STUDY ON THE EFFECT OF ORIENTATION ON PHTOTOVOLTAIC ARRAY OUTPUT IN SELECTED LOCATIONS OF SRI LANKA

•

Amila Sandaruwan

(08/8610)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

May 2013

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters under my supervision.

Signature of the supervisor:

Date

ABSTRACT

The orientation is a main factor which can influence the final output of the photovoltaic array systems. A computer-based analyzing method is used to study effects of different orientations and compare outputs to choose the possible configuration method which is best fitting to Sri Lanka.

The output was considered for a flat, a tilted, a south facing, a north facing, and both one and two axis tracking arrays. "RETScreen" software was used for analyzing of different orientations. Five geographical locations were selected to account for the entire country. Product data and metrological data were taken from the software database, and thirteen configurations were used for the calculations.

The simulation results show that, two axis tracking system and south facing with latitude angel photovoltaic arrays give the maximum energy outputs among the axis tracking configurations and fixed array configurations respectively.

The one axis tracking system and the south facing with latitude angle-array systems are the most suitable axis tracking configuration and fixed array configuration method respectively for Sri Lanka. Financial study is necessary to decide on the best method among these two.

Key words: Orientation, Configuration, Axis tracking, RETScreen

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

The successful completion of my final report was due to the support & encouragement by a number of people. I take this opportunity to extend my sincere thanks & appreciation to the following persons, who helped me to make my post graduate program successfully.

First of all, I would like to make use of this opportunity to thank Prof. R.A. Attalage, Deputy Vice Chancellor, University of Moratuwa, research supervisor, for share his valuable time and knowledge with me to complete the project successfully, also I extend thanks to the Dr A.G.T. Sugathapala, Course coordinator, MEng/PG Dip in Energy Technology, Department of Mechanical Engineering, University of Moratuwa.

My extend gratitude to the all the academic and non-academic staff for the guidance and support along the academic period. And also I would like to thanks my colleagues specially Mr. Senavirathna for support and encouragement during the

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Sandaruwan. H.F.A

TABLE OF CONTENTS

Declaration of the candidate and supervisor	i
Abstract	ii
Acknowledgement	iii
Table of Content	iv
List of Figures	vi
List of Tables	ix
List of Abbreviations	xi
List of Appendices	xii

1. Introduction	1
1.1 Background	1
1.2 Solar Potential in Sri Lanka	1
1.3 Current Status of PV system in Sri Lanka, Sri Lanka. Electronic Theses & Dissertations	2
1.4 Problem Statement WWW.lib.mrt.ac.lk	3
1.5 Objective and Scope of the Study	3
1.6 Outline of the Study	4

1.6	Outline	of the	Study
-----	---------	--------	-------

2. Literature survey 5 2.1. Definition of Sun Earth Angles 5 2.1.1 Latitude angle 5 2.1.2 Declination angle 5 2.1.3 Hour angle 6 2.2. Definition of Solar Angles 6 2.2.1 Zenith angle 6 2.2.2 Altitude angle 6 2.2.3 Solar azimuth angle 6

2.3. Estimation of Incidence Angle

	2.3.1	Example calculation of incidence angle	8
	2.3.2	Sun path diagram	8
	2.4. Solar	Arrays Configuration Method	10
	2.4.1	Sun path tracking methods	10
	2.4.2	Reflectors	13
	2.4.3	Concentrators	14
	2.4.4	Bracket mounting	15
	2.4.5	Pole mounting	15
	2.4.6	Ground mounting	16
	2.4.7	Structure mounting	18
3.	Simulation	n Program	22
	3.1. The S	ystem	22
	3.2. Photo	voltaic Project Model	22
	3.3. Site In	nformation and PV Array Orientation	23
	3.3.1	Metrological database	23
	3.3.2	Latitude of project location Electronic Theses & Dissertations	24
	3.3.3	V array tracking mode www.lib.mrt.ac.lk	25
	3.3.4	Sign convention Azimuth of PV array	26
	3.3.5	Monthly inputs	27
	3.3.6	Product data	27
	3.4. Mode	1 Output	28
4.	Results an	d discussions	30
	4.1 Simulation Results and Discussions of Fixed Array Configuration		30
	4.2 Simula	ation Results and Discussions of Sun Tracking Array Configuration	48
5.	Conclusio	ns and Future Work	52
	5.1. Simul	ation Result and Discussion of Fixed Array Configuration	52
	5.2. Simul	ation Result and Discussion of Sun Tracking Array Configuration	53
	5.3. Future	e work	53

Page Figure 1.1 Sri Lanka's first solar power plant at Hambanthota 2 Figure 2.1 The orbit of the earth around the sun 5 Figure 2.2 (a) Definition of solar angles with reference to the tangential plane. (b) Plan view show the solar azimuth 7 angle 9 Figure 2.3 Sun path in celestial sphere Figure 2.4 Sun path diagram of Kandy, Latitude 7.30 10 Main axis of sun tracking Figure 2.5 11 Figure 2.6 Photovoltaic cells used as solar orientation sensor 12 Figure 2.7 Reflectors on a fixed photovoltaic array 14 Figure 2.8 High concentration PV systems 15 Figure 2.9 Pole mount of photovoltaic array 16 niversity of Moratuwa, Figure 2,10 Concrete bases for ground mounting P 17 18 Figure 2.11 Forces on a photovoltaic array Figure 2.12 Module tilt measured form the horizontal on level and tilted surfaces 19 Figure 2.13 The CIS Tower in Manchester, England was clad in PV 20 panels Figure 3.1 Project model 23 Figure 3.2 Metrological data for Kandy 24 Figure 3.3 Type of sun tracking method in RETScreen software 25 Figure 3.4 Example of surface azimuth angle 26 Figure 4.1 Power output of fixed array system with different 31 orientations Figure 4.2 Energy output fixed array tilted at zero degree Vs. Fixed array due south, tilted at latitude (6 degree) 32 Figure 4.3 Energy output fixed array tilted at zero degree Vs. Fixed 33

array due south, tilted at 30 degree

Figure 4.4	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due south, tilted at 45 degree	34
Figure 4.5	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due south, tilted at 60 degree	35
Figure 4.6	Energy output fixed array tilted at zero degree, fixed array	
	due south, tilted at 30, 45, and 60 degree	36
Figure 4.7	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due north, tilted at 30 degree	37
Figure 4.8	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due north, tilted at 45 degree	38
Figure 4.9	Energy output Fixed array tilted at zero degree Vs. Fixed	
	array due north, tilted at 60 degree	39
Figure 4.10	Energy output fixed array tilted at 0 degree, fixed array	
	due north, tilted at 30, 45, and 60 degree	40
Figure 4.1	Energy output Fixed array tilted at zero degree ys. Fixed	
	array detromiculted area degree ssertations	41
Figure 4.12	Energyoutpin fixed affay due south, tilted at latitude (6	
	degree) Vs. Fixed array due south and due north, tilted at	
	latitude (6 degree)	42
Figure 4.13	Energy output fixed array south facing tilted at zero	
	degree Vs. Fixed array tilted at latitude 30 degree with	
	different azimuth angle	43
Figure 4.14	Energy output fixed array due south, tilted at 30 degree	
	Vs. Fixed array due south, tilted at 30 degree and azimuth	
	at 30 degree	44
Figure 4.15	Energy output fixed array due south, tilted at 30 degree	
	Vs. Fixed array due south, tilted at 30 degree and azimuth	
	at 45 degree	45
Figure 4.16	Energy output fixed array due south, tilted at 30 degree	
	Vs. Fixed array due south, tilted at 30 degree and azimuth	46

at 60 degree

Figure 4.17	Energy output fixed array due south, tilted at 30 degree	
	Vs. Fixed array due south, tilted at 30 degree and azimuth	
	at 90 degree	47
Figure 4.18	Energy output fixed array due south, tilted at latitude (6	
	degree) Vs. One axis tracking, tilted at zero degree	48
Figure 4.19	Energy output fixed array due south, tilted at latitude (6	
	degree) Vs. One axis tracking, tilted at latitude (6 degree)	49
Figure 4.20	Energy output fixed array due south, tilted at latitude (6	
	degree) Vs. 2 axis tracking	50
Figure 4.21	Energy output of one axis tracking at latitude Vs. 2 axis	
	tracking	51

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

		Page
Table 1.1	Current solar PV status in Sri Lanka	2
Table 2.1	Recommended pith angle for roofs in Sri Lanka	21
Table 2.2	Recommended pith angle for asbestos roofs in Sri Lanka	21
Table 3.1	Geographical data for selected cities	25
Table 3.2	Parameter needed for tracking mode	26
Table 3.3	Monthly average solar radiation on horizontal plane	27
Table 3.4	Photovoltaic data & Inverter data	28
Table 3.5	Example calculation of monthly energy output of array	
	system with due south tilted at 30 degree.	29
Table 4.1	Power output of fixed array system with different	
	configurations	30
Table 4.2	Energy output fixed array tilted at zero degree Vs. Fixed	
Table 4.3	array due south, tilted at latitude (6 degree) University of Moratuwa, Sri Lanka. Energy output fixed array tilted at zero degree Vs. Fixed Electronic Theses & Dissertations array due south, tilted at 30 degree	32 33
Table 4.4	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due south, tilted at 45 degree	34
Table 4.5	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due south, tilted at 60 degree	35
Table 4.6	Energy output fixed array tilted at zero degree, fixed array	
	due south, tilted at 30, 45, and 60 degree	36
Table 4.7	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due north, tilted at 30 degree	37
Table 4.8	Energy output fixed array tilted at zero degree Vs. Fixed	
	array due north, tilted at 45 degree	38
Table 4.9	Energy output Fixed array tilted at zero degree Vs. Fixed	
	array due north, tilted at 60 degree	39
Table 4.10	Energy output fixed array tilted at 0 degree, fixed array	40

due north, tilted at 30, 45, and 60 degree

Table 4.11	Energy output Fixed array tilted at zero degree Vs. Fixed	
	array due north, tilted at 6 degree	41
Table 4.12	Energy output fixed array due south, tilted at latitude (6	
	degree) Vs. Fixed array due south and due north, tilted at	
	latitude (6 degree)	42
Table 4.13	Energy output fixed array south facing tilted at zero	
	degree Vs. Fixed array tilted at latitude 30 degree with	
	different azimuth angle	43
Table 4.14	Energy output fixed array due south, tilted at 30 degree	
	Vs. Fixed array due south, tilted at 30 degree and azimuth	
	at 30 degree	44
Table 4.15	Energy output fixed array due south, tilted at 30 degree	
	Vs. Fixed array due south, tilted at 30 degree and azimuth	
	at 45 degree	45
Table 4.16	Energy output fixed array due south, Tilted at 30 degree	
	Vs. Eikedianay duelsouts the Das 30 degreenand azimuth	
	at 60 degree lib.mrt.ac.lk	46
Table 4.17	Energy output fixed array due south, tilted at 30 degree	
	Vs. Fixed array due south, tilted at 30 degree and azimuth	
	at 90 degree	47
Table 4.18	Energy output fixed array due south, tilted at latitude (6	
	degree) Vs. One axis tracking, tilted at zero degree	48
Table 4.19	Energy output fixed array due south, tilted at latitude (6	
	degree) Vs. One axis tracking, tilted at latitude (6 degree)	49
	Energy output fixed array due south, tilted at latitude (6	
Table 4.20	degree) Vs. 2 axis tracking	50
Table 4.21	Energy output of one axis tracking at latitude Vs. 2 axis	
	tracking	51

LIST OF ABBREVIATIONS

Abbreviations	Description
BAPV	Building Applied Photovoltaic
BIPV	Building Integrated PVs
CEB	Ceylon Electricity Board
DNI	Direct Normal Irradiance
ESD	Energy Services Delivery
kW	Kilo Watt
LECO	Lanka Electricity Company
LKR	Lanka Rupees
LTES	Long-Term Energy Strategy
MW	Mega Watt
MWh	Mega Watt Hour
NASA	National Aeronautics and Space Administration University of Moratuwa, Sri Lanka.
NREL	National Renewable Energy Laboratory
PV 🦉	wwPhotoyoltaicac.lk
RERED	Renewable Energy for Rural Economic
	Davalonment

Development

LIST OF APPENDICES

Appendix	Description	Page
Appendix	Solar map developed by NREL - USA	49

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk