DEVELOPMENT OF AN UPPER-LIMB POWER-ASSIST
EXOSKELETON ROBOT TO GENERATE HUMAN LIKE MOTION

Jasinge Malin Pamuditha Gunasekara

118018 K

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Degree of Master of Philosophy

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

July 2014
DEVELOPMENT OF AN UPPER-LIMB POWER-ASSIST EXOSKELETON ROBOT TO GENERATE HUMAN LIKE MOTION

Jasinge Malin Pamuditha Gunasekara

118018 K

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Philosophy

Department of Mechanical Engineering

University of Moratuwa
Sri Lanka

July 2014
DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as article or books).

Date: 02/07/2014
Signature:

The above candidate has carried out research for the M.Phil thesis under our supervision.

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Supervisors:
Dr. R.A.R.C Gopura
Senior Lecturer
Department of Mechanical Engineering
University of Moratuwa

Date: 22/07/2014
Signature:

Dr. T.S.S Jayawardena
Senior Lecturer
Department of Textile and Clothing Technology
University of Moratuwa

Date: 22/07/2014
Signature:

i
ACKNOWLEDGEMENTS

An achievement of a success after hard work and commitment is always accompanied with the support of many individuals. I would like to take this opportunity to thank them all who were with me during last three years and share all moments throughout this journey.

My first responsibility is to thank my thesis supervisor, Dr. Ruwan Gopura to giving all the guidance and support throughout the research work as well as encouraging for good research work. He also provided many research opportunities for me to expand my experience in this area and I must thank it too. Further, my co-supervisor, Dr. Sanath Jayawardena also gave valuable suggestions, comments, and ideas to improve the content of my research work. Moreover, I got an opportunity to get their expertise knowledge to improve the content of my thesis, research work, publications, and presentations in different ways and I honestly thank them for their cooperative support.

Also, I should thank my progress review panel members, Dr. Koliya Pulasinghe (chairman) and Dr. Palitha Dasanayake (member) for their valuable suggestions and comments to improve the content of my research work. Despite to the busy schedule, I am appreciating the commitment given by Dr. Koliya Pulasinghe to conduct my progress reviews in planned time schedule.

I started my research work during last three years of my probationary period. Therefore, my head of division, Mr. K.M Ranasiri, Directress (ITUM), Mrs. Priyangani Samarasekara they all encouraged me and supported in many ways to complete the research work prior to end of probationary period. Also my colleague staff members gave free time for me to concentrate to research work. I must thank them all for their support.

During this research work, I got an opportunity to make close contacts with researches in ResearchGate too. Even though they are not physically present, I
gained contribution from them to improve my research work. It is my duty to mention their support at this moment.

Also I would like to extend my appreciation to my co-authors, Prof. Mann, Mr. Sanjaya, and Mr. Thilina for their suggestions to improve the research content of my work. Further, Prof. Mann gave his knowledge to improve the research content of my work. He also helped me to find valuable research papers to my studies too. I am appreciating his support at this moment.

Without any doubt, I must thank my wife, Vinidu, for her endless dedication to allowing free time for me to concentrate on my research activities. She provided all software requirements as well as printed materials for my research. During most difficult situations, I got mental relax from my little one. His smile and loving words really help me to keep research stuff away from me for a while.

Last but not least, my warm thank is given to my loving mother and father, for all their love and encouragement, and supported me in all my pursuits.

J. Malin Pamuditha Gunasekara
malingunasekara@gmail.com
ABSTRACT

Weakness is inherently associated with ageing society. In fact, Exoskeleton robotic technology can be used to provide assistance for age society to perform activities of daily living (ADL) without depending on others.

Upper limb exoskeleton robots are much suitable to perform ADL. Typically, upper limb exoskeleton robot consists of number of joints and links which are corresponding to joints and limbs of human upper limb. Further, exoskeleton robots differ from other conventional robots due to present of close interaction with wearer. In general, two types of interaction can be seen in exoskeleton robots: physical human robot interaction (pHRI) and cognitive human robot interaction (cHRI). Strengthening features of cHRI can be seen on recent developments of upper limb exoskeleton robots. However, there exists a vacuum to identify aspects of pHRI relating to performance of exoskeleton robots.

The research work of this thesis is focused to design an upper limb exoskeleton robot for motion assist taking effect of kinematic redundancy. The proposed exoskeleton robot (6-REXOS) has four active degree of freedom (DOF) and two passive DOF in its kinematic chain. Two passive DOF are provided to 6-REXOS by means of flexible bellow coupling and those are positioned at wrist and elbow joint of the 6-REXOS to keep their axes parallel to each other. This configuration enhances kinematic redundancy in 6-REXOS. The effect of redundancy is verified with respect to dexterity measures, such as manipulability index, minimum singular value, and condition number. Further, manipulation of end-effector of 6-REXOS due to kinematic redundancy in operational space is presented base on manipulability ellipsoids.

4DOF kinematic model for human lower arm is proposed in thesis. Manipulability measure of human kinematic model is used to benchmark the performance of 6-REXOS. Different measures are taken into account in design of 6-REXOS to ensure smooth pHRI. Passive compliance of bellow coupling in order to reduce kinematic discrepancy as well as improve the manipulation of 6-REXOS is highlighted in this thesis.

Key words: Exoskeleton robot, Redundancy, Compliance, Manipulability index, Minimum singular value.
TABLE OF CONTENTS

Declaration
Acknowledgements
Abstract
Table of content
List of figures
List of tables
List of abbreviations
List of appendices

Chapter 1 Introduction

1.1 Background
1.1.1 Life expectation of world population
1.1.2 Kinematics of upper limb exoskeleton robot
1.1.3 Redundancy in exoskeleton kinematic chain
1.1.4 The effect of compliance in exoskeleton robot
1.2 Motivation
1.3 Contribution of the thesis
1.4 Overview of the thesis

Chapter 2 Upper Limb exoskeleton - A literature review

2.1 History of exoskeleton system
2.2 Biomechanics of human upper limb
2.2.1 Wrist Joint
2.2.2 Elbow Joint
2.3 Kinematics of Human Upper Limb
2.4 Human-Robot Interaction: pHRI and cHRI
2.4.1 Physical human robot interaction (pHRI)
2.4.2 Cognitive human robot interaction (cHRI)
2.5 Control methods for upper limb exoskeleton robots
2.5.1 Control methods based on EMG
2.5.2 Control methods based on non-EMG
2.6 Kinematic performances of exoskeleton robots
2.6.1 Manipulability index
2.6.2 Manipulability Ellipsoid
2.6.3 Singular value
2.6.4 Condition number
2.6.5 Kinematic Redundancy
2.7 Present developments of upper limb exoskeleton robots
2.7.1 Seven DOF upper limb exoskeleton robot: CADEN – 7
2.7.2 Robotic exoskeleton manipulator with parallel mechanism (BONES)
2.7.3 Wearable upper limb exoskeleton WOTAS
2.7.4 Active soft orthotic system for shoulder rehabilitation
2.7.5 Elbow powered exoskeleton for rehabilitation: NEUROExos
2.7.6 7DOF upper limb exoskeleton for motion assist: SUEFUL -7
2.7.7 Cable-Driven Arm Exoskeleton (CAREX) for rehabilitation
2.7.8 7DOF upper limb exoskeleton robot
2.7.9 Hybrid 7-DOF rehabilitation robot
2.8 Other Exoskeleton Robots
2.9 Classification of exoskeleton robotic system
Chapter 3 6 DoF redundant exoskeleton robot

3.1 Redundancy in the 6-REXOS 39
3.2 Overall design of 6-REXOS 40
3.3 Elbow flexion-extension motion unit 41
3.4 Forearm supination-pronation motion unit 42
3.5 Wrist ulnar-radial deviation motion unit 44
3.6 Wrist flexion-extension motion unit 45
3.7 Actuation method 47
3.8 Wrist axis off-set 48
3.9 Prismatic joint – flexible bellow coupling 49
3.10 Range of motion of 6-REXOS 50
3.11 Safety in 6-REXOS 52
3.12 Finite element results of 6-REXOS 52

Chapter 4 Kinematic analysis of 6-REXOS 54

4.1 Kinematic analysis of 4DOF exoskeleton robot 54

4.1.1 4DOF exoskeleton kinematic chain in RTB 57
4.1.2 Joint trajectory of 4 DOF exoskeleton robot in operational space 58
4.1.3 Jacobian of 4 DOF exoskeleton robot 59
4.1.4 Manipulability measure of 4 DOF exoskeleton robot 60
4.1.5 Manipulability index for 4 DOF over entire workspace 61
4.1.6 Minimum singular value of Jacobian 62
4.1.7 Condition number in 4 DOF exoskeleton robot 63
4.1.8 Manipulability ellipsoid 64

4.2 Kinematic analysis 6-REXOS 65

4.2.1 Kinematic redundancy in 6-REXOS 66
4.2.2 Passive compliance in 6-REXOS

4.3 Kinematic chain of 6-REXOS
 4.3.1 Kinematic analysis of 6-REXOS in Matlab/RTB
 4.3.2 Manipulability index in 6-REXOS
 4.3.3 Manipulability index: entire workspace of 6-REXOS
 4.3.4 Minimum singular value in 6-REXOS
 4.3.5 Variation of condition number in 6-REXOS
 4.3.6 Manipulability ellipsoids

Chapter 5 Proposed kinematic model human lower arm
 5.1 Kinematic models of human upper limb
 5.2 Wrist axis offset
 5.3 Proposal of a 4DOF kinematic model for human lower arm
 5.4 Manipulability measure
 5.5 Sensitivity analysis
 5.6 Manipulability ellipsoid

Chapter 6 Performance of 6-REXOS
 6.1 Kinematic performance of 6-REXOS
 6.1.1 Comparison of manipulability indices
 6.1.2 Comparison of minimum singular value
 6.1.3 Comparison of manipulability indices over entire workspace
 6.1.4 Comparison of manipulability ellipsoids
 6.1.5 Comparison of condition number
 6.2 Performance of 6-REXOS
 6.2.1 Effect of Redundancy
 6.2.2 Passive compliance at wrist joint of 6-REXOS
6.2.3 Adaptability in 6-REXOS
6.2.4 Reach envelops
6.2.5 Human like motion generation of 6-REXOS

Chapter 7 Discussion

Chapter 8 Conclusion and future directions

References
Publications
Appendix A: Engineering drawings of the 6-REXOS
Appendix B: Matlab/RTB functions
Appendix C: Numerical description for figures
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Life expectancy at birth in the world from 1950 – 2050</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Early stage of exoskeleton manipulator</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Anthropomorphic structure of exoskeleton</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Human upper limb anatomy and motions</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Wrist flexion extension</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Position of wrist flexion extension axes</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Wrist ulnar-radial deviation</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Position of Capitate in wrist</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Elbow flexion extension motion generating double conic frustum</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>Elbow motion</td>
<td>16</td>
</tr>
<tr>
<td>2.10</td>
<td>Forearm motions</td>
<td>16</td>
</tr>
<tr>
<td>2.11</td>
<td>7 DOF kinematic model of human upper limb anatomy</td>
<td>17</td>
</tr>
<tr>
<td>2.12</td>
<td>Joint configurations at different part of human upper limb anatomy</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Translation of the instantaneous centre of rotation at shoulder</td>
<td>20</td>
</tr>
<tr>
<td>2.14</td>
<td>EMG based proportional controller in NEUROExos</td>
<td>24</td>
</tr>
<tr>
<td>2.15</td>
<td>Architecture of fuzzy-neuro controller</td>
<td>25</td>
</tr>
<tr>
<td>2.16</td>
<td>Manipulability ellipsoid</td>
<td>27</td>
</tr>
<tr>
<td>2.17</td>
<td>Present developments in upper limb exoskeleton robots</td>
<td>35</td>
</tr>
<tr>
<td>2.18</td>
<td>Other different exoskeleton robots</td>
<td>36</td>
</tr>
<tr>
<td>2.19</td>
<td>Classification of exoskeleton robots</td>
<td>37</td>
</tr>
<tr>
<td>2.20</td>
<td>Classification of control method based on type of input signal</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Overall view of the 6-REXOS</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Elbow joint arrangement</td>
<td>41</td>
</tr>
</tbody>
</table>
Figure 3.3: Elbow flexion-extension
Figure 3.4: Connection of distal link to forearm motion fixed plates
Figure 3.5: Forearm motion unit
Figure 3.6: Configuration of forearm motion fixed plates
Figure 3.7: Power transmission on forearm supination-pronation
Figure 3.8: Forearm supination-pronation in 6-REXOS
Figure 3.9: Wrist ulnar-radial deviation axis in 6-REXOS
Figure 3.10: Wrist flexion-extension motion unit with bellow coupling
Figure 3.11: Cross-sectional view of arrangement of bellow coupling
Figure 3.12: Position of wrist flexion-extension motor
Figure 3.13: Variation of joint actuator torques of the 6-REXOS
Figure 3.14: Wrist axis offset in 6-REXOS
Figure 3.15: Flexible bellow coupling
Figure 3.16: Misalignments in bellow coupling
Figure 3.17: Position of bellow coupling in 6-REXOS
Figure 3.18: ROM of 6-REXOS in Matlab (based on robotic toolbox)
Figure 3.19: Mechanical stoppers in 6-REXOS
Figure 4.1: D-H frame assignment for 4 DOF exoskeleton robot
Figure 4.2: D-H table in robotic toolbox
Figure 4.3: 4DOF exoskeleton in initial pose (RTB view)
Figure 4.4: 4DOF exoskeleton in final pose (RTB view)
Figure 4.5: Joint trajectory in operational space (RTB view)
Figure 4.6: Joint angle variation for 4DOF exoskeleton robot
Figure 4.7: Variation of manipulability index over joint trajectory
Figure 4.8: Variation of manipulability index over entire workspace
Figure 4.9: Variation of minimum singular value for 4 DOF exoskeleton robot 63
Figure 4.10: Variation of condition number for 4DOF exoskeleton robot 64
Figure 4.11: 3D view of manipulability ellipsoids 65
Figure 4.12: D-H frame assignment for 6-REXOS 67
Figure 4.13: Screen shot of D-H table defined in robotic toolbox for 6-REXOS 69
Figure 4.14: Variation of manipulability index in 6-REXOS 70
Figure 4.15: Variation of manipulability index over entire workspace 72
Figure 4.16: Variation of minimum singular value in 6-REXOS 72
Figure 4.17: Variation of condition number over joint trajectory 73
Figure 4.18: Manipulability ellipsoid for 6-REXOS 74
Figure 5.1: Upper limb kinematic models, 76
Figure 5.2: Wrist axes offset 77
Figure 5.3: Position of head of capitate 77
Figure 5.4: Proposed 4DOF kinematic model for human lower arm 78
Figure 5.5: Range of motion of proposed human kinematic model 79
Figure 5.6: Manipulability index for human kinematic model 80
Figure 5.7: Manipulability variation due to different wrist parameters 81
Figure 5.8: Sensitivity of manipulability measure against to a_2 82
Figure 5.9: Sensitivity of manipulability measure against to d_3 82
Figure 5.10: Manipulability ellipsoids of hand model 83
Figure 6.1: Comparison of manipulability index 85
Figure 6.2: Comparison of minimum singular value 86
Figure 6.3: Comparison of manipulability index in entire workspace 86
Figure 6.4: Comparison of manipulability ellipsoids 87
Figure 6.5: Comparison of condition number 87
Figure 6.6: Comparison of manipulability measures 88
Figure 6.7: Manipulability ellipsoids of hand and 6-REXOS 90
Figure 6.8: Passive compliance of bellow coupling at wrist joint of 6-REXOS 91
Figure 6.9: Adaptability of 6-REXOS 91
Figure 6.10: Reach envelops 92
Figure 6.11: Robotic toolbox GUI for motion generation 93
Figure 6.12: Joint space configuration of 6-REXOS 95
Figure A-1: Components of 6-REXOS 118
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Motor specifications in 6-REXOS</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Manufacturer specifications on bellow coupling</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Range of motion</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Strength analysis and maximum displacement of the 6-REXOS</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>D-H parameters for 4DOF exoskeleton robot</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Joint configuration for 4DOF exoskeleton robot</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Manipulability index in 20 steps of joint trajectory</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>D-H parameters for 6-REXOS</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Initial and final pose in generated joint trajectory</td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>D-H for kinematic model of lower arm</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Range of motion</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Percentage variations for a_2 and d_3</td>
<td>81</td>
</tr>
<tr>
<td>6.1</td>
<td>Maximum and minimum manipulability indices</td>
<td>85</td>
</tr>
<tr>
<td>6.2</td>
<td>Variations in Cartesian coordinates</td>
<td>92</td>
</tr>
<tr>
<td>6.3</td>
<td>Joint space configuration of 6-REXOS</td>
<td>94</td>
</tr>
<tr>
<td>A-1</td>
<td>Description of components used in the 6-REXOS</td>
<td>118</td>
</tr>
<tr>
<td>C-1</td>
<td>Numerical description for figures</td>
<td>135</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>Activities of Daily Living</td>
</tr>
<tr>
<td>pHRI</td>
<td>Physical Human Robot Interaction</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>eHRI</td>
<td>Cognitive Human Robot Interaction</td>
</tr>
<tr>
<td>RTB</td>
<td>Robotic Tool Box</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix – A</td>
<td>Engineering Drawings of 6-REXOS</td>
<td>118</td>
</tr>
<tr>
<td>Appendix – B</td>
<td>Matlab/Robotic Tool Box functions for 4DOF, 6-REXOS and hand model</td>
<td>130</td>
</tr>
<tr>
<td>Appendix – C</td>
<td>Numerical description for figures</td>
<td>135</td>
</tr>
</tbody>
</table>