1 Mt of binder course for 8% bottom ash blended mix 26
Table 5.4 Cost comparison with conventional mix for BA replacement in WC 26
Table 5.5 Cost comparison with conventional mix for BA replacement in BC 27
Table 5.6 Possible overlaying distance per day as bottom ash production rate 28
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>AIV</td>
<td>Aggregate Impact Value</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BC</td>
<td>Binder Course</td>
</tr>
<tr>
<td>FGD</td>
<td>Flue Gas Desulfurization</td>
</tr>
<tr>
<td>FI</td>
<td>Flakiness Index</td>
</tr>
<tr>
<td>HMA</td>
<td>Hot Mix Asphalt</td>
</tr>
<tr>
<td>HSR</td>
<td>Highway Rate of Schedule</td>
</tr>
<tr>
<td>LAAV</td>
<td>Los Angeles Abrasion Value</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>SSCM</td>
<td>Standard Specifications of Construction Materials</td>
</tr>
<tr>
<td>USA</td>
<td>United State of America</td>
</tr>
<tr>
<td>VIM</td>
<td>Voids in Mixture</td>
</tr>
<tr>
<td>VMA</td>
<td>Voids in Mineral Aggregates</td>
</tr>
<tr>
<td>WC</td>
<td>Wearing Course</td>
</tr>
</tbody>
</table>