MINIMIZATION OF TRANSFORMER FAILURES DUE TO LIGHTNING SURGES BY INTRODUCING AN ELECTROSTATIC SHIELD IN THE HT WINDING

H.S.C. Karunananda

(09/8662)

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2014

MINIMIZATION OF TRANSFORMER FAILURES DUE TO LIGHTNING SURGES BY INTRODUCING AN ELECTROSTATIC SHIELD IN THE HT WINDING

Hettigamage Sisil Chandra Karunananda

(09/8662)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Dissertations for the Degree of WWW.ID.mrt.ac.lk Master of Science

Supervised by: Eng. W.D.A.S. Wijayapala

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2014

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief. It does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)".

Signature of the candidate Date: (H.S.C. Karunananda) niversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor

Date:

(Eng. W.D.A.S. Wijayapala)

ABSTRACT

The MV Distribution Network of CEB is frequently exposed to lightning and it is the main suspected reason for transformer failures. Appreciable number of transformer failures occurs due to insulation failures notably at points near line ends. The short rise time of a surge prompted by a lightning impulse can cause deterioration in the insulation and ultimately lead to a dielectric breakdown. The voltage distribution along transformer HV winding becomes non-linear under surge conditions due to the capacitive currents. This research focuses on the possibility of neutralizing this effect with the aid of an electrostatic shield inserted in to the HV winding.

The comparison of the behavior of the winding under surge conditions with and without electrostatic shield requires appropriate transient models suitable for simulations. The necessary calculations required for this purpose were carried out and the proposed models are presented. The simulations were carried out with PSCAD software and the results are included in this report. The oscillatory nature due to the combined effect of capacitors and inductors is observed in the wavetail region and some of the peaks created have potentials exceeding the peak potential of the surge waveform as well. The simulations revealed the reduction of stresses when a shield was used.

University of Moratuwa, Sri Lanka. The proposed transformer model have a definite positive effect compared with the available model as the results obtained by simulations clearly reveal the reduction of the stresses on the transformer HV windings when a shield is used.

Key words : Electrostatic Shield, Surge, Winding, Capacitance, Transformer

ACKNOWLEDGEMENT

First, I pay my sincere gratitude to Eng. W.D.A.S. Wijayapala, Senior Lecturer, University of Moratuwa who encouraged and guided me to conduct this investigation and on preparation of final dissertation.

I extend my sincere gratitude to Prof. M. P. Dias, Head of the Department of Electrical Engineering and all the lecturers and visiting lecturers of the Department of Electrical Engineering for the support extended during the study period.

I would like to thank Mr. Rukshika Pathberiya, Factory Manager, Lanka Transformers (Pvt) Ltd and Mr. Prathaj Haputhanthri, Electrical Engineer, Lanka Transformers (Pvt) Ltd who gave me the continuous support for the study related to distribution transformers. I also thank to Eng. L.S. Hasthanayake who gave me extreme support and valuable information during the period of study.

I would like to take this opportunity to extend my sincere thanks to Eng. J.A.S. Perera, Deputy General Manager (Asset Management-Thermal Electrical) Branch, Eng. D. Witharage Deputy General Manager (Usar Electrical) M.A.V. Weerawardane, Chief Engineer (Distribution and Maintenance - Uva), Eng. A.R.M.M.S. Karunasena Chief Engineer (Samanalawewa Power Station), Eng. K.A.M. Priyanga, Mr. A.M.P. Bandara, Site Engineers of Distribution and Maintenance Branch – Uva, Eng. P.A.P. Dharmapriya, Eng. P.A.T.I. Jayanatha, Eng. H.A.S.C. Wijenayake, Eng. R.A.A. Sanjeewa, Eng. H.W.N. Sewwandika, Eng. M.G.S.G. Karunarathne, Eng. E.G.U. Subhashana, Eng. M.P.W. Pathiraja, Engineers of Samanalawewa Power Station and all the Office Staff of Distribution and Maintenance Branch – Uva of Ceylon Electricity Board who gave their co-operation to conduct my investigation work successfully.

It is a great pleasure to remember the kind co-operation extended by the colleagues in the post graduate program, friends, my mother, father, sister, H.C. Karunananda, brother-in law M.A.S.K. Marasinghe and specially my wife K.H.M.A.S. Kodithuwakku who helped me to continue the studies from start to end.

TABLE OF CONTENTS

De	claratio	on	i
Abstract		ii	
Acknowledgements		iii	
Table of contents		iv	
Lis	st of Fig	gures	vi
Lis	t of Ta	bles	viii
Lis	t of Ab	obreviations	ix
Lis	st of Ap	opendices	Х
1.	Introd	luction	01
	1.1	Background	01
	1.2	Importance of the study	01
	1.3	Identification of the problem and literature survey	03
	1.4	Motivation	05
	1.5	Objectives	06
2.	Calcu	lations for standard HV winding	07
	2.1	Inductance and resistance calculations, Sri Lanka.	07
	2.2	Equivalent relative permittivity calculation	08
	2.3	Layer to Layer capacitance	12
		2.3.1 Effective distance between two layers	12
		2.3.2 Effect of adjacent layers	13
	2.4	Turn to Turn capacitance	14
	2.5	Ground capacitance calculation	16
		2.5.1 Capacitance between outermost layer and tank	16
		2.5.2 Capacitance between core and end turns	18
	2.6	Capacitance between HV and LV windings	19
	2.7	Capacitance between LV winding and core	20
3.	Calcu	lations for shielded HV winding	21
	3.1	Shield material	22
		3.1.1 Eddy current loss of the shield	22
	3.2	Insulation of the shield	24
	3.3	Capacitance calculation	24

		3.3.1 16^{th} layer to shield capacitance	24
		3.3.2 17 th layer to shield capacitance	26
		3.3.3 Shield to tank capacitance	26
		3.3.4 17 th Layer to tank capacitance	26
4.	Simula	ation and results	28
	4.1	The surge waveform	28
	4.2	Simulation model for the winding having all layers completely filled	29
	4.3	Simulation model for the standard winding (partially filled outermost layer)	33
	4.4	Surge voltage distribution along transformer HV winding	37
	4.5	The chopped waveform	38
5.	Conclu	usions and recommendations	41
	5.1	Conclusions	41
	5.2	Recommendations	42
	5.3	Recommended future work	42
		5.3.1 Shielded tapered layer winding	42
		3.2 Ushieldroutside folkernasulayer Sri Lanka.	42
Ref	ference	Electronic Theses & Dissertations	43
Ap out	pendix [®] ermost	A. Simulation circuit for a HV winding having a fully filled layer without shield	45
Ap out	pendix ermost	B: Simulation circuit for a HV winding having a fully filled layer with shield	46
Ap out	pendix ermost	C: Simulation circuit for a HV winding having a partially filled layer without shield	47

Appendix D: Simulation circuit for a HV winding having a partially filled 48 outermost layer with shield

LIST OF FIGURES

Figure 1.1	Monthly average thunder days experienced in meteorological stations located inside CEB Region 3	02
Figure 1.2	Number of transformers failed in each month of 2010-2012, CEB Region 3	02
Figure 1.3	The capacitances and currents along a single layer transformer winding with earthed neutral	04
Figure 1.4	Voltage distribution along transformer HV winding	05
Figure 2.1	Equivalent circuit of short circuit test	07
Figure 2.2	Cross section of HV conductor	09
Figure 2.3	Arrangement of conductors and insulation of HV winding layers	10
Figure 2.4	Potential distribution along the turns of two adjacent layers	13
Figure 2.5	Top view of the tank and windings	17
Figure 2.6	Part of the HV winding surface which is located at the nearest distance from the core	18
Figure 3.1	Arrangement of transformer core, windings and shield	21
Figure 3.2	Eddy current circulation inside the shield	23
Figure 4.1	Surgel generatory iccli Moratuwa, Sri Lanka.	28
Figure 4.2	surge waveromicustancesimulations	29
Figure 4.3	Resistance, libductance and capacitance network of layer winding without electrostatic shield and for completely filled outermost layer	30
Figure 4.4	The output waveform at Point B shown in Figure 4.3	31
Figure 4.5	Resistance, inductance and capacitance network of layer winding with electrostatic shield and completely filled outermost layer	31
Figure 4.6	Potential difference between A and B without shield, completely filled outermost layer	32
Figure 4.7	Potential difference between A and B with shield, completely filled outermost layer.	32
Figure 4.8	Resistance, inductance and capacitance network of layer winding without electrostatic shield and for partially filled outermost layer	33
Figure 4.9	The output waveform at the junction of 16^{th} and 17^{th} layers	34
Figure 4.10	Resistance, inductance and capacitance network of layer winding with electrostatic shield and partially filled outermost layer	35

Figure 4.11	Potential difference between A and B without shield, partially filled outermost layer	36
Figure 4.12	Potential difference between A and B with shield, partially filled outermost layer	36
Figure 4.13	Surge voltage distribution against percentage winding based on simulation results	37
Figure 4.14	Chopped wave generator circuit	38
Figure 4.15	Waveform chopped at 1 µs used for simulations	39
Figure 4.16	Potential difference between A and B, without shield, partially filled outermost layer, when chopped waveform is applied	40
Figure 4.17	Potential difference between A and B, with shield, partially filled outermost layer, when chopped waveform is applied	40
Figure 5.1	Shielded tapered layer winding	42

LIST OF TABLES

Table 2.1	Relative permittivity of common materials used in transformers	09
Table 2.2	Relative permittivity and insulation thicknesses of layer insulation	11
Table 2.3	Static and effective layer to layer capacitances	14
Table 2.4	Turn to turn capacitance of each layer	16
Table 3.1	Capacitances when the shield is present between 16 th and 17 th layers	25

LIST OF ABBREVIATIONS

- CEB Ceylon Electricity Board
- LTL Lanka Transformers Pvt Ltd
- HV High Voltage
- MV Medium Voltage
- LV Low Voltage

LIST OF APPENDICES

Appendix A	Simulation circuit for a HV winding having a fully filled outermost layer without shield	45
Appendix B	Simulation circuit for a HV winding having a fully filled outermost layer with shield	46
Appendix C	Simulation circuit for a HV winding having a partially filled outermost layer without shield	47
Appendix D	Simulation circuit for a HV winding having a partially filled outermost layer with shield	48

