FAULT LOCALIZATION AND RESTORATION OF DISTRIBUTION NETWORK USING A MULTI AGENT BASED SYSTEM

Aruna Ireshan Panagoda

(108860A)

Thesis submitted in partial fulfilment of the requirement for the Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2015

Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	• •						
S	i	Ę	5	n	1	a	t	u	r	e	•	C	1	2	t	ł	1	e		C	2	1	n	10	b	i	Ċ	1:	at	te	e			

Date

(P.A.A.I Panagoda)

The above candidate has carried out research for the Masters Dissertation under my supervision.

.....

Date

Signature of the supervisor (Dr. K.T.M.U Hemapala)

.....

Signature of the supervisor (Dr. P.S.N. De Silva) Date

Abstract

Power distribution network reduces its reliability during the fault localization, isolation and network reconfiguration. High voltage and medium voltage distribution system fault localization process consumes more time and network reconfiguration get complex when there are more interconnections.

Therefore the objective of the research is to provide a methodological approach for the fault restoration problem in power distribution network of Sri Lankan using the de-centralized approach. Agent based solution was implemented with Multi Agent System (MAS) to address above issue and the system is characterized de-centralized nature and easily expandable nature. The system comprises with Application layer, Interface layer and communication layer. The application layer was developed using Java Agent Development Environment (JADE). The interface layer and the communication layer are tie together to confirm physical integration and which enables to use modern communication techniques with the system application.

The MAS based decentralized system can be applied to improve the reliability of Sri Lankan power distribution network.

Dedicated

To my parents

Acknowledgement

I would like to express my heartiest gratitude to my supervisors, Dr. K.T.M.U Hemapala and Dr. P.S.N De Silva for their support, guidance and valuable advices throughout these academic years. I would like to thank University of Moratuwa for giving me the opportunity for my Master studies. I would like to specially thank to Dr. P.S.N De Silva as the Head of Engineering of Lanka Electricity Company (LECO) and the Brach Manager and all staff of LECO Kotte Branch for giving me the support to accomplish my study by providing necessary details on power distribution network.

Finally, thanks to all lecturers & my friends, that I have been working with the throughout the period of study in University of Moratuwa.

TABLE OF CONTENTS

Declar	ratio	n	i
Abstra	act		ii
Ackno	owle	dgement	iv
List of	f Fig	ures	vii
List of	f Tał	bles	ix
List of	f Ab	breviations	X
1. IN	TR	ODUCTION	1
1.1.	Po	wer Distribution System-Sri Lanka	2
1.2.	Dis	stribution System Fault Restoration- Conventional method	5
1.3.	Ob	jective and Scope of the research	7
2. M	UL	FI AGENT SYSTEM	8
2.1.	Fea	atures of Multi Agent System	8
2.2.	Мu	Iti Agent System in Real World Applications	9
2.3.	Th	e Foundation for Intelligent Physical Agents (FIPA)	10
2.3	3.1.	Agent Management	10
2.3	3.2.	Agent Communication	12
2.4.	Ag	ent Development Toolkit	15
2.5.	Jav	a Agent Development Environment (JADE)	16
2.6.	JA	DE Architecture	17
2.6	5.1.	Agent Communication	18
2.6	5.2.	Agent Behaviour	18
2.6	5.3.	Interaction Protocols	20
2.6	5.4.	Yellow Pages Service	20
2.6	5.5.	Socket Proxy Agent	21
3. Ll	[TE]	RATURE REVIEW	22
3.1.	Po	wer System Restoration Model	22
3.1	l.1.	Centralized Approach	23
3.1	1.2.	Common drawbacks of Centralized approach	24
3.1	.3.	Multi Agent Approach on Power System Restoration	25
4. SY	YST	EM IMPLEMENTATION	27
4.1.	Co	nceptual design	27
4.1	l.1.	Physical System	27

4.1.	2. Communication Layer	30
4.1.	3. MAS Application Layer	30
4.2.	Agent Conceptualization in Physical system	31
4.2.	1. Primary Substation- PSS Agent	31
4.2.	2. Feeder Agent	33
4.2.	3. Load Break Switch – LBS Agent	33
4.3.	Multi Agent System Main Processes	33
4.3.	1. System Data Update	36
4.3.	2. Fault Localization Process	37
4.3.	3. Fault Isolation	40
4.3.	4. Network Reconfiguration	41
4.4.	Interface Layer Implementation	46
5. RE	SULT AND VALIDATION	49
5.1.	Agent Creation	49
5.2.	Case Study	51
5.3.	Physical System Integration	54
6. CC	NCLUSION	56
6.1.	Further Improvements	58
Refere	nces	59

LIST OF FIGURES

Figure 1.1: Typical Power System [2]	2
Figure 1.2: Transmission Network Sri Lanka	4
Figure 1.3: Kolonnawa PSS and Feeder Arrangement in LECO Distribution Network	5
Figure 2.1: Agent Management Reference Model	11
Figure 2.2: Agent Lifecycle	12
Figure 2.3: FIPA Message Structure	12
Figure 2.4: FIPA Request Interaction Protocol [33]	14
Figure 2.5: Contract Net Interaction Protocol [34]	15
Figure 2.6: Java Agent Development Environment	16
Figure 2.7: Jade Architecture [37] [38]	17
Figure 2.8: JADE Asynchronous messaging	18
Figure 2.9: Agent Execution cycle [37]	19
Figure 2.10: Behaviour Hierarchy	19
Figure 2.11: Yellow Pages Service [37]	20
Figure 2.12: Proxy agent behaviour	21
Figure 3.1: ABB Smart Compact Secondary Substation solution	24
Figure 3.2: Intercommunication used in [3]	26
Figure 4.1: System modelling	27
Figure 4.2: Kolonnawa PSS Switches arrangement	28
Figure 4.3: Radial distribution feeder	29
Figure 4.4: Communication Layer Abstraction	30
Figure 4.5: Agent Conceptualization	32
Figure 4.6: Flow chart of Main Processes	35
Figure 4.7: System Update Process	36
Figure 4.8: Proxy Message Template	37
Figure 4.9: Fault incident at Radial Feeder	37
Figure 4.10: Fault inform process	38
Figure 4.11: Localizing Fault Upstream LBS	39
Figure 4.12: Fault Isolation Flow Diagram	40
Figure 4.13: Fault Isolation Interaction Protocol	40
Figure 4.14: Network Reconfiguration flow diagram	41
Figure 4.15: Contract-net protocol for evaluation restoration proposals	42

Figure 4.16: Search for available Power	43
Figure 4.17: Communication Pattern in the event of fault	44
Figure 4.18: Network Rearrangement	45
Figure 4.19: Proxy Message Received to Communication Interface	46
Figure 4.20: ACL Message Parsing Flow diagram	48
Figure 5.1: LBS Agent GUI	49
Figure 5.2: JADE Remote Agent Management GUI	49
Figure 5.3: Directory Facilitator GUI	50
Figure 5.4: Communication Layer GUI	50
Figure 5.5: Case Study	51
Figure 5.6: ACL Communication for fault restoration	52
Figure 5.7: Network configuration after the fault restoration of Case	53
Figure 5.8: Demonstration Board Sketch	55
Figure 5.9: Demonstration board in testing environment	55

LIST OF TABLES

Table 1: ACL Message Parameter	13
Table 2: Agent Toolkit Comparison [35]	16
Table 3: Breaker Voltage, Current at a fault	37
Table 4: Elapsed time of execution Results	54

LIST OF ABBREVIATIONS

Abbreviation	Description
ACL	Agent Communication Language
AP	Agent Platform
AR	Auto Re-closer
CEB	Ceylon Electricity Board
DDLO	Drop Down Lift On
FIPA	Foundation for Intelligent Physical Agent
JADE	Java Agent Development Environment
LBS	Load Break Switch
LECO	Lanka Electricity Company
MAS	Multi Agent System
PSS	Primary Substation
SCADA	Supervisory Control and Data Acquisition