DAILY PROFIT MAXIMIZATION USING LINEAR PROGRAMMING TECHNIQUES: SAPUGASKANDA OIL REFINERY STATION

R.K.M.M.Rajapaksha

(10/8216)

Degree of Master of Science

Department of Mathematics

University of Moratuwa Sri Lanka

February 2015

DECLARATION OF THE CANDIDATE

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any universities or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in this text.

Signature:

Date:

DECLARATION OF THE SUPERVISOR

I have supervised and accepted this thesis for the submission of the degree.

Signature of the Supervisor:

Date:

DEDICATION

I dedicate this research work to my family members for their endless support and encouragement.

ACKNOWLEDGEMENTS

I would like to take this time to thank the University of Moratuwa for supporting they were able to provide to me in order to make this thesis possible. I would like to express my special sincere thanks and appreciation to my supervisor, MSc course coordinator and Senior Lecturer Mr.T.M.J.A.Cooray, for the support and for helpful comments during my MSc study and research.

My sincere gratitude also goes to Senior Lecturer Mr.Rohana Dissanayake who was the course coordinator during my MSc studies. I appreciate the feedback offered by you.

Especially I would also like to acknowledge with much appreciation to Mr.N.R.R.Jayasekara, Refinery Manager of Crude Oil Refinery Station in Sapugaskanda. I thank him for giving permission to collect the relevant data.

My deepest appreciation goes to Miss. A.S.Premakanthi, Manager (Economic and Scheduling) and to Mrs. Anoma Senevirathne, Deputy Manager, Technical Services (Process) of Crude Oil Refinery Station in Sapugaskanda. Without your guidance and persistent help during the data gathering this thesis would not have been possible. Also I am particularly grateful for the assistance given by Mr. I.L.Ariyawansa, Deputy Manager of Finance in CEYPETCO. Also my appreciation goes to Mrs. Ayesha Prabashini, Assistant (Economic and Scheduling) of Crude Oil Refinery Station in Sapugaskanda. Also I like to thank the refinery staffs who have shared their precious time during the data gathering.

Special thank goes to Mrs. Priyanthi Samaraweera, the principle of Vishaka girls' school, Sapugaskanda. My appreciation also goes to mr. and mrs. Senevirathna for their support and encouragement.

Last but not least, I would like to thank my family members who are always behind me with their blessings, wishes and encouragements and who provided unconditional support throughout my research and study.

ABSTRACT

The petroleum industry plays one of the most significant role in the energy market in Sri Lanka. The actual use of this source is limited by economical, technological and political reasons. Crude oil refining is an extremely complex and dynamic activity since the refinery itself works to maximize its profitability under the frame work of the organization.

To model the LP Problem to the Crude Oil Refinery station in Sapugaskanda, Sri Lanka, the primary data was collected. The data was modeled and the Linear Programming (LP) method was used to get the optimum solution. The refinery produces 12 major petroleum products together with 24 intermediate streams. The commonly used and most profitable products are Gasoline, SBP and Diesel. For above 36 streams, the flow rates in Metric Ton (MT) per day were considered as decision variables. To maximize the profit, the product values were considered as positive and the raw material costs and operating costs were considered as negative. The TORA software was used to generate the optimum solution. The optimum result obtained showed a notable profit compared to the existing situation in the Oil Refinery Station, Sapugaskanda. The operational difficulties, assumptions, suggestions and further recommendations were discussed.

TABLE OF CONTENTS

Declaration					
Dedication				ii	
Acknowledgements					
Abstract					
Table of Co	ntents			v	
List of Figu	List of Figures				
List of Tabl	es			viii	
List of abbreviations				ix	
Chapter 1:	Intro	duction			
	1.1:	Petrole	um Industry	1	
	1.2:	Signifi	cance of the Study	6	
	1.3:	Objecti	ves of the Study	6	
	1.4:	Researc	ch Methodology	6	
	1.5:	Conten	ts of the Thesis	7	
Chapter 2:	Litera	ature Review			
Chapter 3:	Meth	odology		11	
	3.1:	Linear	Programming	11	
	3.2:	The Gr	aphical Method	11	
	3.3:	Linear	Programming Problem	11	
	3.4:	The Big	g M – Method	12	
	3.5:	The Tw	vo Phase Method	13	
	3.6:	The Se	nsitivity Analysis	13	
		3.6.1:	Changes in the Objective Coefficients	14	
		3.6.2:	Changes in RHS Constants of Constraints	14	
		3.6.3:	Addition or deletion of decision variables	15	
Chapter 4:	Analy	sis and	Results	16	
	4.1:	Data Collection		16	
	4.2:	Data Analysis		22	
		4.2.1:	Formulation of Objective Function	26	
		4.2.2:	Formulation of Constraints	27	
		4.2.3:	The Big M – Method to solve the problem	34	
		4.2.4:	The Two Phase Method to solve the Problem	36	
	4.3:	Results	·	38	
		4.3.1:	Optimum Solution of the model	38	
		4.3.2:	Status of Resources	40	

		4.3.3:	Sensitivity Analysis of the Objective Coefficients and	
			RHS Values	41
		4.3.4:	Comparison of Results	43
		4.3.5:	Chapter Summary	45
Chapter 5:	Discu	ussion		46
	5.1:	Benefit	s of the Derived Model	46
	5.2:	Operati	onal Difficulties and Assumptions	46
	5.3:	Compu	tational Difficulties	47
Chapter 6:	Conc	lusions a	nd Recommendations	48
	6.1:	Conclu	sions	48
	6.2:	Recom	mendations	49
Reference L				50
Appendix A: Blending numbers and associated figures				51
Appendix B: TORA Output				

LIST OF FIGURES

Figure 1.1:	Refinery Flow Diagram	02
Figure 4.1:	Blending numbers and associated figures	51

LIST OF TABLES

1.1	The Usage of Petroleum Products	05
4.1	The Minimum Daily production requirements for refinery products	16
4.2	Refinery Process Units and Capacities	17
4.3	The current prices for Petroleum Products	18
4.4	The Densities of Petroleum Products	19
4.5	Annual Budget Amount for each and every process units	20
4.6	The CEYPETCO costs for Petroleum Products	21
4.7	Quality Specifications for relevant Petroleum Products	22
4.8	Daily production of the process streams in MT as a decision variable X _i	23
4.9	The Capacities, Operating Costs and Mass Yields for the process units	25
4.10	The initial tableau of Big – M method	35
4.11	Iteration 2 in Big M- Method	35
4.12	The Optimum Tableau of Big M- Method	36
4.13	The initial tableau of Phase I	36
4.14	The Optimum tableau for Phase I	37
4.15	The Starting Tableau for Phase II	37
4.16	The total amount that each stream contributes in arriving maximum profit	38
4.17	TORA Output	53
4.18	Slack and surplus variables	40
4.19	Output for the sensitivity analysis of the objective coefficient	41
4.20	Sensitivity analysis of the RHS Values	42
4.21	The Results Comparison	44
4.22	The refinery daily process summary	45

LIST OF ABBREVIATIONS

Abbreviation	Description
bbl	Barrels
b.p.s.d.	Barrels Per Stream Day
CEB	Ceylon Electricity Board
CEYPETCO	Ceylon Petroleum Cooperation
Codo	company owned dealer operated
CPSTL	Ceylon Petroleum Storage Terminals Limited
Cts.	cents
Dodo	dealer owned dealer operated
Kg	kilograms
LAUGFS	Lanka Auto Gas Filling Stations
LIOC	Lanka Indian Oil Company
LKR	Sri Lanka Rupees
LP	Linear Programming
LPG	Liquefied Petroleum Gas
LPP	Linear Programming Problem
Max	Maximum
Min	Minimum
MT	Metric Tones
R.H.S.	Right Hand Side
Rs.	Rupees
SBP	Special Boiling Point
sec.	Redwood Seconds
SOREM	Sapugaskanda Oil Refinery Expansion and Modernization
SPBM	Single Point Buoy Mooring