LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

18/00N/59/2015 DCE 22/65

REVIEW OF PRODUCTIVITY NORMS IN BUILDING CONSTRUCTION INDUSTRY

MASTER OF SCIENCE IN CONSTRUCTION PROJECT MANAGEMENT

Walpita D. K.

Department of Civil Engineering

624 15"

University of Moratuwa

Sri Lanka

January 2015

ON NOISE 200A

ON 82AJG

109002 TH2903

REVIEW OF PRODUCTIVITY NORMS IN BUILDING CONSTRUCTION INDUSTRY

By

Walpita D. K.

Supervised by

Professor A. D. A. J. Perera

"This dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Master of Science in Construction Project Management"

Department of Civil Engineering
University of Moratuwa
Sri Lanka
January 2015

DECLARATION

I hereby certify that this dissertation does not incorporate any materials without acknowledgement, and materials previously submitted for a degree or diploma in any university to the best of my knowledge, and further I believe it does not contain any materials previously published written or orally communicated by another person except where due reference is made in the text.

*

06/05/2015

Date

D. K. Walpita

(MSc / CPM / 2011 / 118990F)

This is to certify that this thesis submitted by D. K. Walpita is a record of the candidate's own work carried by him under my supervision. The matters embodies in thesis is original and has not been submitted for the award of any degree.

Prof. A. D. A. J. Perera (Research Supervisor)

Construction Engineering & Management Division

Department of Civil Engineering

University of Moratuwa

06/05/2015

Date

ABSTRACT

The construction industry plays vital role in an economy of a given country. In Sri Lanka the construction sector was continuously growing at higher rate and construction industry has a big influence for country' GDP. Materials and labour component are the main inputs to the construction industry. Planning, controlling and monitoring of materials and labour component are the key factors to successfulness of the project. The multi-disciplinary nature of the project development process imposes the need for clear understanding about norms and factors affecting productivity. The stranded labour productivity norms developed many years ago in order to assist labour component. With the technology transferring to the industry, work norms for construction industry are to be review. The main objectives of this research are to revive and develop work norm for building construction activities.

This study investigate and compare the productivity of companies on engineering construction sites in the Sri Lanka to that achieved by companies on comparable sites abroad and it investigate the BSR standard norms on few construction events. This thesis also described the productivity of labour and the mode of payment. The amount of work completed against time were closely examined in different activities in different projects and all data such as mode of payment, tools & machinery availability, work supervision, were recorded with respect to the construction event. The experimental data were analyzed by simple statistical techniques and compared with the standard norms available.

The research findings revealed that the modes of payment are the main striking method to motivate tradesmen. Organization of the work, tools and equipments specifications maintenance, monitoring and supervisions are the other main factors that affect the productivity of labour based projects. It was found that the actual labour output and productivity of labour was higher than the BSR standard values. Furthermore it is recommended to review the total labour cost inorder to assign the work method for better productivity.

ACKNOWLADGEMENT

I wish to express my sincere gratitude to the department of civil engineering, University of Moratuwa for offering me this valuable opportunity to conduct an empirical study of Review on Productivity Norms in Construction Industry.

I deeply appreciate my research supervisor Prof. A. D. A. J. Perera, Head, Construction Engineering & Management Division, Department of Civil Engineering, University of Moratuwa for his continuous support and guidance rendering during the period of this study.

My respect and thanks goes to Dr. Lesly Ekanayaka, Dr Rangika Halwathura, Senior Lecturers, and Mr. Ranil Sugatadasa & Mr. Samudaya Nanayakkara Department of Civil Engineering for their valuable suggestion and comments given during progress presentations. Also I wish to thanks all the members in Department of Civil Engineering for their support throughout the period.

I express my sincere thanks to all professionals who contributed to the data collections by sacrificing their precise time and energy.

Additionally I place my graceful gratitude for the courage & support received from senior management of State Engineering Corporation of Sri Lanka, Access Projects (pvt) Limited and Tudawe Brothers (pvt) Limited, throughout the study.

Last, But not last, I am greatly indebted to my wife, kids and parents for their endless patient, support and encouragement given throughout this study in order to make this event success.

TABLE OF CONTENT

		Page
1.	Declaration	i
2.	Abstract	ii
3.	Acknowledgement	iii
4.	Table of Content	iv
5.	List of Figures	vii
6.	List of Tables	vii
7.	List of Appendices	ix
8.	Chapter 01	1
	1.1 Introduction	1
	1.2 Research Problem	2
	1.3 Research Objectives	4
	1.4 Research Methodology	4
	1.5 Main Finding	5
	1.6 Limitation of the research	6
	1.7 Guide to the Report	6
9.	Chapter 02- Literature Review	9
	2.1 Introduction	9
	2.2 Contribution to Employment	9
	2.3 Definition of Labour Productivity Norms and Unit Rates	10
	2.3.1 Labour Productivity Norm	10
	2.3.2 Unit – Rate	10
	2.4 DACE Labour Productivity Norms	11
	2.4.1 Qualification and Preambles	11
	2.4.2 Direct Vs Indirect	12
	2.5 Measuring Engineering Construction Labour Productivity	13
	2.6 Work Methods	13
	2.7 Productivity Norms	14
	1000001111/ 1101110	17

	2.8 Building Schedule of Rates	16
	2.9 Method of Measurement of Buildings Work	17
	2.10 Work Study	17
	2.11 Is Engineering Labour Productivity Improving or Declining	18
	2.12 Breakdown of Work Hours	20
	2.13 Summary	25
10. Chapt	ter 03 – Research Methodology	27
	3.1 Introduction	27
	3.2 Survey	27
	3.3 Research Design	28
	3.3.1 Design of Time Study Data Collection Format	30
	3.3.2 Sampling Technique and Sampling Size	30
	3.3.3 Data Analysis Tools	31
	3.4 Parameter Selection	32
	3.5 Sample Design	33
	3.6 Summary	34
11 Chant	ter 04 – Data Collection and Analysis	35
TT. Chapt	4.1 Introduction	35
	4.2 Preliminary Data Collection	35
	4.2.1 Excavation	36
	4.2.1.1 Specimen Calculation	37
	4.2.1.2 Cost Impact Analysis	41
	4.2.2 Back Filling	41
	4.2.2.2 Cost Impact Analysis	43
	4.2.3 Column Concreting	43
	4.2.4 Brick Work	44
	4.2.4.2 Cost Impact Analysis	44
	4.2.5 Wall Plastering Work	46
	4.2.5 2 Cost Impact Analysis	40

	4.2.6 Rubble Masonry Work	48
	4.2.6.2 Cost Impact Analysis	49
	4.3 Methods Used for Data Collection	50
	4.4 Data Preparation for Analysis with BSR Norms	51
	4.5 Analysis of Labour Consumption and Deviation from BSR	51
	4.6 Summary	53
12. Cha	apter 05 – Conclusions Recommendations & Further Study	55
	5.1 Conclusion	55
	5.1.1 Motivation & Experience of Work Force	55
	5.1.2 Comparison of Productivity with Other Countries	57
	5.2 Recommendation and Further Study	57
13. Ref	ferences	59
14. Apr	pendix	61

LIST OF FIGURES

	Page
Fig 2.1 Construction workers by Area of Expertise	10
Fig 2.2 Break down of Work Hours (Carpentry Work)	20
Fig 2.3 Break down of Work Hours	21
Fig 2.4 Workers total working time distribution	22
Fig 3.1 Important Steps for Research and Analysis	29
Fig 3.2 Distribution of Employment Category in Construction Industry	31
LIST OF TABLES	
Table 2.1 Site Clearing Norms – Country Data	15
Table 2.2 Excavation Norms – Country Data	15
Table 2.3 Loading, Unloading & Spreading Norms – Country Data	16
Table 2.4 Compaction Norms – Country Data	16
Table 3.1 Parameters and Variables	33
Table 4.1 Soil Excavation Characteristics	37
Table 4.2 Time Study Data for Manual Excavation	38
Table 4.3 Average productivity of soil excavation as per experimental data	39
Table 4.4 Comparison of BSR value and experimental data	39
Table 4.5 Recent trial and the original productivity norms from the other countries	40
Table 4.6 Cost for excavate 1m³ of soil as per experimental data	41
Table 4.7 Average productivity data for back filling	41
Table 4.8 Comparison of BSR value & experimental data (back filling)	42

Table 4.9 Average productivity data for back filling by haul distance	42
Table 4.10 Cost per unit of work item (back filling)	43
Table 4.11 Average productivity data for column concerting using skipper	44
Table 4.12 Average productivity data for brick wall construction	45
Table 4.13 Comparison of labour involvement for brick with actual and BSR norms	45
Table 4.14 Cost per 1m ² of Brick wall	46
Table 4.15 Average productivity data for wall plastering	47
Table 4.16 Comparison of labour involvement for plastering with actual and BSR norms	47
Table 4.17 Cost per 1m ² of plastering	48
Table 4.18 Average productivity data for rubble masonry work	48
Table 4.19 Comparison of actual and BSR norms for rubble work	49
Table 4.20 Cost per 1m³ of rubble work	49
Table 4.21 Summary of experimental labour consumption and BSR norms	51
Table 4.22 Comparison of skill labour consumption and deviation	52
Table 4.23 Comparison of unskilled labour consumption and deviation	52
Table 4.24 Summary of average daily work done of skilled labour	53

APPENDICES

	 Page
Appendix 01	61
Appendix 02	62
Appendix 03	63
Appendix 04	64
Appendix 05	65
Appendix 06	66
Appendix 07	67
Appendix 08	68
Appendix 09	69
Appendix 10	70
Appendix 11	71
Appendix 12	72