Study of Relationship Between

Thermal Comfort Variations and the Urban

Canyon Geometry

within urban blocks in Colombo.

University of Morotuwa Sri Lanka, as a Partial

Fulfillment of the Requirement for the

Degree of Master of Science in

Architecture.

00210

12122 72 "00" 711.4:697

TH

74122

Acknowledgement

i

My sincere gratitude to each and every person for their involvement to make this dissertation a reality.

My sincere thanks to Prof. Nimal de silva, Dr. M.P.R.Emmanual, Sr. lecturer, Archt. M. Pramathilaka, Sr. lecturer, my year Master Dr. Dayarathna, Sr. lecturer, Dr. L.S.R.Perera Sr. lecturer, of the faculty of Architecture of the University of Moratuwa.

To many erstwhile colleagues in the Department of Architecture of the University of Moratuwa, Sanjeewanie, Chamila and my dear friends Saman, Gayani, Dinesha, Lalith. I owe my thanks for many contributions to the inter-disciplinary context in which the study originated.

Finally my particular thanks to my family members, especially to my mother, brother and my uncle for all helps and encouragement.

.

Contents

Page	No.
------	-----

Acknowledgement	i
List of figures	ii
Chapter 1	
Introduction	1
1.1 Issue	1
1.2 Rationale of the study	1
1.3 Objectives	3
1.4 Method of study	3
1.5 Scope of the study University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lab.mrt.ac.lk	5

Chapter 2

5

Thermal comfort requirements in the urban equatorial

tropics.	6
2.1 The theoretical basis of thermal comfort	7
2.2 Urban Heat Islands phenomena	10
2.2.1 Causes of Urban Heat Island Effect	13
2.3 Overall spatial pattern of the urban heat islands in equatorial regions.	26
2.3.1.Characteristics of urban heat islands in equatorial region	ns. 27
2.3.2. Thermal comfort in equatorial urban outdoors	29
2.3.3. Urban density and Canyon geometry impacts on	
thermal comfort in equatorial regions.	32
2.4 Colombo City as an urban heat island	37
2.4.1. Problems related to Colombo City Microclimate	38

Chapter 3

Method of the study	42
3.1 Study of the selected urban blocks in Colombo City	43
3.1.1 Colombo Fort	43
3.1.2. Union place	47
3.1.3 Colombo 05	49
3.2 Procedure and method of using Instruments	
3.2.1. Measurement protocol	51
3.3 Data analysis protocol	52

Chapter 4

Chapter 5

Results of the study	50
4.1 Results of the Colombo Fort	56
4.2 Results of the Union Place	58
4.3 Results of the Elebank	60
4.4 Results of the Colombo weather station	

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

Analysis of field study data655.1 Analysis of Colombo Fort results655.2 Analysis of Union Place results785.3 Analysis of Elebank results935.4 Comparison of the field study data1025.5 The prediction of thermal comfort105Lonclusion116

Bibliography	118

ŧ

5

List of figures

DISCRIPTION

PAGE NO

Fig 2.1	Vitruvian Tri-partite of environment.	6
Fig 2.2	Interlocking fields of climate balance	6
Fig 2.3	Schematic bioclimatic index	8
Fig 2.4	Bio climatic chart	8
Fig 2.5	Timetable of Climatic Needs	8
Fig 2.6	Boundaries of outdoor temperature and humidity within	
	which indoor comfort can be provided by natural	
	ventilation	
	during the day, with indoor airspeed about 2m/s.	10
Fig 2.7	Climatic boundaries, in terms of the outdoor maximum	
	daily temperature.	10
Fig 2.8	Heat island is visualized as a city heat dome.	11
Fig 2.9	Effect of urbanization on local air quality	12
Fig 2.10 a	External surfaces temperatures of gray and of white	
	painted walls, facing the four cardinal directions.	13
Fig 2.10 b-	External walls' temperatures, in January and July	
	calculated with dark, medium and white colors.	14
Fig 2.11	False color image of Atlanta.	14
Fig 2.12	Grayscale image of Atlanta	15
Fig 2.13	Schematic illustration of the effect of topography on	
	local wind exposures [Carmona 1984]	16
Fig 2.14	Relationship between population size and urban	
	heat island intensity for North America, Europe, and South	h
	America.	17
Fig 2.16	Measured air temperatures at UCLA during 57 days,	
	spread over a year, in sites with different ground cover.	19
Fig 2.17	Measured surface temperatures of the sites from fig.2.16	20
Fig 2.18	Schematic distribution of the impinging solar radiation	
	in [a] an open flat country, [b] a built-up area with	

ii

5

	H / W ratio of about 1, and [c] a high-density urban area	
	with H / W ratio of about 4.	20
Fig 2.19	The airflow directions, as observed around	
	Manhattan [New York City] is reproduced from	
	Munn in 1970.	23
Fig 2.20	The relationship between the SVF and the urban	
	heat island nocturnal intensity, for North America,	
	Europe, and Australasia.	24
Fig 2.21	Crystal down town centers in San Francisco.	27
Fig 2.22	Many smaller cities especially in the developing	
	world still retain their spontaneous layout in human	
	scale. Metlili in the Algerian Sahara home of the	
	Chamba.	27
Fig 2.23	Wind speed near ground level in front of a high-rise	
	building is increased, helping in diluting street-level	
	air pollutants.	34
Fig 2.24.	Graphical illustration of the changes in the vertical	
	wind velocity profile over urban, suburban and open	
	rural areas. University of Moratuwa, Sri Lanka.	36
Fig 2.25	Air temperature measurements during two days in three	
	streets of very different width, ranging from a wide	
	Avenue to a very narrow alley in Seville, Spain.	36
Fig 2.26	Historical trends in Heat Index in the CMR.	37
Fig 2.27.	30-year diurnal variations in the temperature during	
	the hottest month in CMR.	37
Fig 2.28	Givoni's Bioclimatic recommendations based on	
	Colombo's typical climate.	38
Fig 2.29	Present Colombo City urban physical structure	
	in the main commercial center-Fort.	38
Fig 2.30	Form C.	39
Fig 3.1	Fort contained large-scale buildings.	44
Fig 3.2	High rise buildings as tall as more than 26 stories	
	accompanied by heavy traffic; high degree of	
	paved areas.	45

4

.

۶

+

Fig 3.3	Plan of the Colombo Fort.	46
Fig 3.4	Selected urban block façade with two towers.	47
Fig 3.5	Plan of the Union Place.	48
Fig 3.6	Selected urban block.	49
Fig 3.7	Plan of the Colombo -05.	50
Fig 4.1	COLOMBO FORT- daytime results.	56
Fig 4.2	COLOMBO FORT-nighttime results	57
Fig 4.3	UNION PLACE-daytime results	58
Fig 4.4	UNION PLACE-nighttime results	59
Fig 4.5	ELEBANK- daytime results	60
Fig 4.6	ELEBANK- nighttime results	61
Fig 4.6	RESULTS OF THE COLOMBO WEATHER STATION	63
Fig 5.1	THI contour diagram of the Colombo Fort during	
	the daytime.	65
Fig 5.2.	Façade of the urban block- fort.	66
Fig 5.3	Façade of the Cargills building.	66
Fig 5.4	Along the York Street after introducing towers buildings.	69
Fig 5.5	THI & H/W ratio relationship-fort daytime	71
Fig 5.6	THI & H/W ratio relationship-fort daytime-forcast	72
Fig 5.7	THI contour diagram in Colombo Fort during the nighttime.	73
Fig 5.8	THI & H/W ratio relationship-fort nighttime	76
Fig 5.9	THI & H/W ratio relationship-fort nighttime -forcast	77
Fig 5.10	THI value contour diagram in Union Place	
	during the daytime	79
Fig 5.11	Access building façade with tinted glazed	80
Fig 5.13	The Jiac Hilton Tower is 108 m high with 36 floors	
	and colored in light color	80
Fig 5.13	Baybrooke street most of the low height buildings	
	and more vegetation are occupied.	81
Fig 5.14	low height buildings are more likely to be shaded	
	by the other side tall tower buildings as well as from	
	the trees along the Dowson street.	81
Fig 5.15	4m wide very narrow Dowson street	82
Fig 5.16	THI & H/W ratio relationship-Unionplace daytime	84

≻

Fig 5.17	THI & H/W ratio relationship-Unionplace daytime-forcast	85
Fig 5.18	THI contour diagram to this urban block during	
	the nighttime.	87
Fig 5.19	THI & H/W ratio relationship-Unionplace nighttime	89
Fig 5.20	THI & H/W ratio relationship-Unionplace nighttime- forcast	90
Fig 5.21	THI value contour diagram in daytimeElebank	92
Fig 5.22	View along the Elebank road.	93
Fig 5.23	View along the Skelton road.	93
Fig 5.24	THI & H/W ratio relationship- Elebank daytime	95
Fig 5.25	THI & H/W ratio relationship- Elebank daytime-forcast	96
Fig 5.26	THI value contour diagram in nighttimeElebank	98
Fig 5.27	THI & H/W ratio relationship- Elebank nighttime	100
Fig 5.28	THI & H/W ratio relationship- Elebank nighttime-forcast	101
Fig 5.29	Existing growth- Union place	107
Fig 5.30	Existing profile - Union place	108
Fig 5.31	Projected - minimum- Union place	109
Fig 5.32	Projected - minimum profile- Union place	110
Fig 5.33	Projected - maximum- Union place	111
Fig 5.34	Projected - maximum profile- Union place	112
Fig 5.35	Existing profile - Elebank	114
Fig 5.36	Projected - minimum- Elebank	115

.

v

- .