EVALUVATING THE POTENITAL OF ADOPTING CLEAN DEVELOPMENT MECHANISM FOR IMPLEMENTING RENEWABLE ENERGY BASED PROJECTS IN SRI LANKA

Jeevani Biyanka Samarasinghe

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

April 2014

EVALUVATING THE POTENITAL OF ADOPTING CLEAN DEVELOPMENT MECHANISM FOR IMPLEMENTING RENEWABLE ENERGY BASED PROJECTS IN SRI LANKA

Jeevani Biyanka Samarasinghe

09/8111 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Thesis Submitted in Partial Hibfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

April 2014

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as article or books).

The above candidate has carried out research for the Master of Science thesis under our supervision.

Prof. R.A.Attalage Supervisor Date : Prof. K.K.C.K.Perera Supervisor Date :

ABSTRACT

Sri Lanka has had a hydropower dominated electricity generation for many years with relatively high rainfall mainly in the central hilly region. This factor has led to a greater dependence on hydropower for its power generation. However, at the same time, Sri Lanka is heavily dependent on imported fuel and for energy security it is imperative that we take steps to harness the renewable energy sources. The government is trying to respond to the energy supply issue by relying heavily on fossil fuel based electrical power, which may not be the correct energy option for Sri Lanka.

Therefore, the large scale fossil based power plants are not environmentally friendly in comparison to other energy options. This will result in a gradual increase in greenhouse gas (GHG) and other environmental emissions in the power sector and, hence, there has been a lot of opposition from the people, especially environmentalists, civil society and residents in the locations where fossil based plants have been planned.

The main internation of this study is to form an internationally consistent view to answer the question as the electronic Theses & Dissertations question are projects could be economic and sustainable in, place of the nonrenewable based combustion dominant projects. The study will consider the appropriateness of existing perspectives and policy imperatives in the above regard also. Special emphasis will be given for the local environmental protection, mitigation of climate change, legislation and quality of service in a context of global competition.

It is a fact as well as the general perception that adoption of renewable energy technology based projects and the Clean Development Mechanism (CDM) created under the Kyoto Protocol, are directly linked. The Clean Development Mechanism (CDM) act as a bridge to link the industrialized countries and developing countries. The CDM intends to assist developing countries achieve sustainable development by providing incentives for industrialized countries to invest cost-efficient GHG reduction projects in these countries. The developed countries can receive some credits by investing and implementing GHG emission reduction projects in the developing countries, then use the credits to fulfil their legally binding quantitative obligations laid down in the Kyoto Protocol. Although the Clean Development Mechanism (CDM) does not have an

explicit technology transfer mandate, it may contribute to technology transfer by financing emission reduction projects using technologies currently not available in the host countries.

The study presented in this thesis first analyse the potential technology possibility under the CDM in power generation. This study is a theoretical study focused on the survey of the current state of art of CDM and related issues. The results show that the potential of CDM opportunities in mini hydro, biomass including dendro power and wind energy , which can be identified as the leading, sustainable, non-conventional forms of renewable energy promoted in Sri Lanka for electricity generation to feed into the thermal grid. Also the main intention of this study is to investigate the technological and regulatory interventions on overall power sector emissions and economic and environmental benefits of such interventions.

Based on the analysis it was found that present annual CO₂ emission with respect to the thermal power electric generations in Sri Lanka is about **0.75** Million Metric Tons and Wind, mini-hydro and bio mass will be very attractive with CDM funding. Out of the selected CDM options, the Mini Hydro plant that Sri Lanka need to choose is particularly important. Considering that this is the option giving the highest carbon reduction within the planning horizon while having the highest profit when considering the local energy tariff structure, the tariff is highest for Biomass.

Key words: Greenhouse Gases, Climate Change, Kyoto Protocol, Clean Development Mechanism

DEDICATION

This research Report is Dedicated to my beloved husband Electronic Theses & Dissertations www.lib.mrt.ac.lk Asoka and to my three daughters Manesha, Achini and

Radhika

Acknowledgement

First of all I do acknowledge with my sincere thanks and gratitude to Prof. R. A. Attalage and Prof. K. K. C. K. Perera in the Department of Mechanical Engineering for being the supervisors of this research and for the kind supervision, guidance, encouragement, and valuable instructions given to move the thesis in right direction.

The encouragement given by Dr. T. A. G. Gunasekara Director of Institute of Technology, University of Moratuwa is also remembered with my sincere thanks.

The valuable instructions given by Prof. P.D.C.Wijayathunga, Energy consultant, ADB and Dr. A. G. T. Sugathapala Senior Lecturer, Department of Mechanical Engineering University of Moratuwa, during the research is acknowledged with my sincere thanks.

Many thanks and appreciation are due to Mr. P. G. Joseph, Senior consultant Ministry of power and Energy and Mr. Anura Jayathilake Director Climate change Secretariat for the technical assistance extended through out.

Further I may extend my sincere thanks to Prof. Chintha Jayasinghe, Director, Post graduate studies of University of Moratisway Dr. M. PracuDassanayake, Head of the Department of Mechanical Ingineering, and Dr. Ruwan Gopura Senior decturies Department of Mechanical Engineering as the post graduate co-ordinator, is also remembered with my sincere thanks.

My special thanks to Mr. Dasun Ranasinghe, Engineer of Mass Holdings for giving me valuable information with respect to operational data and technical assistance extended during this study

My special thanks for officers in the Post Graduate Studies division of the faculty of Engineering, Universitry of Moratuwa for helping me in various way to clarify the things related to academic works in time with excellent co-operation and guidance. Thanks are also due to the academic and the non-academic staff of the Department of Mechanical Engineering for the support extended during the study period.

Last, but not least I would like to express my heartfelt thanks to Asoka, my beloved husband and to my three daughters Manesha, Achini and Radhika for their tremendous support, useful suggestions, encouragement, care , patience and love.

List of Figures

Figure 1.1	3
Figure 1.2	4
Figure 2.1	19
Figure 2.2	22
Figure 2.3	26
Figure 2.4	27
Figure 2.5	31

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

No	Descrption	Page
Table 1.2 – Per cap	ita emission of CO2 in South Asian countries compared to	USA 6
Table 2.1 - Capacit	ies of wind farms in Sri Lanka	27
Table 2.2 -Present	Hydro Power Generation	32
Table 2.3- Thermal	Generation owned by CEB	33
Table 2.4 -Independent	dent Thermal Power Producers in Sri Lanka	33
Table 2.5 -Present	Generation Mix	34
Table 3.1 -Summar	y of National CDM Potential by Sector	37
Table 3.2 – Method	lologies for Renewable Energy Project	39
Table 3.3 - Weighte	ed average approximate emission factors	54
Table .4.1 -Ambien	Air Quality Standards for Mernal Generation anka.	58
Table 5.1 - Micro/	Electronic Theses & Dissertations Hydro potential in Sri Lanka www.lib.mrt.ac.lk	69
Table 5. 2-Details	of house hold distribution of Sri Lanka	71
Table 5.3- NRFL W	vind Resources Classes applicable to Sri Lanka	74
Table 5.5 -Data and	I formula used for economic calculations for the research	81
Table 5.6 - Data of	Fuels	82

List of Abbreviations

ADB	Asian Development Bank
CDM	Clean Development Mechanism
CEB	Ceylon Electricity Board
CEF	Carbon Emission Factor
CER	Certified Emission Reduction
CH ₄	Methane
CNG	Compressed Natural Gas
CO ₂	Carbon Dioxide
CO ₂ e	Carbon Dioxide Equivalents
СОР	Conference of Parties
ET	Emission Trading University of Moratuwa, Sri Lanka.
GCV	Corbss Entorfact Valueheses & Dissertations
GDP	Gross Domestic Product
GHG	Green House Gas
GT	Giga Ton
GGC	Giga Gram Carbon
GWh	Giga Watt Hour
IPCC	Intergovernmental Panel on Climate Change
IPP	Independent Power Producer
JI	Joint Implementation
Kg	kilo gram
KP	Kyoto Protocol
KPS	Kelanitissa Power Station
LAD	Liquid Auto Diesel
LNG	Liquid Natural Gas

LPG	Liquid Petroleum Gas
LOI	Letter Of Intent
MCM	Million Cubic Meter
MHP	Mini Hydro Project
MMT	Million Metric Tons
MOE&NR	Ministry of Environmental & Natural Resources
MUSD	Million US Dollar
MW	Mega Watts
NCRE	National Conventional Renewable Energy
NCV	Net Calorific Value
NH3	Ammonia
NMVOC	Non Methane Volatile Organic Compound
NO ₂ NPV	Nitrous Oxide University of Moratuwa, Sri Lanka. Vet Present Value Theses & Dissertations
NREL	National Renewable Energy Laboratory
PDD	Project Design Document
R&D	Research and Development
SPPA	Standard Power Purchase Agreement
SPS	Sapugaskanda Power Station
ST	Steam Turbine
TJ	Terra Joule
TOD	Time of Day
UNFCCC	United Nations Frame Work Conventional on Climate Change
WTE	Waste To Energy

Table of Content

List of I	Figur	es	i
List of]	Fable	S	ii
List of A	Abbro	eviations	iii
Chapte	r 1		
Introdu	ction		1
1.1	Bac	skground	1
1.1	.1	Climate Change	1
1.1	.2	Greenhouse Gases (GHGs)	2
1.1	.3	Greenhouse Effect	2
1.1	.4	Global Warming	3
1.1	.5	Impacts due to Global Warming	4
1.1	.6	Impacts of Climate Change	6
1.1	.7	Global initiatives to Counter Climate Change Issues	6
1.1	.8	United Nations Framework Convention on Climate Change (UNFCC)	6
1.1	.9	Kyoto Protocol	8
1.1	.10	Kyoto Mechanisms	8
1.1	.11	Application of CDM	9
1.1	.12	International Carbon Market	10
1.1	.13	Sri Lanka Carbon Market	11
1.1	.14	Sri Lanka Carbon Fund Limited	13
1.1	.15	Objectives of the Sri Lanka Carbon Fund Limited	13
1.1	.16	Bundling Small CDM Projects	15
1.2	Ob	jective of the Study	15
1.3	Sco	pe of the Study	16
1.4	Sig	nificance of this Work	16
1.5	Lin	nitations of the Study	17

Chapter 2

Literatu	ire Review	18
2.1	Basic Data of Sri Lanka	18
2.2	Economic Development in Sri Lanka	19
2.3	Sri Lanka Power Sector	22
2.3	.1 Energy Source and Supply Situations	22
2.3	.2 Indigenous Primary Sources of Energy	22
2.4	Electricity Generation	29
2.4	.1 Power Generation in the National Grid	29

Chapter 3

Method	olog	y	35
3.1	Exi	sting CDM Methodologies for Renewable Energy Power Plants	35
3.2	Ana	llysis of CDM Potential in Renewable Power Generation Sector	
	of S	Sri Lanka	36
3.2	.1	National Potential	36
3.2	2.2	Applicable CDM methodologies	38
3.3	Ар	plicable Baseline Methodology for Renewable Energy Project	46
3.3	.1	Small Scale Basetine Methodology Applicable to Sti Lankans	46
3.3	.2	Basline Emission Calculationmrt. ac. 1k	47

Chapter 4

Analysis	of Policy Status on Power Sector and CDM	57
4.1	Policy Implications	57
4.1.1	Environmental Pollutions	57
4.1.2	2 National Air Quality Standards	58
4.1.3	Emission in Stationary Combustion	58
4.1.4	Local Context	59
4.1.5	Ambient Air Quality Standard for Thermal Generation	59
4.1.6	Natural Resources Management	60
4.1.7	Waste Management	60
4.1.8	National policies on GHG Emission Reduction	60
4.2	Policies on Thermal power Plants	61
4.2.1	Ensuring Energy Security	61
4.2.2	Promoting Energy Efficiency and Conservation	61
4.2.3	Promoting Indigenous Resources	62

4.2	.4	Adopting an Appropriate Pricing Policy	62
4.2	.5	Enhancing Energy Sector Management Capacity	63
4.2	.6	Enhancing the Quality of Energy Services	63
4.2	.7	Protection from Adverse Environmental Impacts of Energy Facilities63	
4.3	Polie	cies on Climate Change	64
4.3	.1	National Forestry Policy (NFP)	64
4.3	.2	National Policy for Wildlife Conservation (NPWC)	64
4.3	.3	Agriculture Policy (AP)	65
4.3	.4	Energy Policy of Sri Lanka (EPSL)	65
4.3	.5	National Transport Policy (NTP)	65
4.4	Polie	cies on Renewable Energy	65
4.5	Polie	cies on Waste to Energy	66
4.6	Polie	cies on GHG Registry	67
4.7	Imm	rediate Policies to Implement	67
4.8	Esta	blish Policy on GHG Reduction Targets	68

Chapter 5

GHG Re	GHG Reduction Projects and Economic Feasibility	
5.1	Introduction University of Moratuwa, Sri Lanka.	69
5.2	Mini/Microffydro Potentiatonic Theses & Dissertations	70
5.2.	1 Calculation of Emission lib.mrt.ac.lk	71
5.3	Solar Power Potential	72
5.3.	1 Calculation of Plant Emission	74
5.4	Wind Power Potential in Sri Lanka	75
5.4.	1 Calculation of Plant Emission	76
5.5	Biomass Energy Potential in Sri Lanka	77
5.5.	1 Solid Waste Potential in Sri Lanka	79
5.5.	2 Calculation of Plant Emission	81

Chapter 6

Conclus	sion and Agenda for Future Research	84
6.1	Discussion	84
6.2	Viable CDM Projects	85
6.3	Policy for energy and CDM in the context of enhancing the	
	CDM opportunities	86
6.4	An Agenda for Future Research	87

References

Appendix

Appendix I	- Operational Margin Emission Calculation 2009	91
Appendix II	- Operational Margin Emission Calculation 2010	92
Appendix III	- Operational Margin Emission Calculation 2011	93
Appendix IV	- Build Margin Emission Calculation 2011	94
Appendix V	- Combined Margin Calculation	95
Appendix VI	- Data and formula used for economic calculations for	
	the research	96

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk