IDENTIFICATION OF THE OPTIMUM PROTECTION CO-ORDINATION IN MEDIUM VOLTAGE DISTRIBUTION SYSTEM OF SRI LANKA

L.K. Dissanayake

128757H

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2015

IDENTIFICATION OF THE OPTIMUM PROTECTION CO-ORDINATION IN MEDIUM VOLTAGE DISTRIBUTION SYSTEM OF SRI LANKA

Lakmini Kumari Dissanayake

128757H

Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Science in Electrical Installations

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2015

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature of the candidate (L.K. Dissanayake)

supervision.

Date:

The above candidate has carried out research for the Masters Dissertation under my

Signature of the supervisor (Dr. K.T.M.U. Hemapala)

Date

Signature of the supervisor (Dr. H.M. Wijekoon Banda)

Date

ABSTRACT

Majority of the faults in the transmission and distribution network are transient and these faults can be cleared with proper installation of protective devices with appropriate protection settings. It is important to clear the faults as soon as possible by keeping the healthy network undisturbed while avoiding damages to lives and instruments.

It was observed that applying protection settings to Medium Voltage network at Grid Substations and Medium Voltage distribution feeders are done by two separate parties without coordination between them. Monthly tripping summary of 33 kV feeders of Grid Substations of Ceylon Electricity Board revealed that some feeders getting disturbed abnormally. Further, it is observed that Auto Reclosers are installed in downstream of these 33 kV feeders to respond to the transient faults but they are not yielding expected results. Hence, applying most appropriate protection setting to these Auto Reclosers and relays are very much required for the higher reliability of the Medium Voltage network.

Two 33 kV feeders which were mostly disturbed were analyzed deeply and found that most of the feeder trippings are owing to Earth Fault. Further, with installation of temporary Digital Disturbance Recorder, it was observed that most of the faults have lasted less than 100 ms. Plotted Over Current and Earth Fault co-ordination curves for Medium Voltage distribution network disclose that requirement of revising the settings while identifying the most suitable way of applying Auto Reclosers to the 33 kV feeders.

Four scenarios were studied to identify the optimum way of installing Auto Reclosers and protection setting for this Medium Voltage network. Detailed analysis proved that 33 kV feeder with two downstream Auto Reclosers is the optimum solution. Then, the most suitable protection settings for the Medium Voltage network were derived for a typical Grid Substations. Furthermore, an algorithm was defined to find the optimum protection settings for any Grid Substations. Application of these setting to a selected 33 kV feeder viz Feeder 5 of Badulla Grid Substation, proved that the new settings are extremely effective.

Key Words: Medium Voltage distribution, Auto Recloser, Protection settings, Over Current, Earth Fault

ACKNOWLEDGMENTS

First, I pay my sincere gratitude to Dr. K.T.M.U. Hemapala and Dr. H.R.M. Wijekoon Banda for encouraging and guiding me to conduct investigation and to prepare the final dissertation.

I extended my gratitude to Prof. M.P. Dias, Head of the Department of Electrical Engineering and to the staff of the Department of Electrical Engineering for the support given during the study period. Further, my gratitude goes to Prof. J. R. Lucas, Prof. N.K. Wickramarachchi, Dr. J.P. Karunadasa, Dr. S.S. Namasivayam, Dr. W.A.D.S. Rodrigo, Dr. Thilak Siyambalapitiya, Eng. Anura Wijayapala and others for the guidance given for studying various subjects of Electrical Installation.

My special thanks go to Eng. N.S. Wettasinghe, Chief Engineer (Protection Development), who helped me for investigation and finalization of the solution.

I would like to take this opportunity to extend my sincere thanks to Eng. D.D.K. Karunarathne, Deputy General Manager (Transmission Design and Environmental), Eng. Eranga Kudahewa, Electrical Engineer (System Control), Eng. Harashana Somapriya, Electrical Engineer, (Protection Development), Eng. Sudesh Perera, Electrical Engineer, (Protection Development), all the office staff of the Protection Development Section of Ceylon Electricity Board and electrical engineers and technical staff of all Distribution Regions who gave their co-operation to conduct my research work successfully.

It is great pleasure to remember the kind co-operation and motivation provided by my friends and my family especially my husband Upul Dissanayake & my son Savidu Dissanayake who helped me to continue the studies from start to end.

TABLE OF CONTENTS

Con	tents		Page
Dec	laration		i
Abstract			ii
Acknowledgements			iii
Tabl	e of con	itent	iv
List	of Figur	es	vii
List	of Table	es	ix
List of abbreviations			xi
List	of Appe	endices	xii
1.	Intro	oduction	01
	1.1	Background	01
	1.2	Identification of the Problem	02
	1.3	Objective of the Research	02
	1.4	Importance of the Research	03
	1.5	Research Methodology	03
2.	Prot	ection Setting Co-ordination	04
	2.1	Electrical Protection for Power Systems	04
	2.2	Medium Voltage System Protection	05
	2.3	Protection Using Relays	06
	2.4	2.4 Grading of Relays	
		2.4.1 Discrimination by Time	07
		2.4.2 Discrimination by Current	08
		2.4.3 Discrimination by Both Time and Current	09
		2.4.4 Grading Margin	10
	2.5	Protection Philosophies used in MV network	10
		2.5.1 Instantaneous Relay	11
		2.5.2 Definite Time Relay	11
		2.5.3 Inverse Definite Minimum Time Relay	12

		2.5.4	Directional Relay	13
	2.6	Transf	former Backup Protection	14
		2.6.1	IDMT Over Current Protection	14
		2.6.2	Instantaneous Over Current Protection	14
		2.6.3	IDMT Earth Fault Protection	15
		2.6.4	DT Earth Fault Protection	15
	2.7	MV D	Distribution line Protection	15
		2.7.1	IDMT Over Current Protection	15
		2.7.2	IDMT Earth Fault Protection	16
		2.7.3	Instantaneous / DT Over Current and Earth Fault I	Protection 16
3.	Revie		sisting Co-ordination in MV Network	17
	3.1	MV N	letwork Disturbances	17
	3.2	Case S	Study 1 - Seethawaka GSS	18
		3.2.1	Downstream AR Details of Seethawaka GSS	19
		3.2.2	Trip Data of Seethawaka F1	20
		3.2.3	Digital Disturbance Records Analysis	22
		3.2.4	Auto Recloser Events Analysis	29
		3.2.5	Existing Protection Settings of Seethawaka GSS	32
		3.2.6	Fault Level Calculation	34
		3.2.7	Existing Co-ordination	38
		3.2.8	Outcome of Case Study 1	40
	3.3	Case S	Study 2 – Badulla GSS	41
		3.3.1	Downstream AR Details of Badulla GSS	42
		3.3.2	Trip Data of Badulla F5	43
		3.3.3	Auto Recloser Events Analysis	45
		3.3.4	Existing Protection Settings of Badulla GSS	47
		3.3.5	Fault Level Calculation	49
		3.3.6	Existing Co-ordination	51
		3.3.7	Outcome of Case Study 2	53

4.	Selec	ction of Protection Settings for Medium Voltage Network	54
	4.1	Introduction	54
	4.2	Scenario 1 – No Downstream AR	55
	4.3	Scenario 2 – One Downstream AR in Series	57
	4.4	Scenario 3 – Two Downstream ARs in Series	60
	4.5	Scenario 4 – Three Downstream ARs in Series	63
	4.6	Optimum Protection Co-ordination for MV Network	64
	4.7	Algorithm to Identify Optimum Protection Co-ordination in	
		MV Distribution System of CEB	68
	4.8	Application of the Algorithm to Badulla GSS	70
		4.8.1 Implementing Settings to Badulla GSS	70
		4.8.2 Results After Implementing New Settings	73
5.	Cone	clusions and Recommendations	73

75

Reference	List
-----------	------

LIST OF FIGURES

Figure	Р	age
Figure 2.1	Overview of the Typical Electricity Infrastructure [6]	05
Figure 2.2	Radial System With Time Discrimination [8]	07
Figure 2.3	Radial System With Current Discrimination [8]	08
Figure 2.4	Use of Inverse Time Relay Characteristic for Time Discrimination [7]09
Figure 2.5	Instantaneous Relay Characteristic	11
Figure 2.6	DT Relay Characteristic [10]	11
Figure 2.7	IDMT Relay Characteristic [10]	12
Figure 2.8	IEC 60255 Characteristic TMS = 1.0 [8]	13
Figure 3.1	SLD of Seethawaka 132 / 33 kV GSS	18
Figure 3.2	SLD of F1 of Seethawaka GSS	20
Figure 3.3	History of Tipping in F1 of Seethawaka GSS	21
Figure 3.4	Comparison of Auto and Manual Trippings in F1	22
Figure 3.5	Comparison of Auto Trippings in F1 as per Cause	22
Figure 3.6	EF Current Variation of F1 during Faults as per DDR Records	24
Figure 3.7	DDR Record at 05.05 hrs on 04 th August 2014	24
Figure 3.8	DDR Record at 19.48 hrs on 04 th August 2014	25
Figure 3.9	DDR Record at 23.29 hrs on 04 th August 2014	26
Figure 3.10	DDR Record at 05.30 hrs on 04 th August 2014	26
Figure 3.11	DDR Record at 12.52 hrs on 04 th August 2014	27
Figure 3.12	EF Current Variation of F1 on 04 th August 2014 as per DDR	28
Figure 3.13	EF Current Variation of F1 on 04 th August 2014 as per AR Events	31
Figure 3.14	Power Transformer and Earthing Transformer Connection in a GSS	34
Figure 3.15	Sub-feeder Arrangement of F1, F2 and F8	35
Figure 3.16	OC Co-ordination Curves for Existing Settings	38
Figure 3.17	OC Co-ordination Curves for Existing Settings	40
Figure 3.18	SLD of Badulla 132 / 33 kV GSS	41
Figure 3.19	SLD of F5 of Badulla GSS	42
Figure 3.20	History of Tipping in F5 of Badulla GSS	44
Figure 3.21	Comparison of Auto and Manual Trippings in F5	44

Figure 3.22	Comparison of Auto Trippings in F5 as per Cause	45
Figure 3.23	EF Current Variation of F5 Within Six Days as per AR Events	46
Figure 3.24	EF Current Variation of F5 on 16 th November 2014 as per AR	
	Events	47
Figure 3.25	Sub-feeder Arrangement of F5	49
Figure 3.26	OC Co-ordination Curves for Existing Settings	52
Figure 3.27	EF Co-ordination Curves for Existing Settings	52
Figure 4.1	SLD of Scenario 1	55
Figure 4.2	SLD of Scenario 2	58
Figure 4.3	SLD of Scenario 3	61
Figure 4.4	SLD of Scenario 4	63
Figure 4.5	EF Co-ordination Curves – Lynx / Raccoon Lines	66
Figure 4.6	OC Co-ordination Curves – Lynx Lines	66
Figure 4.7	OC Co-ordination Curves – Raccoon Lines	67
Figure 4.8	Algorithms to Identify Optimum Protection Co-ordination in MV	
	System	69
Figure 4.9	EF Co-ordination Curves – Lynx / Raccoon Lines	71
Figure 4.10	OC Co-ordination Curves – Lynx Lines	71
Figure 4.11	Comparison of no of Trippings of F5 of Badulla GSS After New	
	Settings Implementation	72

LIST OF TABLES

Table		Page
Table 2.1	IDMT Relay Characteristic to IEC 60255 [8]	12
Table 3.1	Downstream AR Details of Seethawaka GSS	19
Table 3.2	33 kV Breakdown Summary of Seethawaka GSS in July 2014	21
Table 3.3	Summary of DDR Records Analysis of 10 Days	23
Table 3.4	Analysis of DDR Records of F1 on 04 th August 2014	28
Table 3.5	Analysis of AR Events of Dehiowita Sub-feeder	29
Table 3.6	Analysis of AR Events of Ruwanwella Sub-feeder	30
Table 3.7	Analysis of AR Events of Yatiyantota Sub-feeder	32
Table 3.8	Existing MV System Protection Settings of Seethawaka GSS	33
Table 3.9	Existing AR Protection Settings of F1	33
Table 3.10	Fault Levels of Seethawaka GSS (Appendix 4)	34
Table 3.11	Conductor Impedances	35
Table 3.12	Line Positive/Negative Sequence Impedances	36
Table 3.13	Line Zero Sequence Impedances	37
Table 3.14	Three Phase Fault Levels at AR Locations	37
Table 3.15	Line-Ground Fault Levels at AR Locations	38
Table 3.16	Operating Times of OC and EF Protection Relays With Existing	
	Settings	39
Table 3.17	Downstream AR Details of Badulla GSS	43
Table 3.18	33 kV Breakdown Summary of Badulla GSS in July 2014	43
Table 3.19	33 kV Feeder 5 Tripping Detail During Six Days of Badulla GSS	46
Table 3.20	Existing MV System Protection Settings of Badulla GSS	48
Table 3.21	Existing AR Protection Settings of F5	48
Table 3.22	Fault Levels of Badulla GSS (Appendix 4)	49
Table 3.23	Three Phase and Line-Ground Fault Levels at AR Locations	50
Table 3.24	Operating Times of OC and EF protection Relays With Existing	
	Settings	51
Table 4.1	Fault Levels used for Scenario 1	56
Table 4.2	OC and EF Settings of MV System	56

Table 4.3	OC and EF Settings of MV System – Scenario 1	57
Table 4.4	Fault Levels used for Scenario 2	58
Table 4.5	OC and EF Settings of MV System	59
Table 4.6	OC and EF Settings of MV System - Scenario 2	60
Table 4.7	Fault Levels used for Scenario 3	61
Table 4.8	OC and EF Settings of MV System – Scenario 3	62
Table 4.9	OC and EF Settings of MV System - Scenario 4	64
Table 4.10	Optimum EF Settings for MV Network – Lynx / Raccoon Lines	67
Table 4.11	Optimum OC Settings for MV Network – Lynx / Raccoon Lines	68
Table 4.12	Maximum Load Current Through Protective Devices of F1	70
Table 4.13	Old and New OC and EF Setting Comparison of F5 of Badulla GSS $% \mathcal{G}$	72
Table 5.1	Optimum Protection Settings for MV Network of Sri Lanka	74

LIST OF ABBREVIATIONS

Abbreviation	Description
AR	Auto Recloser
CB	Circuit Breaker
CEB	Ceylon Electricity Board
СТ	Current Transformer
DDR	Digital Disturbance Recorder
DEF	Directional Earth Fault
DOC	Directional Over Current
DT	Definite Time
EF	Earth Fault
EI	Extremely Inverse
F	Feeder
GSS	Grid Sub Stations
HV	High Voltage
IDMT	Inverse Definite Minimum Time
LECO	Lanka Electricity Company (pvt) Limited
LS	Load Shedding
LV	Low Voltage
MV	Medium Voltage
OC	Over Current
PS	Plug Setting
SAIDI	System Average Interruption Duration Index
SAIFI	System Average Interruption Frequency Index
SBEF	StandBy Earth Fault
SLD	Single Line Diagram
SI	Standard Inverse
TF	Transformer
TMS	Time Multiplier Setting
UF	Under Frequency
VI	Very Inverse

LIST OF APPENDICES

Appendix 1	Sample Incident Reord for One Week	77
Appendix 2	33 kV Feeder Trippings (more than 40 times per month)	91
Appendix 3	33 kV Feeder List Which Having Downstream Auto Reclosers	
	Installed	99
Appendix 4	Maximum Three-Phase Short Circuit Levels of GSS	101

INTRODUCTION

1.1 Background

The main purpose of an electrical utility in a country is to supply an un-interrupted power to the end customers. Hence, transmission and distribution network ensure the transferring of the generated electrical power to end users. Power transmission is done in High Voltage (HV) while power distribution is done in Medium Voltage (MV) and Low Voltage (LV) levels. In various countries, these HV, MV and LV levels are defined in various limits but these are approximately same. In Sri Lanka, MV level is defined as 33 kV to 11 kV.

Overhead MV distribution system is subjected to various electrical faults. These faults are mainly categorized in to transient (temporary) faults and permanent faults, depending on the nature of the fault. Transient faults are faults which do not damage insulation permanently while allowing the circuit to safely re-energize after a short period. More than 80% of faults are transient [1] and usually these faults occur when phase conductors are electrically in contact with each other or ground momentary owing to lightning strikes, insulator flashovers, high winds, trees, birds or other animals and so on. On the other hand, permanent faults cause permanent damage to the insulation while damaging equipments which have to be repaired before restoration / re-energize.

Transient faults are cleared by a service interruption for defined small time duration to extinguish the power arc. For this purpose, protective relays having instantaneous or fast tripping and automatic reclosing are used to control the operation of Circuit Breaker (CB). The protective device co-ordination is the process of determining most appropriate timing of power system interruption during abnormal conditions in the power system [2]. Hence, most appropriate protection scheme is required for the