

COMMUNICATING DATA QUALITY IN A GIS ENVIRONMENT

by

Kanagaratnam Thavalingam

"This thesis was submitted to the department of Earth Resources Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science"

> Department of Earth Resources Engineering University of Moratuwa Sri Lanka

> > October 2001

74349

Abstract

The GIS database is a digital representation of the real world. Any abstract of reality will contain discrepancies from its source. With traditional methods many of the problems are visible and the skilled map analyst makes the necessary adjustments and knows how far the information can be relied upon. With a Geographic Information System the equivalent operations are not transparent (the black box effect), usually the operators are no longer so skilled and the problems are largely invisible. The digital modelling has the potential to dramatically increase both the magnitude and importance of errors in the models. The results may be used for decision making and planning despite possessing levels of uncertainty that are completely unknown and usually cannot even be guessed. That is why the accuracy analysis is one of the most important problems in the development and applications of the system.

Currently there are several demands from users of data to include quality parameters in the related GIS databases. A number of researchers have done work on the derivation of data quality especially on positional or geometrical accuracies. However there has been little work done on qualitative or semantic accuracies and ways of communicating them. A major contribution toward standardizing the definition, assessment and reporting of GIS data quality has been made by the Data Set Quality Working Group of the National Committee for Digital Cartographic Data Standards.

This research, provides an overview of the data quality factors that should be considered when using geographic information, and is intended to explore the possibility of generating and communicating data quality in various ways in a GIS environment. Suitable algorithms, mainly concerning positional and attribute accuracy assessments, were adopted from relevant literature to determine the data quality parameters at different levels of abstraction, for different data types. The levels of abstraction. considered were overall accuracy parameters at coverage level and specific accuracy parameters referring to entity level. To communicate the data

quality to the user different methods such as numerical, graphical and textual messages were adopted .The area for the case study is located in Kegalle district. The feasibility of the reported implementation was assessed by means of the referred case study. The results obtained with this case study were used to draw some conclusions and recommendations regarding the communication of, data quality in a GIS environment.

The work included in the thesis in part or whole, has not been submitted for any other academic qualification at any institution

<u>ـ</u>

UOM Verified Signature

October 2001

K.Thavalingam

. ۲۰

Acknowledgements

- Firstly, I would like to mention all effective support and guidance given throughout the research, by my supervisor Dr.U.G.A.Puswewala, Department of Civil Engineering, University of Moratuwa.
- I wish to express my appreciation to my former supervisor Dr.U.G.Senerath for the initial guidance given to me to start this research project.
- To Mr. Sarath Weerawaranakula, Head, Department of Earth Resource Engineering. I would like to express my sincere thanks for the help given to me throughout the period of study and contributed to this thesis with the helpful hints and suggestions.
- To Prof. P.G.R. Dharmaratne, Department of Earth Resource Engineering, University of Moratuwa. I would like to thanks for the helpful suggestions he has made during the review of the research project and thesis writing.
- To the staff attached to University of Moratuwa, especially to Department of Earth Resource Engineering, I would like to express my gratitude for all the support given to me during my research work.
- Much of the data input were performed by the GIS Branch in Survey Department under the supervision of Mr.D.N.D.Hettiarachchi, Superintendent of Surveys (GIS); their collective efforts are warmly appreciated.
- To Mr.A.Dissanayake, Superintendent of Surveys, Kegalle District, and his surveyors; I must acknowledge all help given through the field data collection.
- To Mr.S.D.PJ. Dampegama, Superintendent of Surveys (Geodetic Surveys), Institute of Surveying and Mapping, Diyatalawa and his surveyors and staff, I must thank all the helps given through the GPS observations and the support given at all stages of the research projects.
- For the useful and necessary information and explanation regarding Arc/Info data structure and programming, I give my thanks to Mr.S.Sivanantharajah, Asst. Superintendent of Surveys, Center for Remote Sensing.

- For helpful criticism and suggestions given to me for the improvement of the research, I would like to thank Mr. K.D. Parakkum Shantha, Superintendent of Surveys (Air Surveys) and his wife Mrs. Shamily Parakkum Shantha, Superintendent of Surveys.
- I would like to thank the Surveyor General and Survey Department for supporting this research and releasing the digital data and resources.
- This research was funded by ADB. I gratefully acknowledge the fellowship provided me by ADB.

Thank you to all concerned.

K.Thavalingam

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

÷.,

Table of Contents

Ab stract			i
Acknowl	edgeme	ents	ii
Table of	Content	ts	iv
List of Ar	nnexes		vii
List of Figures		viii	
List of Ta	ables	2	ix
СНАРТЕ	ER 1	Introduction	1
1.1	Resea	rch objectives	4
1.2	Digital	Spatial Datasets used	4
1.3	Resea	rch methodology	4
1.4	Thesis	structure	5
СНАРТЕ	ER 2	Errors in spatial database creation	7
2.1	Source	e of Errors	7
2.2	Details	s of Source of Errors	8
	2.2.1	Obvious source of Errors	8
	2.2.2	Errors resulting from natural variations / original measurements	10
	2.2.3	Errors arising through processing	11
	2.	2.3.1 Numerical errors in the computer	11
	2.	2.3.2 Faults arising through topological analyses	12
		2.2.3.2.1 Problems and errors arising from overlay boundaries	12
2.3	Proble	em in combining all Errors	18
СНАРТ	ER 3	Data Quality Evaluation in a GIS	19
3.1	Comp	onents of Data Quality •	19
3.2	Positio	onal Accuracy	20
	3.2.1	The methods of determining Positional Accuracy	21
3.3	The p	roposed methodology to determine the Positional Accuracy	26
	3.3.1	Identify Control Data	27
	3.3.2	Determination of the Sample for Comparison	27
	3.3.3	Derivation of statistic parameters	28
	3.3.4	Checking for existence of Gross Errors (Blunders)	29
	3.3.5	Hypothesis testing on computed statistics	29
	3.3.6	Test for the existence of significance bias error	30

Page iv

Communicating data quality in a GIS environment

	3.3.7	Test for the precision	31
	3.3.8	Computation of covariance to evaluates the tendency of correlatio	n32
	3.3.9	Statistic parameter - Root Mean Square Error (RMSE)	33
3.4	Positio	nal Accuracy assessment for linear and areal data	33
	3.4.1	Epsilon band approach	33
	3.4.2	Distance buffering method to determine the accuracy	35
	3.4.3	"Rule of thumb" approach to determine the accuracy	37
3.5	Attribu	te Accuracy	38
	3.5.1	The methods of determining attribute accuracy	38
	3.5.2	Attribute Accuracy Assessment - Descriptive Label	39
	3.5.3	Attribute Accuracy Assessment - Nominal attributes	40
	3.5.4	Attribute Accuracy Assessment - Interval attributes	46
3.6	Comp	eteness	46
	3.6.1	Data completeness and Model completeness	48
	3.6.2	Testing of completeness	48
	3.6.3	Source of incompleteness	49
	3.6.4	Example	50
3.7	Logica	al consistency	50
3.8	Linea	ge University of Moratuwa, Sri Lanka.	53
	3.8.1	Purpose of 'Lineage' Information eses & Dissertations	53
CHAPTI		Determination of the Data Quality of the Datasets	57
4.1	Produ	ction of the data set	57
		Data Collection	57
4.3	Deter	mination of Positional Accuracy	58
	4.3.1	Positional accuracy assessment procedures- Point Entity	58
	4.3.2	Positional accuracy assessment procedures - linear data	60
	4.	3.2.1 Rule of Thump Approach - line_entity	60
		3.2.2 Error (Epsilon) Band Approach – line entity	61
	4.	3.2.3 Positional Accuracy Assessment – direct measurement	62
	4.	3.2.4 Positional Accuracy Assessment – distance buffering	63
	4.3.3	Positional accuracy assessment procedures - areal data	64
4.4	4 Deter	mination of Attribute Accuracy	65
	4.4.1	Accuracy of Interval Attributes	65
	4.4.2	Accuracy of Descriptive label	66
	4.4.3	Attribute accuracy assessment for nominal data	67
	4.	4.3.1 The procedures for attribute accuracy assessment	67

4.5	Lineage	68
4.6	Logical consistency	68
4.7	Completeness	68
CHAPTE	, -	71
5.1	Methods of representing positional accuracy	71
5.2	Methods of representing attribute accuracy	74
5.3	Completeness	75
5.4	Logical consistency	75
5.5	Lineage	75
5.6	Cartographic methods for data and information quality representation	75
CHAPTE	R 6 Implementing Data Quality	80
6.1	The proposed approach	80
6.2		80
6.3		81
6.4		81
	Data Quality Presentation	81
	University of Moratuwa, Sri Lanka.	82
	ER 7 Conclusions and Recommendations	82
7.1	WWW.IID.IIIIL.ac.IK	
7.2	Recommendations for future	84
		уч. 1
Annexe	S	
Referen	ces	XLIV

List of Annexes

Annex 1	General location of case study area	I
Annex 2	Flow diagram	11
Annex 3.1	Assessment of Completeness - Sheet No. 53/23	VIII
Annex 3.2	Assessment of Completeness - Sheet No. 53/24	Х
Annex 4.1	Assessment of Positional Accuracy -point entity –Sheet 53/23	XII
Annex 4.2	Assessment of Positional Accuracy -point entity –Sheet 53/24	XIV
Annex 4.3	Assessment of Positional Accuracy -point entity –Sheet 53/23&24	XVI
Annex 4.4	Assessment of Positional Accuracy -point entity –Sheet 53	XVIII
Annex 4.5	Assessment of Positional Accuracy -line entity	XX
Annex 4.6	Assessment of Positional Accuracy -polygon entity	XXV
Annex 5.1	Assessment of Attribute Accuracyinterval dataSheet 53/24	XXVI
Annex 5.2	Assessment of Attribute Accuracy –interval data –Sheet 53/23	XXVIII
Annex 5.3	Assessment of Attribute Accuracy –interval data –Sheet 53/23&24	XXX
Annex 5.4	Assessment of Attribute Accuracy –descriptive label	XXXII
Annex 5.5	Assessment of Attribute Accuracy –nominal data Lanka.	XXXIII
Annex 6.1	Positional Accuracy Report C Theses & Dissertations	XXXIV
Annex 6.2	Attribute Accuracy Report	XXXVIII
Annex 6.3	Completeness Report	XL
Annex 6.4	Logical consistency Report	XLI
Annex 6.5	Lineage Report	XLII

•

•

List of Figures

2.1:	Central Grid cell coding	13
2.2a:	Digitization	15
2.2b:	Error zones with epsilon tolerance	16
2.3:	Spurious Polygons	17
2.4:	A Classification of error in Spatial Database	18
3.1:	Determination of position of the telephone pole	23
3.2:	Comparison of an edit plot to source map	26
3.3:	Error band area according to caspary	34
3.4:	Distance buffer around entities	36
3.5:	Line defines by four Coordinate pairs	37
5.1	Error Ellipses used to show positional accuracy	73
5.2	Use of curves to show positional accuracy of a line	73
5.3	Use of bar charts to show attribute accuracy	74
5.4	Simple reliability diagram	75
5.5	Geometric reliability diagram	76
5.6	Lineage presentation using quality overlay	76
5.7	Quality Overlay in the form of isolines	77
5.8	Using the Epsilon band concepts to show error in elevation	78
5.9	Presenting the quality of individual feature	7 ,9
5.10	Crop suitability Information.	79

6.1 The Proposed Approach

80

•

List of Tables

3.1	Results from the Buffer/ Clip Prone	36
3.2	Classification Error Matrix	40
3.3	Classification Error Matrix	43
3.4	Normalized Matrix	44
3.5	Calculation of the Kappa Coefficient	45
3.6	Comparison of the results	46
3.7	Feature Completions	48
4.1	Positional Accuracy Summary data - point entity	58
4.2	Accuracy of the line Segments	60
4.2a	Accuracy of roads	61
4.3	Accuracy of line Segments (Epsilon Band)	61
4.3a	Accuracy of roads (Epsilon Band)	62
4.4	Direct Comparison with field measurements	62
4.5	Distance buffering method	63
4.6	Error (Epsilon) Band Approach - Areal date	64
4.7	Accuracy of Interval Attributes Theses & Dissertations	66
4.8	Class accuracy test results	67
4.9	Completeness of topographic data	69
4.10	Completeness of land use	69
5.1	Position accuracy -meta information for all individual objects	72

.

.