
DETECTING ACCESS PATTERNS
THROUGH ANALYSIS OF WEB

LOGS

Nilani Algiriyage

This dissertation submitted in partial fulfilment of the requirements for the Degree of
Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March 2015

DECLARATION

I declare that this is my own work and this thesis does not incorporate without ac-
knowledgement any material previously submitted for a Degree or Diploma in any
other University or institute of higher learning and to the best of my knowledge and
belief it does not contain any material previously published or written by another per-
son except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce
and distribute my thesis, in whole or in part in print, electronic or other medium. I
retain the right to use this content in whole or part in future works (such as articles or
books).

Signature: Date:

The above candidate has carried out research for the Masters thesis under my supervi-
sion.

...
Signature of the supervisor: Date

i

ABSTRACT

With the evolution of the Internet and continuous growth of the global information in-
frastructure, the amount of data collected online from transactions and events has been
drastically increased. Web server access log files collect substantial data about web
visitor access patterns. Data mining techniques can be applied on such data (which is
known as Web Mining) to reveal lot of useful information about navigational patterns.

In this research we analyze the patterns of web crawlers and human visitors through
web server access log files. The objectives of this research are to detect web crawlers,
identify suspicious crawlers, detect Googlebot impersonation and profile human visi-
tors. During human visitor profiling we group similar web visitors into clusters based
on their browsing patterns and profile them.

We show that web crawlers can be identified and successfully classified using heuris-
tics. We evaluated our proposed methodology using seven test crawler scenarios. We
found that approximately 53.25% of web crawler sessions were from âĂIJknownâĂİ
crawlers and 34.16% exhibit suspicious behavior.

We present an effective methodology to detect fake Googlebot crawlers by analyzing
web access logs. We propose using Markov chain models to learn profiles of real and
fake Googlebots based on their patterns of web resource access sequences. We have
calculated log-odds ratios for a given set of crawler sessions and our results show that
the higher the log-odds score, the higher the probability that a given sequence comes
from the real Googlebot. Experimental results show, at a threshold log-odds score we
can distinguish the real Googlebot from the fake.

For the purpose of human visitor profiling, an improved similarity measure is proposed
and it is used as the distance measure in an agglomerative hierarchical clustering for
a data set from an e-commerce web site. To generate profiles, frequent item set min-
ing is applied over the clusters. Our results show that proper visitor clustering can be
achieved with the improved similarity measure.

Keywords: access logs, crawlers, web users, web usage mining

ii

ACKNOWLEDGEMENTS

I would like to thank all the people who gave me a tremendous support in completing
my masters research project successfully. My special thanks go to the academic super-
visors Prof.Sanath Jayasena and Prof.Gihan Dias for their guidance, ideas, generous
support and encouragement throughout the duration of my research.

Then my heartiest gratitude goes to Mr.Kushan Sharma and Mr.Amila Perera for their
ideas and support. And also I remember all the staff members at LK Domain Registry
and Techcert who gave me support and encouragement.

I would like to thank the Department of Computer Science and Engineering of Univer-
sity of Moratuwa for giving me the opportunity to carry out this research and providing
necessary resources.

I greatly appreciate the valuable comments of all members at Research and Devel-
opment department of LK Domain Registry.

Finally a big thank to my beloved parents, husband and brothers who were always
with me providing support and confidence when I most needed it.

iii

CONTENTS

1 INTRODUCTION 1
1.1 Problem Definition . 2
1.2 Objectives . 3
1.3 Methodology . 3

2 LITERATURE REVIEW 5
2.1 Web Server Access Log Files . 5
2.2 Web Crawler Detection . 6

2.2.1 Syntactical Log Analysis . 7
2.2.2 Traffic Pattern Analysis . 8
2.2.3 Analytical Learning . 8
2.2.4 Real-time Web Crawler Detection 10
2.2.5 Suspicious Web Crawler Detection 11

2.3 Web User Profiling . 12
2.4 Markov Chain Model . 15
2.5 Summary . 16

3 METHODOLOGY 17
3.1 Web Crawler Identification and Characterization 17

3.1.1 Data Preparation-Web Crawler Detection 17
3.1.2 Identifier . 19
3.1.3 Classifier . 21
3.1.4 Summary . 23

3.2 Detection of Googlebot Impersonation 23
3.2.1 Data Preparation-Googlebot Impersonation 24
3.2.2 Summary . 29

3.3 Human Visitor Profiling . 29
3.3.1 Data Preparation . 31
3.3.2 Comparison of Visitor Sessions 34
3.3.3 Summary . 36

4 Experimental Evaluation and Discussion 37
4.1 Web Crawler Identification and Characterization 37

4.1.1 Data Set . 37
4.1.2 Methodology Evaluation . 38
4.1.3 Experimental Results . 40
4.1.4 Crawler-Trap Tool . 42

iv

4.2 Googlebot Impersonation . 43
4.2.1 Patterns of the Dataset . 43
4.2.2 Markov Chain Models . 44
4.2.3 Accuracy Evaluation . 45

4.3 Human Visitor Profiling . 47
4.3.1 Data Preperation . 47
4.3.2 Hierarchical Clustering . 47
4.3.3 User Profiling . 48

5 CONCLUSIONS 50
5.1 Characterization of Web Crawlers 50
5.2 Detection of Googlebot Impersonation 50
5.3 Human User Profiling . 51
5.4 Future Improvements . 51

5.4.1 Characterization of Web Crawlers 51
5.4.2 Detection of Googlebot Impersonation 51
5.4.3 Human User Profiling . 52

Appendix A Web Crawler Identification & Characterization 57

Appendix B Crawler-Trap Tool 59
B.1 Introduction . 59
B.2 Screens . 59

v

LIST OF FIGURES

1.1 PHP remote code execution vulnerability. 2

2.1 Web robot detection methodology hierarchy.[1] 7
2.2 An Example of a CAPTCHA test. 11
2.3 Web mining taxonomy [2]. 12

3.1 Summary of web crawler characterization. 17
3.2 Methodology for identification & characterization of web crawlers. . . 18
3.3 Sessionalized log file example. 19
3.4 Flow chart of “IDENTIFIER“ module. 19
3.5 Flow chart of the “CLASSIFIER“ module. 22
3.6 Methodology for fake Googlebot detection. 26
3.7 Resource request pattern diagram . 29
3.8 Methodology for human visitor profiling. 32
3.9 Web site with navigational paths . 33

4.1 Number of HTTP requests per day. 38
4.2 Top most countries generating web crawlers. 40
4.3 Crawlers by total number of sessions generated. 41
4.4 HTTP requests per day for real-Googlebot 44
4.5 HTTP requests per day for fake-Googlebot 45
4.6 Log-odds ratio real Googlebot . 46
4.7 Log-odds ratio fake Googlebot . 46
4.8 Results of hierarchical clustering. 49

B.1 Upload log file. 59
B.2 Process log file. 59
B.3 Home page view I. 60
B.4 Home page view II. 60
B.5 Crawler analysis report view I. 60
B.6 Crawler analysis report view II. 61
B.7 Crawler profile view I. 61
B.8 Crawler profile view II. 61
B.9 Crawler profile view III. 62
B.10 Crawler profile view III. 62
B.11 IP lookup view I. 63
B.12 IP lookup view II. 64

vi

B.13 Crawler list view I. 65
B.14 Crawler list view II. 66

vii

LIST OF TABLES

2.1 Apache combined log format. 6
2.2 Summary of attributes derived [3]. 9

3.1 Summary of the data set. 25
3.2 Real Googlebot “user-agent“ and %hitcount 27
3.3 Fake Googlebot “user-agent“ and %hitcount 28
3.4 Resource Classes . 28
3.5 Resource access sequence matrix . 29
3.6 Session-page matrix . 33
3.7 Session-time Matrix . 34

4.1 Summary of the log file. 37
4.2 Web crawlers found in the dataset. 39
4.3 Summary of crawler scenarios. 40
4.4 Summary of crawler sessions. 41
4.5 “Known“ crawler patterns. 41
4.6 “Suspicious“ crawler patterns. 42
4.7 “Other“ crawler patterns. 42
4.8 Summary of the data set. 43
4.9 Countries originating fake-Googlebot Academic web site 43
4.10 Accuracy scores for different log-odds ratios (e-commerce web log) . 47
4.11 Summary of the log file. 47
4.12 Cluster results . 48

A.1 Web crawlers with originated country. 57
A.2 Examples for identified “known“ crawlers. 58
A.3 Examples for identified “suspicious“ crawlers. 58
A.4 Examples for identified “other“ crawlers. 58

viii

LIST OF ABBREVIATIONS

Abbreviation Description

ART2 Modified Adaptive Resonance Theory
CAPTCHA Completely Automated Public Turing test to tell Computers

and Humans Apart
RST Rough Set Theory
SOFM Self-Organizing Feature Map
SOM Self Organizing Maps
UB Usage Based
FB Frequency Based
VTB Viewing Time Based
VOB Visiting Order Based
PC Possible Crawler
RFC Request For Comment

ix

1 INTRODUCTION

With the continuous growth and rapid advancement of web based services, the traffic
generated by web servers have drastically increased. Analyzing such data which is
normally known as click stream data could reveal a lot of information about the web
visitors. These data are often stored in web server access log files and in other related
resources.

Web usage mining is the process of analysis and discovery of interesting patterns from
web resources (data collected at server side, client side and proxy servers). Discovered
patterns can be used for many purposes such as web user profiling, web page recom-
mendation, advertising, and intrusion detection.

Web clients can be broadly categorized into two groups: web crawlers and human
visitors. Many studies have been done for analyzing patterns of human visitors dur-
ing the past decades. During recent past the traffic generated by web crawlers has
drastically increased [1]. Web crawlers are programs or automated scripts that scan
web pages methodically to create indexes. They traverse the hyperlink structure of the
worldwide web in order to locate and retrieve information. Web crawler programs are
alternatively known as web robots, spiders, bots and scrapers.

Web crawlers can be used by anyone seeking to collect information available in the
Internet. Today web crawler programs as are used for various purposes. Search en-
gines like Google [4], Yahoo [5], msn [6] and bing [7] use web crawlers to index web
pages to be used in their page ranking process. Web administrators employ crawlers for
automating maintenance tasks such as checking for broken hyperlinks and validating
HTML codes. Some crawlers, not from search engines are designed to operate one-
time only (e.g. during a particular project), although some but others are programmed
for long-term operations. Business organizations, market researchers or anyone can
gather specific types of information such as e-mail address, corporate news and prod-
uct prices.

A recent threat with web crawlers is some try to crawl web sites hiding their own
identity and pretending to be some one else. Since Google is the widely used search
engine globally and web site owners do not want to block the Googlebot, imposters try
to crawl sites impersonating Googlebot. The fact is they get privileged access to web
sites using the identity of "Googlebot". Googlebot impersonation can lead to spam-
ing, information theft including business intelligence, or even application level DDoS
attacks. Although there were recent news items of fake Googlebots, [8] [9]current un-

1

derstanding of this problem is minimal. While it is possible to later identify (e.g. using
web server access log files) these Googlebot imposters by using a reverse DNS lookup
and a forward DNS lookup case by case basis[10], doing this real time will be much
useful but challenging.

We observed multiple instances of php remote code execution vulnerability [?] scans
by these fake Googlebots in our test data sets. (Figure 1.1)

In the web usage domain user profiling applies to establishing groups of users ex-
hibiting similar browsing behavior. User profiling helps web site owners in multiple
ways : personalization, system improvements such as load balancing, data distribution
policies etc. , improve web site’s structure, develop recommendation systems and for
business intelligence.

Off-line or postmortem analysis of web server access log files could give a deep under-
standing of traffic patterns and specially to identify offensive web clients. Although the
detection is after-the-fact, proactive strategies can be formulated based on the gathered
knowledge.

Figure 1.1: PHP remote code execution vulnerability.

1.1 Problem Definition

Although it is expected that web clients will behave well while browsing the web, it is
not the case always. Due to the diversity of activities performed, there exists a potential
for unethical behavior such as:

• Scanning web sites for security vulnerabilities.

• Hacking servers to access unprotected or unencrypted data.

• Gather business intelligence and confidential data.

• E-mail address harvesting.

2

• High speed downloads causing excessive usage of bandwidth and ultimately re-
sulting in temporary denial of services where other visitors would not be able to
access the web pages at the normal speed.

• Perform crawling hiding their true identity and pretending to be some one else.

These activities can cause significant loses to individuals and organizations in
terms of data, revenue and reputation.

1.2 Objectives

Our objectives are as follows:

• Identify and characterize web crawlers through analysis of web server access log
files.

• Develop a web based tool for detecting and characterization of web crawlers.

• Identify impersonation by web crawlers in web access.
Use Googlebot as an example to develop a methodology to identify web crawler
impersonation.

• Identify and profile human visitor behavior using web access logs.
Cluster human visitors based on their similarities in web browsing behavior and
study their common profiles.

• Evaluate proposed methodologies.

1.3 Methodology

Our methodology is summarized below.

• Study the methodologies for web crawler identification and web user profiling.

Detecting web crawlers requires a lot of effort since the behavior patterns differ
from one crawler to the other. As the first step we need to study previous attempts
on techniques, trends and approaches for web crawler characterization.

• Pre-process web server access log files and convert them into a suitable format
for further analysis. Sessionization.

Web server log files are plain text files which contain information pertaining to
web access attempts. Pre-processing of access log files is a must before any
mining task, since there can be lot of irrelevant data. Further the pre-processing
steps can be different from one mining task to the other.

Sessionization is the process of grouping HTTP requests in the log files into
sessions. The procedure for session identification includes grouping records in
log files by IP address, user-agent and the timeout period.

3

• Apply supervised learning and unsupervised learning techniques to identify pat-
terns.

Supervised and unsupervised learning are data mining techniques, where the first
one is applied for labeled training data set and the latter is applied for unlabeled
data set.

• Profiling.

Profiling is used to model web visitor behavior based on their web browsing
characteristics.

4

2 LITERATURE REVIEW

Offline analysis of web server access log files can reveal lot of interesting patterns of
web client behavior. We first (in Section 2.1) discuss the Apache combined log format
of web server access log files and then surveys on web crawler patterns in Section 2.2,
in the Section 2.3 about web user profiling and finally Markov Chain Models in section
2.4.

2.1 Web Server Access Log Files

Web server access log files are plain text files which contain information pertaining to
web access attempts. They record all the requests processed by the web server. Format
of the web server aces log file is configurable. We have used Apache combined log
format which is described in the Apache HTTP Server Version 1.3 [11].

Log Format: "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{“user-agent“}i\""

• %h is the IP address of the client (remote host) which made the request to the
server. The IP address reported here is not necessarily the address of the machine
at which the user is sitting. If a proxy server exists between the user and the
server, this address will be the address of the proxy, rather than the originating
machine.

• %l is the identity of the user determined by id (not usually used since not reliable)

• %u is the user name determined by HTTP authentication

• %t is the time the server finished processing the request.

• %r is the request line from the client. This log the method, path, query-string,
and protocol.

• %>s is the status code sent from the server to the client. It reveals whether the
request resulted in a successful response (codes beginning in 2), a redirection
(codes beginning in 3), an error caused by the client (codes beginning in 4), or
an error in the server (codes beginning in 5)

• %b is the size of the response to the client (in bytes) Referer is the site that the
client reports having been referred from. “user-agent“ is the identifying infor-
mation that the client browser reports about itself.

5

• %{Referer} is the referer field which list the URL of the previous site visited by
the client, which linked to the current page.

• %{user-agent} is the user agent field which provide information about the clien-
tâĂŹs browser,the browser version, and the client‘s operating system. Impor-
tantly, this field can also contain information regarding web crawlers.

Table 2.1 lists some example log lines of Apache combined log format from our
test data set.

Table 2.1: Apache combined log format.

1 86.96.110.34 - - [17/Jul/2013:00:06:13 +0530] "GET /index.php
HTTP/1.1" 200 15683 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:23.0) Gecko/20100101 Firefox/23.0"

2 203.94.92.226 - - [17/Jul/2013:02:03:01 +0530] "GET /infopayments.php
HTTP/1.1" 200 24627 "http://www.nic.lk/index.php" "Mozilla/5.0 (Win-
dows NT 5.1; rv:22.0) Gecko/20100101 Firefox/22.0"

3 112.135.249.52 - - [17/Jul/2013:06:44:13 +0530] "POST /lksearch.php
HTTP/1.1" 200 4786 "http://www.nic.lk/index.php" "Mozilla/5.0 (Win-
dows NT 5.1; rv:20.0) Gecko/20100101 Firefox/20.0"

4 124.43.229.73 - - [17/Jul/2013:08:35:25 +0530] "GET /index.php
HTTP/1.1" 200 15683 "http://www.nic.lk/" "Mozilla/5.0 (Windows NT
6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.72
Safari/537.36"

5 66.249.85.58 - - [17/Jul/2013:09:22:09 +0530] "GET /in-
dex.php HTTP/1.1" 200 15683 "-" "Mozilla/5.0 (Win-
dows NT 6.1; rv:6.0) Gecko/20110814 Firefox/6.0 Google
(+https://developers.google.com/+/web/snippet/)"

2.2 Web Crawler Detection

Web crawlers are software programs that automatically traverse the hyperlink struc-
ture of the world-wide web in order to locate and retrieve information. In addition
to crawlers from search engines, we observed many other crawlers which may gather
business intelligence, confidential information or even execute attacks based on gath-
ered information while camouflaging their identity. Therefore, it is important for a
website owner to know who has crawled his site, and what they have done.

The impact of the web crawlers on web sites cannot be ignored since anyone with
a little knowledge can perform web crawling as there are many tools which make web
crawling an easy task. For example wget [12] for Linux environments, HTTrack [13]
for windows, known web mining tool rapidminer [14] and many more. Further many
programming languages like Python [15], Perl [16], Java [17] provide libraries for web
crawler development.

6

Figure 2.1: Web robot detection methodology hierarchy.[1]

In this section we survey the existing approaches of detection and categorization of
web crawlers. Identification of the web crawler requests vs. human visitor requests
have been addressed both in off-line and real-time context. Off-line detection often re-
quires identification of user sessions. Sessionization is the process of grouping HTTP
requests from single IP, with same user agent during a time period t.

Derek Doren [1] has visualized (Figure 2.1) web robot detection as a hierarchy. Ac-
cording to the increasing strength of each technique, off-line detection includes syn-
tactical log analysis, traffic pattern analysis and analytical learning model. However
we noticed some have used combination of these techniques which gave them good
results. In Derek hierarchy, real-time detection include Turing test systems. Today
analytical models are also used to detect web robots real-time.

In the following subsections these three techniques are discussed in detail.

2.2.1 Syntactical Log Analysis

Syntactical log analysis considers each entry recorded in the log file. Based on the
technique used, this can be in three types. The simplest is to detect crawlers based
only on the information recorded in the log itself. Popular commercial log-analysis
tool AWstats [18] uses this technique. They uses access of “robots.txt“, certain words
and characters in the “user-agent“ field such as ’bot’ followed by a space or one of the

7

following characters + :, .;/ and term “crawl“.

In the second approach each request is compared against a database of known web
crawler “user-agents“. Today there are lots of “user-agent“ parsers in many program-
ming environments [15] [16]. They have a database of “user-agents“ and returns
whether the request is from a web crawler or not.

The third approach identifies web robots based on multiple facets and hence can be
called as multifaceted log analysis. Huntington et al.[19] talk about using multiple as-
pects in the detection process starting with the IP address. They have found 0.5% of
the robot traffic could be identified using only IP address. Then they have used DNS
look up and 16.1% of the traffic has been identified as web robots. For undeclared
robots they have used a database of IP addresses and identified 6.5% of the traffic as
from web robots. Ultimately the usage of multi-faceted log analysis has resulted in
detecting 32.6% of the traffic as from web robots in their test data set. Any way they
have declared that their method is only successful about 80% of the time in locating
robots.

2.2.2 Traffic Pattern Analysis

This technique considers traffic characteristics such as frequency, bandwidth usage,
server status and referrer. First the authors study distinguishing the traffic patterns of
web crawlers and then formulate techniques to identify web robots. The first technique
is to use the access of “robots.txt“ file. Martijn Koster [20] has proposed Robots Exclu-
sion Protocol to allow web administrators to give instructions to the web crawler using
“robots.txt“ file. Whenever a web robot visits a web site, say http://www.example.

com, it should first check for http://www.example.com/robots.txt. The follow-
ing entry in “robots.txt“ forbids all crawlers from accessing xyz.html.

"user-agent":*

Disallow:/xyz.html

Although this suggests web robots can be easily detected from “robots.txt“, there
are two important considerations when using it. Firstly web crawlers can ignore
“robots.txt“ file. Secondly since “robots.txt“ is publicly available file, anyone can
see what you are protecting that you don‘t want robots to access. Due to the first fact
depending on “robots.txt“ access for web robot detection is unreliable.

2.2.3 Analytical Learning

Analytical techniques use a trained model to predict the class of the new data set. Dur-
ing the training process this technique requires a labeled data set. Data labeling is
again a difficult task and analytical learning can be further classified according to the
modeling paradigm and techniques used in data labeling process.

Pan-Ning and Vipin Kumar [3] proposes an approach for web robot detection using

8

analytical learning. They discuss the standard approach of user session generation by
grouping IP address with “user-agent“ will always not give proper results. That is one
IP/“user-agent“ pair can be with multiple users (when users browse through a proxy
server). So in the first stage they have introduced a new session generation algorithm
as follows. To match log entry l j to its corresponding session they partition the list of
currently active sessions H into four groups. First group candidateSet(1) contains the
sessions with same IP and “user-agent“. candidateSet(2) contains sessions with same
“user-agent“ as l j but with different IP addresses. They have used a reverse DNS look
up to resolve host names. Third group candidateSet(3) contains same user agent and
prefix IP address as l j. Last group candidateSet(4) contains sessions with same IP ad-
dress but with different user agents as l j. Then they have used 24 different properties
to identify web robot sessions Table 2.2. After deriving the session features classi-
fication model has been built using C4.5 decision tree algorithm to achieve their two
main objectives; (1) find a good model for predicting web robot sessions based on their
access features, and (2) to detect robotic activities as soon as possible. According to
the experimental results web robots can be detected more than 90% accuracy after 4
requests.

Table 2.2: Summary of attributes derived [3].

Id Attribute Name Remark Purpose
1 TOTALPAGES Total number of pages requested Feature
2 %IMAGE %of image pages(.gif/.jpg) requested Feature
3 %BINARY DOC %of binary documents(.ps/.pdf) requested Feature
4 %BINARY EXEC %of binary program files(.cgi/.exe) requested Feature
5 ROBOTS.TXT No of times the robots.txt file is accessed Labeling
6 %HTML %of HTML pages requested Feature
7 %ASCII %of ASCII files(.txt/.java) requested Feature
8 %ZIP %of compressed files(.zip/.gz) requested Feature
9 %MULTIMEDIA %of multimedia files(.wav/.mpg) requested Feature
10 %OTHER %of other file formats requested Feature
11 TOTALTIME Temporal sever session length Feature
12 AVGTIME Average time between clicks Feature
13 STDEVTIME Standard deviation oftime between clicks Feature
14 NIGHT %of requests made between 2am to 6am Feature
15 REPEATED Reoccurance rate of file requests Feature
16 ERROR %of requests with status>=400 Feature
17 GET %of requests made with GET method Feature
18 POST %of requests made with POST method Feature
19 HEAD %of requests made with HEAD method Labeling
20 OTHER %of requests made with other method Feature
21 WIDTH width of the traversal(in the URL space) Feature
22 DEPTH depth of the traversal(in the URL space) Feature
23 PATHLENGTH server path length(no of requests) Feature
24 REFERRER="-" requests with referrer="" Labeling

9

Dusan Satavonovic et al. [21] uses seven well-established data mining classification
algorithms on a static web server access log in order to (1) classify web user session
as from web robots or human visitors and (2) identify web robots sessions exhibit ma-
licious behavior which could be potential participants of a DDoS attack. Based on
previous work they have adopted seven different features and new two futures of their
own to distinguish between browsing patterns of web robots and humans. These fea-
tures as click number, HTML-to-image ratio, and percentage of PDF/PS file requests,
percentage of 4xx error responses, percentage of HTTP requests of type HEAD, per-
centage of requests with unassigned referrer, “robots.txt“ file requests, standard devi-
ation of requested page depth and percentage consecutive sequential HTTP requests.
They have done two types of classification experiments. For the experiment #1 they
have obtained a labeled data set of human sessions and well-behaved crawler sessions.
Aim of the first approach is to examine whether human sessions and well-behaved
crawler sessions can be separated by classification algorithms. For the data labeling
they have used a database of “user-agent“ fields of crawlers and browsers.

For the experiment #2 they have grouped human sessions and well-behaved crawler
sessions into one class and malicious web crawlers or unknown visitors into the other.
As in the previous case same database is used to label the sessions. After the session
labeling the have used C4.5, RIPPER, k-nearest neighbor, naive Bayesian, Bayesian
network, Support Vector Machine and neural network classification algorithms to pre-
dict the class label of the test data set. To evaluate the performances of the algorithms
they have used recall, precision and F1 score. According to the results classification
accuracy of neural network, C4.5, RIPPER and k-nearest neighbor is high and they
have concluded that there is a significant different between behavior of web crawlers
and human users. However identifying crawler who mimics the behavior patterns of
human users is difficult with their approach.

Stassopoulou and Dikaiakos [22] used a Bayesian network approach to distinguish be-
tween web crawler and human user sessions. After the identification of sessions they
have used the six features based on the findings by Dusan et al. [21] : maximum sus-
tained click rate, session duration, percentage of image requests, percentage of pdf/ps
requests, percentage of requests with 4xx errors and “robots.txt“ file requests. Using
these features they have formed the Bayesian network. To train the Bayesian net-
work they have created a labeled data set based on the following four heuristics: (1)
IP address of known crawlers, (2) “robots.txt“ file requests, (3) session duration val-
ues extending over period of three hours, and (4) HTML to image ratio more than 10
HTML files per image file. Experiments were performed on the test data set. Results
show that 0.95 recall can be achieved using Bayesian network in the situations where
the training set contains an equal number of crawler and human sessions.

2.2.4 Real-time Web Crawler Detection

The most common example for real time crawler detection is the CAPTCHA test. Von
Ahn et al. [23] introduced Completely Automated Public Turing test to tell Com-

10

puters and Humans Apart (CAPTCHA). CAPTCHA codes are very hard to read and
understand by conventional software programs and normally contain .gif images with
scrambled words or recordings. Over the past years this technique has been success-
fully used to detect humans from web crawlers. Additionally hackers and spammers
were blocked using CAPTCHA tests. Figure 2.2 shows an example CAPTCHA test
on a web site.

Figure 2.2: An Example of a CAPTCHA test.

Balla et al. [24] has proposed a methodology to detect web crawlers real time. The
system reads the incoming HTTP requests and feeds them to a hashing table. They
have trained a Bayesian classifier for the classification of IP addresses. Their results
have shown that the accuracy of detection algorithm is more than 80%.

2.2.5 Suspicious Web Crawler Detection

Suspicious web crawlers are a challenge for web site security. Since "suspicious" is
qualitative measure, identifying them may be different upon the context and user. We
discussed possible features of suspicious web crawlers in Section 1.1. Few studies
have been done on detection of suspicious web crawlers. Dusan and Natalija [25]
used unsupervised clustering and observed a good separation between suspicious and
non-suspicious behavior. They have collected university server’s access log files and
identified web crawler sessions based on traditional features and two novel features.
These two features are Consecutive Sequential HTTP Request Ratio and Standard De-
viation of Page Request Depth. They have applied both Self Organizing Maps(SOM)
and Modified Adaptive Resonance Theory(ART2) unsupervised neural network algo-
rithms. According to their results suspicious web crawlers exhibit a range of browsing
patterns while human users follow rather similar browsing patterns. Importantly 52%
of suspicious crawlers exhibit human-like browsing behaviour. Algiriyage et al. [26]
have used hidden links and other features like IP blacklist checks, anomalies in the
“user-agent“ field to identify suspicious web crawlers.

Nong Ye et al. [27] has used a Markov chain model to detect intrusions in a computer
and network system. In their study temporal behavior of the normal profile is learnt

11

from historic data and new observed behavior is analyzed to derive probabilities. Test-
ing results show that intrusive activities have a very low probability compared to the
normal activities.

DeXiang et al. [28] have developed algorithms using a combination of machine learn-
ing and advanced metrics to detect suspicious crawlers. In their work they have pro-
posed two approaches (1) TSSNBS (Too Simple Sometimes Naive Blocking Schema)
and (2) ABS (Adaptive Blocking Schema) to block malicious crawlers. According to
their results after about 60 seconds, the detection ratio is stabled at about 86% which
is a fair amount. Today there are also many crawlers that impersonate well-known
web crawlers. For example, it has been observed that Google‘s Googlebot crawler is
impersonated to a high degree. This raises ethical and security concerns as they can
potentially be used for malicious purposes. However detection of Googlebot imper-
sonation is not addressed in the research community yet, possibly because this is a
recent trend.

2.3 Web User Profiling

Mobarsher et al. [2] introduced the taxonomy of web mining (Figure 2.3) for the data
mining activities performed on web data. There are major two types of web mining
which is refereed as web content mining and web usage mining. Web content mining
engages in automatically searching information resources in web pages and web usage
mining is related to discovering user access patterns from web usage data. We have
focused on web usage mining in the context of web visitor profiling.

Web Mining

Web Content

 Mining

Web Usage

 Mining

Agent Based

 Approach
Database

Approach

-Preprocessing

-Transaction Identification

-Pattern Discovery Tools

-Pattern Analysis Tools

-Intelligent Search Agents

-Information Filtering

Categorization

-Personalized Web Agents

-Multilevel Databases

-Web Query Systems

Figure 2.3: Web mining taxonomy [2].

12

Statistical analysis and various data mining techniques have been successfully applied
over web data to extract useful patterns. The study of Stermsek et al. [29] is an exam-
ple for using statistical analysis and graph analysis for user profiling. After deriving
user sessions they have measured statistics such as how many web pages have been
visited in a particular session, significant web pages and accumulated time spent on
each page. Adjacency matrix is created to identify pages requested by the user and
how the user got into different pages. Derivation of user profile is based on both graph
mining and statistical analysis. Other than statistical analysis, association rule mining,
sequential pattern mining, classification, clustering have been applied to group web
visitors with similar characteristics.

Generally a profile contains facts about someone’s interests and behavior. The con-
tent of the user profile can be changed based on the context. However most common
contents of a user profile can be user’s interaction preferences, user’s knowledge, user’s
interests and background and skills. In the web usage domain user profiling applies to
establishing groups of users exhibiting similar browsing behavior. User profiling helps
web site owners in multiple ways : personalization, system improvements such as load
balancing, data distribution policies, improve web site’s structure, develop recommen-
dation systems and business intelligence.

Xie et al. [30] has proposed a distance measure for clustering based on Dempster-
ShaferâĂŹs theory of combining evidence. After the general pre-processing steps they
have calculated the basic probability assignment (bpa) for each session. They have
proposed belief function as the similarity measure to be used in greedy clustering. A
user session is assigned to the cluster based on the similarity measure. After assigning
all user sessions to different groups, DempsterâĂŹs rule of combination has been ap-
plied to get the common user profiles.

In another research Xu et al. [31] has tested the feasibility of applying k-means al-
gorithm to cluster web users. First they have generated the the matrix of web users and
web pages. To calculate the similarity between vectors of two users they have applied
standard cosine similarity. They have used standard k-means algorithm in the follow-
ing way: (1) Place k points to represent initial group centroids (2) Assign each object
to the group that has the closest centroid (3) When all objects have been assigned, re-
calculate the positions of the k centroids (4) Repeat Steps 2 and 3 until the centroids
no longer move. Their results show a clear separation of the clusters.

Sharma et al. [32] has used roughest clustering for a proxy log data set. Rough Set
Theory (RST) is an approach to aid decision making in the presence of uncertainty.
They have used cookie data to identify users. In their algorithm they have four main
modules: preprocessing_log, RST, threshold_calculator and matcher. The preprocess-
ing_log module takes the log file as input and produces transaction set while RST in-
puts transaction set and outputs clustered set. Threshold_calculator calculates the total
number of pages in various sessions and matcher finds the equivalence set. Ultimately

13

they get user sessions clustered based on maximum pages visited.

Fuzzy clustering has been applied in multiple research works. The idea behind the
fuzzy clustering is to enable the generation of overlapping clusters. This has been suc-
cessfully applied in the web usage mining process by Nasraoui et al. [33] Suryavanshi
et al. [34] and Castellano et al. [35].

In order to understand similarity between two visitors, similarity measures are re-
quired. Jitian et al. [36] talk about different similarity measures that can be applied for
web log data. The following are the measures they discuss:

For a given web site there are m sessions S = {s1,s2, ...,sm}accessing n web pages
P = {p1, p2, ..., pn}. For each page pi, and each session s j, a usage value is associated,
denoted as use(pi,s j) and defined as:

use(pi,s j) =

{
1 if pi is accessed in s j

0 otherwise

The first measure is based on common pages and total pages accessed by both sessions.
This one is described as a usage based measure(UB).

sim(si,s j) =
∑k(use(pk,si)∗use(pk,s j))√
∑k use(pk,si)∗∑k use(pk,s j)

(2.1)

Second one is a frequency based(FB) measure where aw(pk,si) is the total number of
times that the user of session si, accesses the page pk at site w. This is based on total
number of times they access common pages at all sites.

sim(si,s j) =
∑kw((aw(pk,si)∗aw(pk,s j))√

∑kw(aw(pk,si))2 ∗∑kw(aw(pk,s j))2
(2.2)

Thirdly similarity between two sessions can be measured by taking actual time users
spent viewing each page. Let user session s j spent t(pk,s j) on viewing page pk. In this
case similarity is known as viewing time based(VTB) which can be expressed by:

sim(si,s j) =
∑k(t(pk,si)∗ t(pk,s j))√

∑k(t(pk,si)2 ∗∑k(t(pk,s j)2
(2.3)

Accessing order of web pages is important in some applications. Let Qi and Q j are
the navigation paths accessed by users in session si and s j, respectively. Similarity
between sessions can be defined as the natural angle between paths Qi and Q j.

sim(si,s j) =
< Qi,Q j >

< Qi,Qi >l . < Q j,Q j >l
(2.4)

where l = min(length(Qi), length(Q j)). This is known as visiting order based(VOB)
measure.

14

All these similarity measures describe the way to calculate pairwise similarity. Next
they have described the concept of similarity matrix which shows the similarity be-
tween all user sessions. Further matrix based clustering algorithm is described and
they have used all four similarity measures to cluster sessions. Results shows that the
number of clusters produced for VOB-based measure is always greater than that of
others and UB-based measure is always the smallest among the four measures.

A new similarity measure is proposed by Velásquez et al. [37] considering access
sequences, time spent on each page and the type of web page. They have derived the
measure in the following way:

Let α and β be two visitor behaviour vectors of cardinality Cα and Cβ respectively
and Γ(.) is a function that, applied over α or β , returns the navigation sequence corre-
sponding to a visitor vector.

sm(α,β) = dG(Γ(α),Γ(β))
1
η

η

∑
k=1

τk ∗d p(pα,k, pβ ,k) (2.5)

where dG is the similarity between sequences of pages visited. η = min{Cα ,Cβ} and
τk is an indicator of visitor’s interest of the web page visited. The term τk is defined as
τk = min{ tα,k

tβ ,k

tβ ,k
tα,k
}. The term d p(pα,k, pβ ,k) is the similarity of pages visited. This is

the angle cosine similarity between two word-page vectors.

For the term τk they have considered that the time spent on web page is proportional
to the interest the visitor has in its contents. If the times spent by visitor α and β

on kth page that they have visited are close to each other the value(τk) becomes close
to 1 and otherwise it will be close to 0. Further they have considered the content of
the web page as the third portion of the similarity measure. Finally they have applied
Self-Organizing Feature Map(SOFM) for session clustering. According to the results
they have ended up with four useful clusters. Clustering results have been used to do
structural changes in the web site.

2.4 Markov Chain Model

A.A. Markov [38] studied how the past outcomes can influence the prediction of out-
come of the next experiment when we observe a sequence of chance experiment. Based
on his findings in a first order Markov chain, prediction for the outcome of next exper-
iment depends only on the current state. We can define a Markov chain as [39]:

• A set of states Q

• For each pair of states i and j, a transition probability ai j from state i to j

15

• ∑ai j = 1

In a Markov chain model, we transition from one state to another in discrete time steps
n = 1,2,3... If we are in state i at time step n, we go to time step j in time step n+ 1
with probability ai j and it is the transition probability from state i to state j. State at
time n,xn depends only on the most recent state which is known as Markov property.

p(xn = j|x0,x1,x2, ...,xm−1,xm = i) = P(xn = j|xm = i),m < n. (2.6)

If m = n−1 this is ai j.
Now let us look at the probability obtaining a sequence x1, ...xn from our Markov chain.
This is basically the probability of a path x1, ...xn in the chain.

p(x1...xn) = p(x1)ax1x2...axn−1xn = p(x1)
L

∏
i=1

axixi+1 (2.7)

P(x1) is known as the probability of initial state. Let this special start state be denoted
by 0. Then p(x1) = a0x1 . Therefore, the probability of the path will be:

p(x1...xn) = p(x0 = 0,x1...xn) = a0x1ax1x2...axn−1xn =
n−1

∏
i=0

axixi+1 (2.8)

Laplacian Smoothing

Probabilities in the transition matrix sometimes can be very small and hence gener-
ate a sparse matrix. In such cases we can apply Laplacian smoothing to avoid zero
probability values. Laplacian smoothing engages in adding a pseudo-count for both
nominator and denominator using the following Equation 2.9. Here m is the number
of possible states and nik be the number of times that the process moved from state i to
k.

P̂i j =
ni j +α

∑
m
k=1 nik +ni jα

(2.9)

2.5 Summary

According to the review provided in this chapter, many studies have been done on
the pattern analysis using web server access log files. The techniques they have used
varies from simple statistical analysis to complex data mining tasks. Among the avail-
able literature for web crawler analysis, Pan-Ning and Vipin Kumar [3] provide a com-
prehensive study on the features that can be applied over web server access log files
to identify possible web crawlers. Although some have studied the patterns of mali-
cious web crawlers, unfortunately we didn’t find any previous work on web crawler
impersonation attacks. For the purpose of web user profiling unsupervised learning is
applied in order to generate profiles. Jitian et al. [36] and Velásquez et al. [37] have
proposed similarity measures to be used in clustering tasks.

16

3 METHODOLOGY

This chapter presents our methodology. In the Section 3.1 methodology for web
crawler identification and characterization is presented and in Section 3.2 methodol-
ogy for detecting Googlebot impersonation is discussed. The methodology for human
visitor profiling is described in Section 3.3.

3.1 Web Crawler Identification and Characterization

During the first portion of the research, web crawler behaviour patterns were studied.
As the first step we developed a methodology to identify web crawlers through analysis
of web server log files and to characterize them. We extended the study to identify
Googlebot impersonation. Figure 3.1 shows our approach in summary.

Web crawler Analysis

Identify possible web
crawlers

Characterize web
crawlers

Identify Googlebot Im-
personation

Figure 3.1: Summary of web crawler characterization.

Figure 3.2 shows the overall methodology for identification and characterization of
web crawlers. We used two special modules to handle the problem. First one is
“IDENTIFIER“ which was used to identify possible web crawlers from the log files.
Secondly “CLASSIFIER“ module was used to categorize identified web crawlers.

3.1.1 Data Preparation-Web Crawler Detection

3.1.1.1 Data Cleansing

Data cleansing process can be different based on the mining task. For the purpose of
web crawler identification we removed the incomplete log lines from the log file. We
observed that some log files were not in order of the time-stamp and hence we sorted
the log.

17

Raw log file

Pre-process
log file

Common log format

Session
identification

Log files with sessions

IDENTIFIER

All possible web crawlers

CLASSIFIER

Classified web crawlers

Figure 3.2: Methodology for identification & characterization of web crawlers.

3.1.1.2 Convert Log File

Log files can be in different formats [40]. In this research all log files were converted
into Apache combined log file format discussed in Section 2.1.

3.1.1.3 Session Identification

The goal of session identification is to group one single user’s activities within a certain
time period. The user is identified using IP address, and “user-agent“ information. We
considered the default time out period 30 minutes as suggested by Cooley et al.[41].
Given n web pages in the web site and m web users visiting the web site during a
period of time, collection of pageviews can be expressed as P = {p1, p2, ...pn} and
session collection can be expressed as S = {s1,s2, ...sm}. Figure 3.3 is an example for

18

sessionized log file.

Figure 3.3: Sessionalized log file example.

3.1.2 Identifier

The “IDENTIFIER“ module was used to identify possible web crawlers from the web
log file based on described features. A detailed view of the module is shown in Figure
3.4. Crawler sessions were considered as class=1 and others as class=0.

Log file with sessions

IDENTIFIER

Access of "robots.txt" Access of hidden links Blank referrer
with hit count

Hit count per session

Figure 3.4: Flow chart of “IDENTIFIER“ module.

3.1.2.1 Access of “robots.txt“ File

According to the Robots Exclusion Protocol [20], it is expected that crawlers should
first acknowledge “robots.txt“ before downloading any cont from the web site. There

19

for given a user session si, the possible crawler (pc) property is characterized as fol-
lows.

pc(si) =

{
1 i f “robots.txt“ is requested in si

0 Otherwise
(3.1)

But in practice there are many web crawlers that either do not access "robots.txt" or
even if accessed they do not follow the rules. Hence we have used three other checks
which detect crawler sessions, as described in the following.

3.1.2.2 Access of Hidden Links

A novel technique that we introduced is to use hidden links in the web page. Hidden
links are not visible in browsers. This technique acts as a honeypot in the web page and
it is possible to identify someone accessing this as a web crawler with high confidence.
We have implemented three types of hidden links.

• Hidden link type I

< a hre f = ”link1.html” style = ”visibility : hidden” > link1.html < /a >

• Hidden link type II

< a hre f = ”link2.html” style = ”color : white” > link2.html < /a >

• Hidden link type III

<!−−< a hre f = ”link3.html” style= ”color : white”> link3.html −−>

The three types of hidden links differ from each other. The first type of hidden link is
not visible in the browser at all but the second type is visible in the mouse hover event.
The third type of link is put inside an html comment (comments are used by developers
as a best practice to provide information about the code). As in the previous one access
of hidden link property can be expressed as:

pc(si) =

{
1 i f hiddenlink is accessed in si

0 Otherwise
(3.2)

3.1.2.3 Hitcounts

Hit count in a particular session is a numerical attribute calculated by counting the
HTTP requests during each session. A session entry si ∈ S includes IP address si.ip,
the session id si.id, accessed page si.p, time of access si.time, referrer si.re f errer and
“user-agent“ string si.ua. Let T be the time of first page request in each session. We
have considered only pages and access time for construction of the model.

si =< si.id,(si.pk,si.timet), ...,(si.pk,si.timet)> (3.3)

20

Where for 1 < k < n, T < t < T +30

Hit count (Hi) in a particular session can be expressed as in

Hi = ∑(si.ip)Where T < t < T +30 (3.4)

If the hit count in a given session is greater than our threshold value (X) we considered
session to be by a possible crawler, because we observed the hit count within a session
is high for web crawlers.

pc(si) =

{
1 i f Hi > X
0 Otherwise

(3.5)

3.1.2.4 Blank Referrer Hit Count

Most of the crawlers initiate HTTP requests with an unassigned referrer. Pan-Ning and
Vipin Kumar [3] also have used this as a feature to identify web crawler requests. But
in our approach we have used this as another numerical attribute by calculating the hit
count with blank referrer.

Hi = ∑(si.ip)Where T < t < T +30 and si.re f errer = ‘− ‘ (3.6)

If the hit count in a given session is greater than our threshold value (Y) we considered
session to be by a possible crawler.

pc(si) =

{
1 i f Hi > Y
0 Otherwise

(3.7)

Ultimately we get possible crawler list marked as class=1 and the rest as class = 0. We
have considered only web crawler sessions under this part of the research and ignored
the sessions with class=0.

3.1.3 Classifier

The next step of our approach is the usage of the “Classifier“ module to classify pos-
sible crawlers. The idea is to verify the “user-agent“ string. We created a white list
of verified “user-agent“ strings of “known“ crawlers. Our possible crawler list was
checked against this white list and we filtered out the “known“ crawler sessions. For
the remaining entries in our possible crawler list we conducted several tests to assess
suspicious behavior of crawlers which are described below. This process is depicted in
Figure 3.5.

3.1.3.1 Anomalies in “user-agent“ Field

As the first step “user-agent“ field of crawlers was checked to identify suspicious be-
havior patterns. The “user-agent“ is defined by RFC 2616 under section 14.43 states
“User agents SHOULD include this field with HTTP requests“ [42]. However some
crawling tools allow users to omit the “user-agent“ field. We classify requests coming

21

Possible web crawler

 sessions

Classifier

"user-agent"

verification
"Known" crawlers

Remaining crawlers

"user-aget" based

 checks

IP blacklist check

& project honeypot

 check

Access of hiddenlink

 type III

"Suspicious" crawlers "Other" crawlers

Figure 3.5: Flow chart of the “CLASSIFIER“ module.

with un-assigned “user-agent“s as suspicious since it violates RFC2616.

User agents rely a great deal upon trust. RFC2616 does not state that the user can-
not alter default value of the “user-agent“. The servers generally trust that the user will
not modify the “user-agent“ field. Since the trust cannot be verified, a user can ma-
nipulate the “user-agent“ field to pretend to be any “user-agent“. This is not addressed
in RFC2616 and some use crawlers for malicious purposes masking their true identity.
We classified the identified crawlers based on the “user-agent“ into two categories.
They are:

• “user-agent“ has been masked into a known web crawler (e.g., google, bing,
baidu, msn): “user-agent“ verification confirmed that site was crawled using a
fake known crawler user agent. Such cases were classified as “suspicious“.

• “user-agent“ appeared to be of a web browser (Firefox, Internet Explorer, Opera):
This type of entries can be of either browser-based crawler or the user has altered

22

their identity (“user-agent“) pretending to be a known browser. Such behav-
ior was classified as “suspicious“ crawlers if they violate RFC2616 and Robot
exclusion protocol or caught by other suspicious crawler classification checks
described below.

3.1.3.2 Access Hidden Link Inside HTML Comments

We identified that some crawlers have accessed the hidden link inside html comments
(hidden link type III described previously). Since âĂIJknownâĂİ crawlers have never
accessed this type of hidden link we found the behavior of accessing hidden links inside
html comments as suspicious and categorized them âĂIJsuspiciousâĂİ crawlers.

3.1.3.3 IP Blacklist Checks

In addition to the above checks we conducted an IP blacklist check [43] [44] and
project honeypot database [45] check to identify blacklisted crawler IP addresses. Such
crawlers were classified as “suspicious“. We also observed that some of the “known“
crawler IP addresses are also blacklisted. How ever we ignored them since we have
verified and identified “known“ crawlers. The rest of the crawlers in our identified
list were classified as “other“ crawlers since they have shown some characteristics of
crawlers but cannot be classified as either “known“ or “suspicious“.

3.1.4 Summary

Our characterization of web crawlers include three types.

• Known web crawlers : These are the crawlers from well-known search engines,
which help to drive more users to the web site and hence increase the reputation
of the web site. On the other hand for e-commerce web sites these will help to
generate more revenue.

• Suspicious web crawlers : These are the crawlers trying to exploit vulnerabilities
and threat for site integrity and availability.

• Other crawlers : The intent of these crawlers is hard to define. They may or may
not be harmful.

Details of the experimental set up and results are discussed in Chapter 4.

3.2 Detection of Googlebot Impersonation

Over the past decade Internet traffic generated from web crawlers has increased drasti-
cally [1]. Presently web crawler programs can be operated by any one and can be used
for a variety of purposes.

23

Nong Ye et al. [27] has used a Markov chain model to detect intrusions in a com-
puter and network system by learning temporal behavior of the normal profile from
historic data and new observed behavior is analyzed to derive probabilities. We pro-
pose a similar approach using Markov chain models to learn profiles of real and fake
Googlebots based on their patterns of web resource access sequences.

In our problem the transition probabilities between states have to be differ for fake
Googlebot and real Googlebot. Therefore, we need to build two Markov chains one
for each. Then given a sequence, we compute the probability p for obtaining the se-
quence in the real Googlebot, and the probability q of obtaining the sequence in the
fake Googlebot Markov chain. The log-odds ratio[46] of these two can be used to de-
termine whether the sequence is coming from real Googlebot or fake. Following are
the steps:

• Have the labeled sequences from real Googlebot and fake Googlebot

• Calculate the transition probabilities between states for the real Googlebot and
fake

We have calculated log-odds ratios for a given set of crawler sessions and our results
show that the higher the log-odds score, the higher the probability that a given sequence
comes from the real Googlebot. Experimental results show, at a threshold log-odds
score we can distinguish the real Googlebot from the fake.

Now, given a sequence x, compute p(x) for each Markov chain, denote these by
p(x|real) and p(x| f ake). Then we use the log-odds ratio to determine if x is com-
ing from real Googlebot or not.

S(x) = log
p(x|real)
p(x| f ake)

= log

n
∏
i=0

areal
xixi+1

n
∏
i=0

a f ake
xixi+1

=
n−1

∑
i=1

log
areal

xixi+1

a f ake
xixi+1

(3.8)

Lengths of the sequences are different and to normalize this ratio by length, we used
length-normalized log-odds ratio of S(x)/|x|.

The overall methodology for fake-Googlebot detection is depicted in Figure 3.6.

3.2.1 Data Preparation-Googlebot Impersonation

We collected web server access log files from an e-commerce web site for a period of
about 10 weeks. Size of the data set was 409.2MB and contained 1,633,913 log entries
before pre-processing. We considered 75% of the data set as training data and 25% as
test data.

24

Table 3.1: Summary of the data set.

Period of the log file 69 Days
Size of the log file 409.2 MB
Number of HTTP requests before pre-processing 1,633,913
Number of HTTP requests after pre-processing 1,633,578

Log data has to be pre-processed before applying our techniques as shown in Figure
3.6. Data cleansing and formatting are the two major pre-processing operations per-
formed. Details of the data preparation steps are described in the following section.

3.2.1.1 Data Cleansing

During the process of data cleansing we have removed lines of the log file which were
not fully recorded and did not satisfy the sufficient length of a log line. We observed
that some records of the log file were not in sorted order. We sorted the log file in the
ascending order of the recorded time stamp.

3.2.1.2 Data Formatting

Web servers record requests processed by the server in different formats. We have
observed that Apache common log format is very comprehensive. Original log files
were converted into Apache combine log format [11].

3.2.1.3 Identification of Requests from Google Crawlers

For our experiments we needed only the HTTP requests from Google crawler. We re-
moved all the requests not containing the string "Googlebot" in “user-agent“ field from
our access logs.

After the identification of requests from Googlebot, a forward and backward DNS
lookup was performed to verify requests from real Googlebot [10].

• Identification of real Googlebot :
Forward and backward DNS lookup verified the Google host name. Table 3.2
lists the “user-agent“s used by real Googlebot while browsing our web site.

• Identification of fake Googlebot :
Although the “user-agent“ indicated from Google, the DNS verification resulted
the host name not from Google. Table 3.3 lists the “user-agent“s used by fake
Googlebot in our data set.

25

Web access logs

Pre-process

Pre-processed access logs

Identification of requests

from Googlebot

Access logs from Googlebot

DNS lookup

Requests from real Googlebot Requests from fake Googlebot

User-agent filtering

Session identification

Sessionized log file

Resource access

sequence identification

Resource access sequences

Train Markov Chain

Models

Distinguish real

Googlebot from fakes

Figure 3.6: Methodology for fake Googlebot detection.

26

Table 3.2: Real Googlebot “user-agent“ and %hitcount

“user-agent“ string %hitcount
DoCoMo/2.0 N905i(c100;TB;W24H16) (compatible;
Googlebot-Mobile/2.1; +http://www.google.com/bot.html)

4.15%

Googlebot-Image/1.0 6.61%
Googlebot/2.1 (+http://www.google.com/bot.html) 0.19%
Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

58.91%

Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X)
AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0
Mobile/10A5376e Safari/8536.25 (compatible;
Googlebot-Mobile/2.1; +http://www.google.com/bot.html)

24.19%

SAMSUNG-SGH-E250/1.0 Profile/MIDP-2.0
Configuration/CLDC-1.1 UP.Browser/6.2.3.3.c.1.101
(GUI) MMP/2.0 (compatible; Googlebot-Mobile/2.1;
+http://www.google.com/bot.html)

1.92%

Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X)
AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0
Mobile/10A5376e Safari/8536.25 (compatible;
Googlebot/2.1; +http://www.google.com/bot.html)

3.99%

3.2.1.4 “user-agent“ Analysis

Googlebot visits web sites with multiple “user-agent“ strings [47]. These crawlers
are designed for different purposes. For e.g., "Googlebot-Image/1.0" for image file
indexing and "Googlebot-Video/1.0" for video file indexing etc. and hence the re-
source request patterns are unique based on the purpose of the crawler. In our ex-
periment to remove unnecessary confusions we wanted to limit to one specific “user-
agent“. According to the Tables 3.2 and 3.3 high proportion of the hit counts resulting
58.91% and 87.81% were from “user-agent“ "Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)". We considered only access patterns of this “user-
agent“ string.

3.2.1.5 Session Identification

We have used IP address, “user-agent“ string and session timeout period in order to
identify user sessions following the methodology proposed by Mobasher et al. [41]. In
his work, this time period has been considered as 1800 seconds. But in our study we
used 3600 seconds (60mins) and if the interval is more than the defined period, existing
session was closed and new one was initiated. Following are the details of the sessions
identified. We doubled the session time out period, since the length of sequences of
some fake crawlers were very short during 30mins. Following are the details of the
sessions identified.

• Total number of real Googlebot sessions : 1148

27

Table 3.3: Fake Googlebot “user-agent“ and %hitcount

“user-agent“ string %hitcount
Googlebot (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

0.58%

Googlebot-Mobile/2.1 0.19%
Googlebot/2.1 (+http://www.google.com/bot.html) 0.38%
Googlebot/2.1
(+http://www.googlebot.com/bot.html)

10.25%

Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

87.81%

Mozilla/5.0 (compatible;
Googlebot/2.1;+http://www.google.com/bot.html)

0.77%

• Total number of fake Googlebot sessions : 365

3.2.1.6 Resource Type Identification

We have grouped the resource extensions available in a web site into eight classes. For
example ’.png’,’.gif’,’.jpeg’,’.jpg’ extensions are grouped into img class and ’.pdf’,’.ppt’,
’.doc’ extensions are into doc class. Details of extension categorization is depicted in
Table 3.4. These are the eight states of the Markov chain model.

Table 3.4: Resource Classes

Class Extension
web html,htm,php,jsp,cgi,js,css
img gif,png,jpg,jpeg
doc doc, ppt, pdf, ps,xls,odp
comp zip, rar, gzip, tar, gz, 7z
robot Requests for âĂIJrobots.txtâĂİ
favicon Requests for âĂIJfavicon.icoâĂİ
root Requests for root directory
no Requests for directories other than root

These resource classes can be shown as a resource request pattern diagram (Fig 3.7).

3.2.1.7 Resource Access Sequence Identification

We have identified resource access sequence of real Googlebot and fake Googlebot
period of over two moths in our training data set. This data is used in two Markov
chain models for the real and fake one. A session-resource access sequence matrix for

28

web

img

doc

robot

favicon

root

no

comp

Figure 3.7: Resource request pattern diagram

both real and fake Googlebot sessions as in Table 3.5 is created to calculate log-odds
ratios.

Table 3.5: Resource access sequence matrix

session Resource access sequence
1 robots,root,web,web,web,web,web
2 web,robots,web,web,web,web,web
3 robots,root,web,web,doc,doc,doc
.. root,root,web,web,web,web,web

3.2.2 Summary

Web crawlers are programs or automated scripts that scan web pages methodically to
create indexes. Search engines such as Google, Bing use crawlers in order to provide
web surfers with relevant information. Today there are also many crawlers that im-
personate well-known web crawlers. For example, it has been observed that Google’s
Googlebot crawler is impersonated to a high degree. This raises ethical and security
concerns as they can potentially be used for malicious purposes. In this research, we
present an effective methodology to detect fake Googlebot crawlers by analyzing web
access logs.

3.3 Human Visitor Profiling

Visitors of web site (web clients) can be either software programs or human users.
There is a huge difference between the patterns of web usage by these two groups.
In Section 3.1 we discussed the methodology for detecting patterns of web crawlers

29

which are automated scripts. In this section we discuss the proposed methodology for
human visitor profiling.

Similarity measures have been proposed by many researchers in order to calculate sim-
ilarity between the browsing patterns. For example Jitian et al. [36] talks about four
different measures to calculate pairwise similarity between two sessions. Velásquez et
al. [37] have proposed a new similarity measure based on the content of the respective
web pages and the similarity between different page sequences. They have applied it
in a Self Organizing Feature Maps(SOFM) clustering for user session clustering. How
ever we see some drawbacks in the proposed similarity measure.

They have derived the measurement in the following way. Let α and β be two vis-
itor behaviour vectors of cardinality Cα and Cβ respectively and Γ(.) is a function that
applied over α or β that returns the navigation sequence corresponding to a visitor
vector.

sm(α,β) = dG(Γ(α),Γ(β))
1
η

η

∑
k=1

τk ∗d p(pα,k, pβ ,k) (3.9)

where dG is the similarity between sequences of pages visited. η = min{Cα ,Cβ} and
τk is an indicator of visitor’s interest of the web page visited. The term τk is defined as
τk = min{ tα,k

tβ ,k

tβ ,k
tα,k
}. The term d p(pα,k, pβ ,k) is the similarity of pages visited. This is

the angle cosine similarity between two word-page vectors.

For the term τk they have considered that the time spent on web page is proportional
to the interest the visitor has in its contents. If the times spent by visitor α and β on
kth page that they have visited are close to each other the value(τk) becomes close to 1
and otherwise it will be close to 0.

The problem of this approach for τk is that time is not normalized. For example the
value will be 0.5 for following two cases. But there is a huge difference of interest
between the times.

tα
k = 2

tβ

k = 4

Tk = 2/4 = 0.5

tα
k = 50

tβ

k = 100

Tk = 50/100 = 0.5

We propose a better improved similarity measure to eliminate the problems in Velásquez
et al. [37] approach.

30

For the purpose of human visitor profiling multiple steps have to be taken before ap-
plying web mining techniques. These techniques are discussed in the following sub-
sections. The overall methodology of human visitor profiling is shown in Figure 3.8.

3.3.1 Data Preparation

Data preparation for the human visitor profiling also requires the steps of data cleans-
ing, data formatting and user session identification. These steps are discussed in detail
previously. (Section 3.1.1)

3.3.1.1 Remove web-crawler sessions

For the purpose of user-profiling we are interested only on requests from human users.
Hence we have followed the methodology proposed by Algiriyage N. et al.[26] to
detect web crawler sessions and then remove them.

3.3.1.2 Filter Low Click Pages Sessions

The number of web pages browsed during a user-session had a large variation. For the
purpose of profiling we considered only the sessions having browsed more than three
pages.

3.3.1.3 Filter Image and Styling Files

For the purpose of human visitor profiling we were not interested in image files. Hence
we removed following extensions (GIF,cache,css,png,gif,jpeg,.js,jpg,ico,axd,ashx,xml)
and considered only web page requests (asp,aspx,htm,html,php,pdf,doc).

3.3.1.4 Navigation Sequence Identification

A web site with 10 web pages is shown in the Fig 3.9.
Suppose in two visitor sessions users visit the web site in the following way.

S1 = 1→ 2,2→ 7,2→ 5,5→ 6

S2 = 1→ 3,3→ 7,7→ 9

Based on the traversal patterns in two sessions we can derive the navigation sequences
as:

Seq(S1) = [1,2,7,5,6]

Seq(S2) = [1,3,7,9]

Cardinality(C) of the two sequences can be given as:

C(S1) = 5

C(S2) = 4

31

Raw log file

Pre-process log file

User-session identification

Sessionized log file

Pre-processed log file

Remove web crawler sessions

Low support page filtering

Filtered log file with sessions

Navigation sequence identification Time spent on web pages

Session-page matrix Session-page time matrix

Hierarchical clustering using

proposed similarity measure

Generate user profiles

User-profiles

Figure 3.8: Methodology for human visitor profiling.

32

6

4 5

1

2 3 10

7 8

9

Figure 3.9: Web site with navigational paths

3.3.1.5 Prepare Session-page Matrix

Once the navigation sequence is identified we prepared the session-page matrix to
show the web page sequences visited in each session. (Table 3.6). Our methodology
for session identification is grouping IP address, “user-agent“ within 30 minute time
period. Due to this methodology there can be some sessions from the middle of their
activities. To avoid the confusions of such sessions we considered only the sessions
starting with “sign-in“ and “home pages“ in the test data set. Further in the session-
page matrix, we did Scipy encoding [48] to map string page names into integer ones.

Table 3.6: Session-page matrix

Session Encoded page access sequence
1 6,61,70,76,101,110,112,134,161
2 6,61,70,72,76,81,112,136,143
3 6,61,101,102,112,161,162
... 6,61,70,73,76,101,110,112,161,168
n 8,28,29,30,35,43,44,45,46,49,59,61,114,121

3.3.1.6 Prepare session-time matrix

Session-page matrix was prepared to show the web pages browsed in each session.
Another matrix is prepared to show the time spent on each page within the session.
(Table 3.7).

3.3.1.7 Calculate Lavenshtein Distance

To compare the similarity between two sequences we need to use a dissimilarity mea-
sure. Lavenshtein distance [37] which is also referred as edit distance measures the
similarity between two strings.

33

Table 3.7: Session-time Matrix

Session p1,p2,p3,p4,p5,p6,p7
1 0.5,1.0,2.1,1.2,2.0,1.5,0.7
2 1.0,1.2,1.5,0.0,0.0,0.0,0.0
3 2.3,1.0,1.6,2.3,0.0,0.0,0.0
.. 0.9,2.0,2.4,2.5,2.0,1.5,0.0
n 0.0,0.0,0.9,1.4,0.0,0.0,0.0

For two sequences a = (a1, ...,ax) and b = (b1, ...,by) Lavenshtein distance is defined
as:

LD(ax,by) =


max(x,y) i f min(x,y) = 0

min


L(a,b)(x−1,y)+1
L(a,b)(x,y−1, j)+1 Otherwise
L(a,b)(x−1,y−1)+1(ax 6= by)

(3.10)

For example for the two sequences that we discussed earlier Seq(S1) = [1,2,7,5,6] and
Seq(S2) = [1,3,7,9] the Lavenshtein distance is 3. That is 3 insert/update/delete oper-
ations are required to transform [1,2,7,5,6] to [1,3,7,9]. We calculated the similarity
between the two visiting sequences using Equation 3.11:

dLD = sim(S1,S2) = 1−{(LD(seq(S1),seq(S2)))/max(C(S1),C(S2))} (3.11)

For the discussed example, similarity of the sequences is 0.4 based on the Equation
3.11. We refer this similarity which is based on Lavenshtein distance as dLD.

3.3.2 Comparison of Visitor Sessions

To compare the visitor sessions a similarity measure is required. The following subsec-
tions describe our approach in formulating the measure based on navigational sequence
and time spent on web pages.

3.3.2.1 Similarity Between Navigational Sequences

Let Sx and Sy be two visitor sessions and F is a function applied over Sx and Sy which
returns navigation sequences. Cardinality of the two sequences are Cx and Cy.The
distance between two sequences is calculated using Lavenstine distance based measure
described in Equation 3.11.

3.3.2.2 Similarity Based on Time Spent

Web visitors spend time on web pages based on the interest and relative importance
of the content to them. To get a proper understanding we normalized the time value
using standard score (Z-score). Preparation of session-time matrix was described in an
earlier section (Table 3.7).

34

Suppose time spent on page n is tn and the mean of time spent on page n by all visitors
is µ and standard deviation is σ .

z =
tn−µ

σ
(3.12)

Then we calculate the euclidian distance between the Z-values.

ED(zx,zy) =
n

∑
i
(zxi− zyi)

2 (3.13)

We refer this similarity which is based on Euclidian distance as dED.

3.3.2.3 Proposed Similarity Measure

We propose a similarity measure between two visitor sessions based on the web page
access sequence and time spent on each page. Let sα and sβ are two visitor sessions
and Sα and Sβ are the related resource navigational sequences.

sim(sα ,sβ) = dLD(Sα ,Sβ)∗dED(zx,zy) (3.14)

Formulation of dLD and dED is discussed in Equations 3.11 and 3.13 respectively.

3.3.2.4 Hierarchical Clustering

Hierarchical clustering [49] builds a hierarchy of clusters decomposing a given set of
data objects. Generally there are two types of hierarchical clustering based on the way
of hierarchy is formed.

• Agglomerative : Agglomerative which is also known as “bottom-up“ merges the
objects or groups that are close to one another, until all of the groups are merged
into one or until the termination condition is met.

• Divisive : Which is also known as “top-down“ approach starts with all of the
objects in the same cluster and in each iteration a cluster is split up to smaller
clusters until there is one object in each cluster or termination condition is met.

We used the proposed similarity measure in a agglomerative hierarchical clustering
[50] visualized it in a dendrogram. Dendrogram[49] is a tree structure which is used
to represent the results of a hierarchical clustering. It shows how objects are grouped
in step by step.

3.3.2.5 Visitor Profiling

Frequent pattern mining was used to profile the behaviour in each identified cluster.
Frequently accessed web pages were considered in the process of profiling. Details of
the application is discussed in Experimental Evaluation and Discussion in Chapter 4.

35

3.3.3 Summary

We have improved the proposed similarity measure by Velásquez et al. [37] based on
the navigation sequence and time spent on each page. We have used dLD, a Laven-
shtein distance based measure and dED, an Euclidian distance based measure. Time
spent on each web page is normalized using Z-score normalization. This similarity
measure is used in an unsupervised hierarchical clustering in order to identify visitor
groups with similar interests. Finally profiles are generated using frequent item set
mining.

36

4 EXPERIMENTAL EVALUATION AND DISCUSSION

This chapter presents the experimental setups for methodology evaluation and dis-
cuss the results in detail. We first discuss the experimental details of the web crawler
characterization in Section 4.1. In Section 4.2, experimental results of Googlebot im-
personation and in Section 4.3 results of web visitor profiling are discussed.

4.1 Web Crawler Identification and Characterization

4.1.1 Data Set

Data set for our study was obtained by collecting web server access log files from
a commercial web site in Sri Lanka. First we analysed a data set of more than two
months from 04/Dec/2013 to 11/Feb/2014. The size of the pre-processed log file is
405.8 MB and it contained 1,633,578 HTTP requests. Log file contained 79,621 visitor
sessions and among them we identified 16,198 sessions (20.43% of all visitor sessions)
as possible crawler sessions. Table 4.8 shows the summary of the log-file.

Table 4.1: Summary of the log file.

Period of the log file 69 Days
Size of the log file 405.8 MB
Number of HTTP requests before pre-processing 1,633,913
Number of HTTP requests after pre-processing 1,633,578
Total number of visitor sessions 79,621
Number of possible web crawler sessions 16,198

Figure 4.1 shows web traffic in our log file using HTTP requests per day from 04/Dec/2013
to 18/Jan/2014. In the following sections we discuss some analysis of the identified
possible web crawlers.

As we have described in Chapter 2 crawlers use “user-agent“ to put their identify-
ing information. But there are some crawlers that use browser “user-agent“s. We used
a “user-agent“ parser to identify the web crawlers who visited our web site. Table 4.2
lists the identified web crawler names.

Further we analysed countries generating web crawlers. The bar graph in Figure 4.2
shows the topmost countries generating these crawlers. According to the results United
States and China have generated most of the web crawlers who visited our web site.

37

Date

Figure 4.1: Number of HTTP requests per day.

In our test data set there were altogether 16,198 web crawler sessions. This comprises
of multiple sessions from the same crawler. We analysed the total number of sessions
generated by a particular crawler. According to the results in Figure 4.3 Baiduspi-
der/2.0 has generated the most sessions.

4.1.2 Methodology Evaluation

We conducted several experiments to check the accuracy of our crawler detection
methodology on the same web site. In this attempt we didn’t remove the traffic gener-
ated by other sources from the data set for testing. Several common web crawling tools
were used with and without modifications to conduct experiments which are listed be-
low. We have crawled the site using seven different methods including simple crawling
patterns to more advanced crawling. These individual tests are listed below.

• Crawler Scenario 01: Use the crawling tool without any modifications

• Crawler Scenario 02: Use crawling tool with a modified “user-agent“ of a com-
mon browser

38

Table 4.2: Web crawlers found in the dataset.

bingbot/2.0 YandexBot/3.0 YandexImages/3.0
linkdexbot/2.0 Googlebot/2.1 archive.org_bot
proximic AhrefsBot/5.0 SiteExplorer/1.0b
Baiduspider/2.0 Yeti/1.0 SISTRIX Crawler
Butterfly/1.0 BLEXBot/1.0 elefent/Elefent 1.2
Abonti/0.91 yacybot GrapeshotCrawler/2.0
Twitterbot/1.0 GeliyooBot/1.0 Mail.RU_Bot/2.0
Exabot/3.0 coccoc/1.0 CompSpyBot/1.0
PiplBot Ezooms/1.0 Googlebot-Mobile/2.1
MJ12bot/v1.4.4 TweetmemeBot/3.0 TweetedTimes Bot/1.0
PaperLiBot/2.1 SemrushBot/0.97 KomodiaBot/1.0
SeznamBot/3.2 BLEXBot/1.0 CloudServerMarketSpider/1.0
MojeekBot/0.6 CompSpyBot/1.0 BIXOCRAWLER
Blekkobot aiHitBot/2.8 emefgebot/beta
uMBot-FC/1.0 oBot/2.3.1 PHPDevelBot/1.0
Prlog/1.0 MJ12bot/v1.4.4 URLAppendBot/1.0
BeetleBot LoadTimeBot/0.9 socialbm_bot/1.0
200PleaseBot/1.0 news bot /2.1 TweetedTimes Bot/1.0
WASALive-Bot Vagabondo/4.0 LoadTimeBot/0.81
CrawlBot/1.0.0 SEOkicks-Robot BuiltWith.org/0.1
YRSpider Webidex Bot/1.2 SearchmetricsBot

• Crawler Scenario 03: Use crawling tool with a fixed time delay of 20 seconds

• Crawler Scenario 04: Use crawling tool with a modified “user-agent“ of a com-
mon browser, assigning a fake referrer for all HTTP requests, with a random
time delay

• Crawler Scenario 05: Use crawling tool ignoring “robots.txt“, with a modified
“user-agent“ of a common browser, assigning a fake referrer for all HTTP re-
quests, with a random time delay

• Crawler Scenario 06: Use crawling tool ignoring “robots.txt“, with a modified
“user-agent“ of a known crawler, assigning a fake referrer for all HTTP requests,
with a random time delay

• Crawler Scenario 07: Use crawling tool ignoring “robots.txt“, with modified
random “user-agent“s, assigning a referrer for all HTTP requests with random
fake referrers, and also random time delay between each of requests.

These crawler scenarios are summarized in Table 4.3.

39

US

China

Brazil

Germany

Russia

Ukraine

Netherlands

UK

Japan

Europe

0 2000 4000 6000 8000 10000

Total sessions from country

C
o
u

n
tr

y
 n

a
m

e

Figure 4.2: Top most countries generating web crawlers.

4.1.3 Experimental Results

Our results show that all the seven crawler scenarios have been identified as possi-
ble crawlers and out of them three crawler scenarios (5, 6 and 7) were categorized into
“suspicious“ crawler category and four crawler scenarios (1, 2, 3 and 4) were classified
into the “other“ crawler category. Since we didn’t remove the traffic generated by other
sources in our test data set, it consisted of both experimental crawling results(crawler
scenarios) and other crawlers’ data. We analyzed these crawler attempts in web server
log to determine the behavior patterns of various crawlers. 6.23% of the total sessions
identified as web crawler sessions in the web server log file, which also includes our
test scenarios. Among them 53.25% of the crawler sessions were “known“ and 34.16%
were categorized as “suspicious“ while 12.49% as “other“ crawler sessions (Table 4.4).

Hidden links, the novel technique that we have introduced in this paper can be con-
sidered as a better way trap web crawlers since 8.25% of the web crawlers have ac-

Table 4.3: Summary of crawler scenarios.

Description Crawler Scenario
Use default “user-agent“ 1 3
Ignore “robots.txt“ 5 6 7
Modified “user-agent“ of a known crawler 6
Modified “user-agent“ of a browser 2 4 5
Use random “user-agent“s 7
Assigned referrer field 4 5 6 7
Use random referrer 7
Fixed time delay 3 7
Random time delay 4 5 6 7

40

Total number of sessions

C
ra

w
le

r
n

a
m

e

Baiduspider/2.0

Googlebot/2.1

bingbot/2.0

Ezooms/1.0

Mj12bot/v1.4.4

0 500 1000 1500 2000 2500 3000 3500

C
ra

w
le

r
n

a
m

e

Figure 4.3: Crawlers by total number of sessions generated.

Table 4.4: Summary of crawler sessions.

Crawler Analysis Percentage (%)
% of âĂIJknownâĂİ crawler sessions 53.25%
% of âĂIJsuspiciousâĂİ crawler sessions 34.16%

% of âĂIJotherâĂİ crawlers sessions 12.49%

cessed it. Classification results of “known“, “suspicious“ and “other“ categories are
elaborated in Tables 4.4, 4.5 and 4.6.

As stated in Table 4.5 all “known“ crawlers have accessed “robots.txt“ in 96.71% of
the sessions. The reason behind the remaining 03.29% is the usage of default session
time out period which is described below.

According to the algorithm used for session generation, a single crawler can be in-
cluded in multiple sessions (since we considered a 30 minute session timeout period).
In such cases the crawler has accessed “robots.txt“ in one session but not in the others.
Further, none of “known“ crawler sessions have accessed hidden link type III which
was inside an html comment.

Table 4.5: “Known“ crawler patterns.

Crawler Analysis Percentage (%)
% of crawler sessions accessed âĂIJrobots.txtâĂİ 96.71%
% of crawler sessions accessed hidden link type I & II 03.29%

% of crawler sessions accessed hidden link type III 00.00%

41

Table 4.6: “Suspicious“ crawler patterns.

Crawler Analysis Percentage (%)
% of crawler sessions avoided “robots.txt“ 20.24%
% of crawler sessions with forged user agent of a
known crawler

00.91%

% of a crawler sessions without a user agent in the
HTTP request

03.02%

% of crawler sessions accessed hidden link type III 11.48%
% of blacklisted crawler sessions 75.53%

Table 4.7: “Other“ crawler patterns.

Crawler Analysis Percentage (%)
% of crawler sessions accessed âĂIJrobots.txtâĂİ 66.12%
% of crawler sessions accessed hidden link type I & II 09.92%

Table 4.7 lists “other“ crawler behavior patterns. We did a manual verification for
the other crawler list and filtered out all the sessions that didn’t access “robots.txt“
since it violates robots exclusion protocol.

4.1.4 Crawler-Trap Tool

We developed a web based tool using the methodology proposed for web crawler de-
tection and characterization. This tool enables web users to upload log files and check
the crawlers visited. Details of the Crawler-Trap tool is included in the Appendix B.

Tables A.2, A.3 and A.4 in Appendix A show few examples for identified “known“,
“suspicious“ and “other“ crawlers.

42

4.2 Googlebot Impersonation

As described in the methodology section, we collected web server access log files
from an e-commerce web site for a period of about 10 weeks. Size of the data set was
409.2MB and contained 1,633,913 log entries before pre-processing. We considered
75% of the data set as training data and 25% as test data. Further our methodology was
applied to another dataset from an academic web site.

Table 4.8: Summary of the data set.

Period of the log file 69 Days
Size of the log file 409.2 MB
Number of HTTP requests before pre-processing 1,633,913
Number of HTTP requests after pre-processing 1,633,578

4.2.1 Patterns of the Dataset

We found that 5.32% of all Googlebot sessions on that site were fake. We observed
multiple instances of php remote code execution vulnerability [?] scans by these fake
Googlebots in our data set. Table 4.9 shows the statistics of countries that generate fake
Googlebot traffic on our site. According to the analysis, the legitimate real Googlebot
always visited only from the United States and most fake Googlebots were visited from
Brazil.

Table 4.9: Countries originating fake-Googlebot Academic web site

Country %Requests
Brazil 48.22
United States 37.54
China 1.95
Japan 1.77
not found 1.42
Mexico 1.06
Turkey 1.06
Saudi Arabia 0.88
Portugal 0.88
Vietnam 0.88
United Kingdom 0.88
Thailand 0.71
Sweden 0.53
Singapore 0.35
India 0.35
Germany 0.35
All Others 1.06

43

Table 4.9 shows the statistics of countries generating fake Googlebot. In our log files
real Googlebot visited only from United States and most of the times fake Googlebots
were visited from Brazil.

In the Figures 4.4 and 4.5 show the HTTP requests per day by both real and fake
Googlebots in our test data set.

Date

Figure 4.4: HTTP requests per day for real-Googlebot

4.2.2 Markov Chain Models

To detect the resource request patterns of fake Googlebot we needed to build long term
profiles of the two types Googlebots in order to differentiate them. Our data set con-
tained more than two months old access log data from an e-commerce web site. We
considered 75% of the data as training set and remaining portion for testing. As ex-
plained in the section 3 we identified resource request patterns for the fake and real
Googlebot and trained two Markov chain models for the long term access patterns of
the real Googlebot and fake Googlebot. We have applied Laplacian smoothing for
transition matrix to avoid zero probabilities. Further we have assigned a small proba-
bility value of 0.00000000001 (IE-10) to state transitions which did not appear in the
training data.

44

Date

Figure 4.5: HTTP requests per day for fake-Googlebot

The following is the generated transition matrix with probabilities.

5.7142857e-01 6.4516129e-03 7.5187969e-03 4.4843049e-03 4.1093075e-04 1.5384615e-02
7.1428571e-02 2.7096774e-01 2.2556391e-02 2.6905829e-02 2.0752003e-02 3.0769230e-02
7.1428571e-02 3.2258064e-02 6.7669172e-02 1.1210762e-01 1.8902814e-02 1.5384615e-02
7.1428571e-02 3.8709677e-02 6.0150375e-02 1.3004484e-01 3.6572837e-02 1.5384615e-02
1.4285714e-01 6.3870967e-01 8.0451127e-01 7.0403587e-01 9.1514279e-01 7.3846153e-01
7.1428571e-02 1.2903225e-02 3.7593985e-02 2.2421524e-02 8.2186151e-03 1.8461538e-01

Then the session-resource access sequence matrix was used to calculate log-odds ratios
for both types bots in the training data set. Figures 4.6 and 4.7 show the histogram of
distribution patterns of log-odds ratios. According to the results a log-odds ratios are
high for real Googlebot and low for fake Googlebot in both of web sites.

4.2.3 Accuracy Evaluation

We applied the trained Markov chain models to our test data to find the threshold score
of log-odds ratio which differentiate fake Google bot from the real one. Before apply-
ing the Markov models we labeled our test data set using the forward and backward
DNS lookup. To evaluate the accuracy of our methodology we used accuracy score
value which can be defined as follows.

accuracy=
number o f true positives+number o f true negatives

number o f true positives+ f alse positives+ f alse negatives+ true negatives
(4.1)

Table 4.10 shows the accuracy values with the log-odds ratio for our test data set. The

45

Figure 4.6: Log-odds ratio real Googlebot

Figure 4.7: Log-odds ratio fake Googlebot

46

highest score for all the measures have occurred at the log-odds ratio of -0.4. Hence
we can differentiate a given sequence of resource access patterns as from fake if the
log-odds ratio is less than the threshold value of -0.4.

Table 4.10: Accuracy scores for different log-odds ratios (e-commerce web log)

Log-odds ratio 1.5 1.0 0.5 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
Accuracy 0.673 0.738 0.690 0.936 0.940 0.946 0.951 0.956 0.739

We applied the same methodology for the data set from access logs taken from an aca-
demic web site. To train Markov chain models, a log file sized 252.9 MB containing
1,000,000 HTTP requests after pre-processing was considered. For the testing pur-
poses, another log file taken from the same web site with 324,693 HTTP requests was
considered. According to the results, the threshold score was 1.0 for the academic web
site, with 0.96 accuracy.

4.3 Human Visitor Profiling

4.3.1 Data Preperation

4.3.1.1 Dataset

We obtained web server access log files of a e-commerce service provider in Sri Lanka
for a period of two weeks. Size of the log file is 243.6MB and it contained 841,196
HTTP requests before the preprocessing stages. But for the hierarchical clustering
we considered a portion of the data set containing 71,256 HTTP requests before and
71,238 requests after pre-processing. Summary of the data set is presented in Table
4.11.

Table 4.11: Summary of the log file.

Number of HTTP requests before pre-processing 71,256
Number of HTTP requests after pre-processing 71,238
Total number of visitor sessions 2,033
Number of possible web crawler sessions 185
Number of possible Human Visitor sessions 1,848
Number of visitor sessions with initiating sessions 1,212
Number of visitor sessions after low click page filtering 1,169

4.3.2 Hierarchical Clustering

We applied the proposed similarity measure in an agglomerative hierarchical cluster-
ing. Figure 4.8 show the dendrogram generated. Dendrogram is a tree-structured graph
used to visualize the results of a hierarchical clustering. A dendrogram can be pruned
at any level to generate clusters. In this experiment, we pruned the dendrogram at level
10 to obtain 10 visitor clusters.

47

4.3.3 User Profiling

Generating profiles, or gaining more insight to the clusters generated, require some
additional work. We performed a frequent item set mining task in order to understand
the behaviour patterns in each cluster. With the highest confidence and support values,
following are the clusters generated in Table 4.12.

Table 4.12: Cluster results

Cluster Pages Visited Description
1 6,61,112 successfully logged-in, but nothing was done

after the loging
1 8,16,24,34,... successfully logged-in as corporate users, and

performed transactions
3 6,61,70,76,... successfully logged-in as personal users, and

performed transactions
4 6,61,101,112,161,... successfully logged-in as personal users, and

performed transactions
5 6,61,70,72,... Some strange behaviour
6 6,61,70,76,... successfully logged-in as personal users, and

performed transactions
7 8,28,43,44,... successfully logged-in as corporate users, and

performed transactions
8 6,61,70,76,... Some strange and random behaviour
9 5,15,17,... New users, who do not log-in to the web site
10 6,61,8,... Some random browsing behaviour

To understand and describe the clusters, we logged-in to the e-commerce web site as
different types of users and performed multiple transactions. Based on our browsing
patterns in the access log file, generated clusters were described in the Table 4.12.

According to the clustering results, some users logged-in to the system and has per-
form nothing afterward and the others performed different types of transactions. In
some clusters, there were random browsing behaviour which was hard to understand.
In one cluster, which contained a single user session, the behavior was very strange
that the visitor traversed a long path without successfully doing any transaction.

48

Session Number

D
is

ta
n

c
e

Figure 4.8: Results of hierarchical clustering.

49

5 CONCLUSIONS

This research focused on the patterns in web server access log files and the important
knowledge that can be gained. We considered the access pattern of web clients web
crawlers and human visitors.

5.1 Characterization of Web Crawlers

During the first phase our project we detected web crawler patterns from web server
access log files. Our categorization of web crawlers included three types “Known“
crawlers, “Suspicious“ crawlers and “Other“ crawlers.

• Known web crawlers : These are the crawlers from well-known search engines,
which help to drive more users to the web site and hence increase the reputation
of the web site. On the other hand for e-commerce web sites these will help to
generate more revenue.

• Suspicious web crawlers : These are the crawlers that may exploit vulnerabilities
and potential threat for site integrity and availability.

• Other crawlers : The intent of these crawlers is hard to define. They may or may
not be harmful.

Some additional behaviour of these crawlers are : “Known“ crawlers have obeyed
RFC2616 and robots exclusion protocol while “suspicious“ and “other“ crawlers have
violated these standards most of the times. “Suspicious“ crawlers have accessed Hid-
den link type III which was inside the html comment but no “Known“ crawler has
accessed it.

Python script which implements our approach for web crawler detection and cat-
egorization is available as a googlecode project at http://code.google.com/p/
crawler-detection/.

5.2 Detection of Googlebot Impersonation

Fake Googlebot (or Googlebot impersonation) is a new kind of a threat observed by
many web site owners. In this work we evaluated the robustness of using a Markov

50

Chain model for the problem of differentiating fake and real Googlebot. Our approach
was to learn the resource request patterns of web crawlers. As shown in Figures 4.6 and
4.7, there exists a clear gap between the log-odds ratios for the real and fake Google-
bots. The higher the log-odds score, the higher the probability that a given sequence
is from a real Googlebot. We have calculated a threshold score for our test data set
to conclude the type of a given sequence. Further we have applied the methodology
another new data set. Threshold score to differentiate fake Googlebot from real one
varies from site to site. Our methodology can be easily applied for any web site since
we are based on resource access sequences.

5.3 Human User Profiling

We improved the similarity measure proposed by Velásquez et al. [37] to group human
users based on their browsing behavior. The similarity measure was included in a
agglomerative hierarchical clustering algorithm to identify user clusters. Our results
show that there are clear clusters among the visitors/users of the web site. Derived user
profiles can be used by the e-commerce organization to get better knowledge about
their customer base. And also this can be used as an intrusion detection tool, where we
found some clusters having strange browsing patterns. Any way further research has
to be carried out to understand how well this clustering helps in intrusion detection.

5.4 Future Improvements

5.4.1 Characterization of Web Crawlers

For the future works, web crawler detection methodology can be improved by using
more features like HTTP errors, amount of bytes downloaded. The accuracy of the
methodology has to be increased and minimize the rate of false positives. The ap-
proach of using hidden links can be further improved and use hidden images and text
files.

Our categorization of web crawlers contained three classes "known","suspicious" and
"other". The clusters are overlapping is some cases, where some IP address of the
“known“ crawlers behave like “suspicious“ or “other“ vise versa. Hence further re-
search has to be carried out, in order to clearly define boundaries between these cate-
gorization.

Finally our off-line web crawler detection and characterization methodology can be
extended to real-time detection with some more research.

5.4.2 Detection of Googlebot Impersonation

As for the future works we can consider more advanced request patterns of Googlebots
for improvements. We have applied the methodology on an e-commerce web server
log. To get a better idea this can be applied to multiple web log files. Further research

51

has to be carried out to implement our methodology in web servers to detect fake
Googlebot requests real-time.

5.4.3 Human User Profiling

As future works we can consider the content of web pages and more advanced features
for the proposed similarity measure. We have applied the methodology on online e-
commerce web server logs. To get a better idea this can be applied in multiple web log
files. In our approach the similarity measure is used in a agglomerative hierarchical
clustering algorithm. This can be used other clustering algorithms and can test the
generated user profiles for further improvements.

52

BIBLIOGRAPHY

[1] D. Doran, “Detection, classification, and workload analysis of web robots,” 2014.

[2] R. Cooley, B. Mobasher, and J. Srivastava, “Web mining: Information and pattern
discovery on the world wide web,” in Tools with Artificial Intelligence, 1997. Pro-
ceedings., Ninth IEEE International Conference on, pp. 558–567, IEEE, 1997.

[3] P.-N. Tan and V. Kumar, “Discovery of web robot sessions based on their navi-
gational patterns,” in Intelligent Technologies for Information Analysis, pp. 193–
222, Springer, 2004.

[4] “Google search engine.” [Online]. Available:https://www.google.com/.

[5] “Yahoo search engine.” [Online]. Available:https://www.yahoo.com/.

[6] “msn search engine.” [Online]. Available:http://www.msn.com/en-in/.

[7] “bing search engine.” [Online]. Available:http://www.bing.com/.

[8] “Four fake google haxbots hit your website every day.” [Online].
Available:http://www.theregister.co.uk/2014/07/25/four_fake\
_google_haxbots_hit_your_website_every_day/.

[9] “Fake googlebot activity up 61%.” [Online].
Available:http://searchenginewatch.com/article/2358345/
Fake-Googlebot-Activity-up-61-Report.

[10] “Verifying googlebot.” [Online]. Available:https://support.google.com/
webmasters/answer/80553?hl=en.

[11] “Apache http server version 2.2.” [Online]. Available:http://httpd.apache.
org/docs/2.2/logs.html.

[12] “Gnu wget.” [Online]. Available:http://www.gnu.org/software/wget/.

[13] “Httrack website copier.” [Online]. Available:http://www.httrack.com/.

[14] “Rapidminer.” [Online]. Available:http://rapidminer.com/.

[15] “Python.” [Online]. Available:https://www.python.org/.

[16] “The perl programming language.” [Online]. Available:https://www.perl.org/.

53

[17] “Java.” [Online]. Available:https://www.java.com/en/.

[18] L. Destailleur, “Awstats official web site.” http://www.awstats.org/, 2010.

[19] P. Huntington, D. Nicholas, and H. R. Jamali, “Web robot detection in the schol-
arly information environment,” Journal of Information Science, vol. 34, no. 5,
pp. 726–741, 2008.

[20] M. Koster, A standard for robot exclusion. NEXOR., 1994.

[21] D. Stevanovic, N. Vlajic, and A. An, “Detection of malicious and non-malicious
website visitors using unsupervised neural network learning,” Applied Soft Com-
puting, vol. 13, no. 1, pp. 698–708, 2013.

[22] M. D. Dikaiakos, A. Stassopoulou, and L. Papageorgiou, “An investigation of
web crawler behavior: characterization and metrics,” Computer Communica-
tions, vol. 28, no. 8, pp. 880–897, 2005.

[23] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using hard
ai problems for security,” in Advances in CryptologyâĂŤEUROCRYPT 2003,
pp. 294–311, Springer, 2003.

[24] A. Balla, A. Stassopoulou, and M. D. Dikaiakos, “Real-time web crawler de-
tection,” in Telecommunications (ICT), 2011 18th International Conference on,
pp. 428–432, IEEE, 2011.

[25] D. Stevanovic, N. Vlajic, and A. An, “Unsupervised clustering of web sessions to
detect malicious and non-malicious website users,” Procedia Computer Science,
vol. 5, pp. 123–131, 2011.

[26] N. Algiriyage, S. Jayasena, G. Dias, A. Perera, and K. Dayananda, “Identifica-
tion and characterization of crawlers through analysis of web logs,” in Industrial
and Information Systems (ICIIS), 2013 8th IEEE International Conference on,
pp. 150–155, Dec 2013.

[27] N. Ye et al., “A markov chain model of temporal behavior for anomaly detection,”
in Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information
Assurance and Security Workshop, vol. 166, p. 169, West Point, NY, 2000.

[28] D. Zhang, D. Zhang, and X. Liu, “A novel malicious web crawler detector:
Performance and evaluation,” International Journal of Computer Science Issues
(IJCSI), vol. 10, no. 1, 2013.

[29] G. Stermsek, M. Strembeck, and G. Neumann, “A user profile derivation ap-
proach based on log-file analysis.,” in IKE, vol. 2007, pp. 258–264, Citeseer,
2007.

[30] Y. Xie and V. V. Phoha, “Web user clustering from access log using belief func-
tion,” in Proceedings of the 1st international conference on Knowledge capture,
pp. 202–208, ACM, 2001.

54

[31] J. Xu and H. Liu, “Web user clustering analysis based on kmeans algorithm,”
in 2010 International Conference on Information Networking and Automation
(ICINA), vol. 2, pp. V2–6, IEEE, 2010.

[32] A. Sharma, A. Goel, P. Gulati, et al., “A novel approach for clustering web user
sessions using rst,” in Advances in Computing, Control, & Telecommunication
Technologies, 2009. ACT’09. International Conference on, pp. 657–659, IEEE,
2009.

[33] O. Nasraoui, H. Frigui, A. Joshi, and R. Krishnapuram, “Mining web access
logs using relational competitive fuzzy clustering,” in Proceedings of the Eight
International Fuzzy Systems Association World Congress, vol. 1, pp. 195–204,
Citeseer, 1999.

[34] B. S. Suryavanshi, N. Shiri, and S. P. Mudur, “An efficient technique for mining
usage profiles using relational fuzzy subtractive clustering,” in Web Information
Retrieval and Integration, 2005. WIRI’05. Proceedings. International Workshop
on Challenges in, pp. 23–29, IEEE, 2005.

[35] G. Castellano, F. Mesto, M. Minunno, and M. A. Torsello, “Web user profiling us-
ing fuzzy clustering,” in Applications of Fuzzy Sets Theory, pp. 94–101, Springer,
2007.

[36] J. Xiao, Y. Zhang, X. Jia, and T. Li, “Measuring similarity of interests for clus-
tering web-users,” in Proceedings of the 12th Australasian database conference,
pp. 107–114, IEEE Computer Society, 2001.

[37] J. D. Velásquez, H. Yasuda, and R. WEBER, “A new similarity measure to un-
derstand visitor behavior in a web site,” IEICE TRANSACTIONS on Information
and Systems, vol. 87, no. 2, pp. 389–396, 2004.

[38] B. De Finetti and B. de Finetti, “Theory of probability, volume i,” Bull. Amer.
Math. Soc. 83 (1977), 94-97 DOI: http://dx. doi. org/10.1090/S0002-9904-1977-
14188-8 PII, pp. 0002–9904, 1977.

[39] “Computational biology.” [Online]. Available:http://www.cs.hunter.cuny.
edu/~saad/courses/compbio/lectures/lecture9.pdf.

[40] S. Langhnoja, M. Barot, and D. Mehta, “Pre-processing: Procedure on web log
file for web usage mining,” International Journal for Emerging Technology and
advanced enfineering, vol. 2, no. 12, 2012.

[41] R. Cooley, B. Mobasher, and J. Srivastava, “Data preparation for mining world
wide web browsing patterns,” Knowledge and information systems, vol. 1, no. 1,
pp. 5–32, 1999.

[42] “Hypertext transfer protocol – http/1.1.” [Online]. Available:https://www.
ietf.org/rfc/rfc2616.txt.

55

[43] “Spamhaus database.” [Online]. Available:http://www.spamhaus.org/zen/.

[44] “Abuseat database.” [Online]. Available:http://cbl.abuseat.org/.

[45] “Project honeypot database.” [Online]. Available:https://www.
projecthoneypot.org/index.php.

[46] R. Durbin, Biological sequence analysis: probabilistic models of proteins and
nucleic acids. Cambridge university press, 1998.

[47] “Google crawlers.” [Online]. Available:https://support.google.com/
webmasters/answer/1061943?hl=en.

[48] “Encoding categorical features.” [Online]. Available:http://scikit-learn.
org/stable/modules/preprocessing.html.

[49] H. Jiawei and M. Kamber, “Data mining: concepts and techniques,” San Fran-
cisco, CA, itd: Morgan Kaufmann, vol. 5, 2001.

[50] “scipy.cluster.hierarchy.dendrogram.” [Online]. Available:http://docs.
scipy.org/doc/scipy-0.14.0/reference/generated/scipy.cluster.

hierarchy.dendrogram.html.

56

A WEB CRAWLER IDENTIFICATION & CHARACTERIZATION

Table A.1: Web crawlers with originated country.

coccoc/1.0 Vietnam
bingbot/2.0 United States
Ezooms/1.0 United States
Googlebot/2.1 United States
360Spider China
Yahoo! Slurp United States
SeznamBot/3.2 Czech Republic
archive.org_bot United States
SISTRIX Crawler Germany
NetSeer crawler/2.0 United States
GrapeshotCrawler/2.0 United Kingdom
BLEXBot/1.0 United States
MojeekBot/0.6 United Kingdom
CompSpyBot/1.0 United States
Butterfly/1.0 United States
Blekkobot United States
Plukkie/1.5 Netherlands
SeznamBot/3.1-test1 Czech Republic
Baiduspider/2.0 China
proximic United States
SiteExplorer/1.0b United States
meanpathbot/1.0 Canada
PHPDevelBot/1.0) Canada
oBot/2.3.1 Germany
aiHitBot/2.8 United Kingdom
YandexBot/3.0 Russian Federation

57

Table A.2: Examples for identified “known“ crawlers.

User-agent string Crawler
msnbot-media/1.1 (+http://search.msn.com/msnbot.htm) msnbot-media/1.1
Mozilla/5.0 (compatible; bingbot/2.0;
+http://www.bing.com/bingbot.htm)

bingbot/2.0

Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

Googlebot/2.1

msnbot/2.0b (+http://search.msn.com/msnbot.htm) msnbot/2.0b
Mozilla/5.0 (compatible; YandexImages/3.0;
+http://yandex.com/bots)

YandexImages/3.0

Mozilla/5.0 (compatible; YandexBot/3.0;
+http://yandex.com/bots)

YandexBot/3.0

Mozilla/5.0 (compatible; Baiduspider/2.0;
+http://www.baidu.com/search/spider.html)

Baiduspider/2.0

Table A.3: Examples for identified “suspicious“ crawlers.

User-agent string Crawler
Mozilla/5.0 (compatible; AhrefsBot/4.0;
+http://ahrefs.com/robot/)

AhrefsBot/4.0

Mozilla/5.0 (compatible; Ezooms/1.0;
ezooms.bot@gmail.com)

Ezooms/1.0

Mozilla/5.0 (compatible; Exabot/3.0;
+http://www.exabot.com/go/robot)

Exabot/3.0

Opera/9.80 (Windows NT 6.1; U; en) Presto/2.10.289
Version/12.02

-

Mozilla/5.0 (Windows NT 6.1; rv:21.0) Gecko/20100101
Firefox/21.0

-

Mozilla/5.0 (Windows NT 6.1; WOW64; rv:21.0)
Gecko/20100101 Firefox/21.0

-

Table A.4: Examples for identified “other“ crawlers.

User-agent string Crawler
Mozilla/5.0+(compatible; UptimeRobot/2.0;
http://www.uptimerobot.com/)

UptimeRobot/2.0%

SeznamBot/3.0 (+http://fulltext.sblog.cz/) SeznamBot/3.0
ShowyouBot (http://showyou.com/crawler) ShowyouBot
Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/27.0.1453.110 Safari/537.36

-

Mozilla/5.0 (compatible; coccoc/1.0;
+http://help.coccoc.com/)

coccoc/1.0

Mozilla/5.0 (compatible; SISTRIX Crawler;
http://crawler.sistrix.net/)

SISTRIX Crawler

58

B CRAWLER-TRAP TOOL

B.1 Introduction

Figure B.1 and Figure B.2 show the upload screen and processing screen. In Figures
B.3 and B.4 show the home page. It has the summary of the log file, crawler catego-
rization with percentages, originating countries of web crawlers and amount of crawler
visits per day. The information of the crawlers is listed in Figures B.5 and B.6. Basic
crawler profile screen and detailed profile screens are shown in Figure B.7, B.8,B.9 and
B.10. IP lookup screens are shown in Figures B.11 and B.12. Finally crawler database
screens are shown in Figure B.13and Figure B.14.

B.2 Screens

Figure B.1: Upload log file.

Figure B.2: Process log file.

59

Figure B.3: Home page view I.

Figure B.4: Home page view II.

Figure B.5: Crawler analysis report view I.

60

Figure B.6: Crawler analysis report view II.

Figure B.7: Crawler profile view I.

Figure B.8: Crawler profile view II.

61

Figure B.9: Crawler profile view III.

Figure B.10: Crawler profile view III.

62

Figure B.11: IP lookup view I.

63

Figure B.12: IP lookup view II.

64

Figure B.13: Crawler list view I.

65

Figure B.14: Crawler list view II.

66

