LB/Don/84/2014 2004/04 DEN 07/03 (2)

JERK CONTROLLED JOINT SPACE TRAJECTORY **PLANNING METHOD USING 5-3-5 SPLINE** TRAJECTORY FOR INDUSTRIAL ROBOT **MANIPULATORS**

UNIVERSITY OF MORATUWA, STULANICA

P. G. C. D. Porawagama

(108412E)

Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Master of Science in Electronics and . Automation.

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

December 2013 University of Moratuwa 107116

107116

621.38 + 681.5 (643

107115 + Ch- Ron)

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 18/02/2014

UOM Verified Signature

P.G.C.D. Porawagama

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the Supervisor:

Date: 28.03. 2014

i

UOM Verified Signature

Prdf. S. Rohan Munasinghe, Department of Electronic and Telecommunication Engineering, Faculty of Engineering, University of Moratuwa

ABSTRACT

In robot manipulator trajectory planning, jerk controlled trajectories are desirable for their amenability in path tracking, vibration suppression and reducing of manipulator wear. Bounded and continuous jerk trajectories narrows the jerk profile within known limits, eliminating discontinuities and spontaneous rising of jerk, which are otherwise undesired. In this research, a new method for generating a bounded and continuous jerk trajectory in joint space is implemented and tested. Spline functions are a common method for interpolating a set of via points for generating robot manipulator trajectories. The method introduced in this research is a novel and robust spline interpolation algorithm, interpolating a 5thorder, 3rdorder and 5thorder piecewise polynomial (5-3-5 spline), which can generate point-to-point trajectories as well as trajectories with via points. Generated trajectory has continuously differentiable profiles for position, velocity and acceleration and has a start and end zero-bounded, continuous jerk profile. The algorithm allows the user to independently define the position, velocity, acceleration and jerk values at both start and end points. At via points, the continuity up to 5th time derivative is maintained, and the user can define via point position and velocity. Also it allows the user to define interpolation time intervals between every polynomial segment. Along with the bounded and continuous jerk profile, these adjustable parameters in the 5-3-5 spline algorithm results an effective and robust trajectory generating method. Trajectories generated using the 5-3-5 spline algorithm was simulated and tested successfully on DENSO VP6 robot arm. The experiments demonstrated and proved the robustness and applicability of the new trajectory generating method in both point-to-point and via point motions

Key words: Joint space trajectory planning, controlled jerk, continuous acceleration, piecewise polynomials, 5-3-5 spline trajectory, point-to-point motion, motion with via points

ACKNOWLEDGEMENT

I make this opportunity to express my sincere gratitude to Prof. Rohan Munasinghe, for supervising this project with his winning guidance and encouragement, and cooperation throughout the entire work, and also for offering me the opportunity of experimenting with the DENSO robotic manipulator.

I am thankful to the academic staff of the Department of Electronic and Telecommunication Engineering of University of Moratuwa for their dedication and support provided for this MSc research.

Furthermore, I am thankful to everyone who supported me in many ways contributing to the success of this project

Last but not least, I am thankful to my family for encouraging me and for standing by me throughout this project

TABLE OF CONTENTS

De	clarat	ion		i
Ał	stract			ii
Ac	know	ledgem	ent	111
Та	hle of	Conten	fe	iv
T id	t of F	igures		vi
Fie	et of T	ables		x
Lie	et of A	nnendi	CAS	xi
1.14	5017	ppendix		
1	Intro	duction		1
2	Current State of Industrial Robot Manipulators			3
	2.1	Evolut	tion of Industrial Robots	3
	2.2	Defini	tions	3
	2.3	Prolife	eration of Industrial Robots	5
3	Mechanics and Control of Robot Manipulators		8	
	3.1	Spatia	l Descriptions and Kinematics	8
	3.2	Dynan	nics and Control of Robot Manipulators	11
4	Trajo	ectory P	Planning Methods of Industrial Robot Manipulators	13
	4.1	Trajec	tory Planning - From Task to Trajectory	13
	4.2	Cartes	sian Space Trajectory Planning	15
	4.3	Joint S	Space Trajectory Planning	17
	4.4	Comp	ositions of Spline Trajectories	26
		4.4.1	Linear trajectory with polynomial blends	26
		4.4.2	Trapezoidal velocity trajectory	28
		4.4.3	Piecewise polynomial trajectory	30
	4.5	Multip	point Trajectories	32
		4.5.1	Interpolation by polynomial functions	33
		4.5.2	Cubic splines	34
		4.5.3	Parametric continuity of a trajectory	35
	4.6	Jerk C	Controlled Trajectory Planning	35

		4.6.1	Importance of jerk controlled trajectories	35
		4.6.2	High jerk and oscillatory behavior of polynomials	38
	4.7	Proble	m Identification	41
		4.7.1	Deficiency of a jerk controlled trajectory planning	
			method	41
		4.7.2	Previously developed methods	41
5	Prop	osed 5-2	3-5 Spline Trajectory Planning Method	43
	5.1	The 5-	-3-5 Spline Function	43
		5.1.1	Construction of 5-3-5 spline function	44
		5.1.2	Interpolation algorithm of 5-3-5 spline function	45
		5.1.3	Properties of the 5-3-5 spline trajectory	48
	5.2	5-3-5	Spline Trajectory for Point-to-Point Motion	51
		5.2.1	Simulation of point-to-point motion	51
		5.2.2	Comparison with commonly used 4-3-4 trajectory	58
	5.3	5-3-5	Spline Trajectory for Motion with Via-Points	60
		5.3.1	Interpolation algorithm for via points	60
		5.3.2	Simulation of motions with via points	61
	5.4	Exper	imental Results on Denso VP6 Robot Arm	64
		5.4.1	Single joint motions	65
		5.4.2	5-axes coordinated motions	69
6	Disc	ussion a	and Conclution	73
7	Refe	rences		76
Ar	ppendi	x A: <i>I</i> S	50 8373:1994 Classification of Industrial Robots	79

LIST OF FIGURES

Figure 2.1.	Left: The DENSO VP6 robot (Robotics Lab,	
	University of Moratuwa). Right: The KUKA KR6	
	R900 robot (photo curtsey of KUKA Robotics)	
	(images are not in same scale)	4
Figure 2.2.	KUKA Systems Spot Welding (photo curtsey of	
	KUKA Robotics)	5
Figure 2.3.	Estimated worldwide annual shipments of industrial	
	robots	6
Figure 2.4.	Estimated yearly shipments of multipurpose industrial	
	robots in selected countries.	6
Figure 2.5.	Estimated worldwide annual supply of industrial	
	robots at year-end by industries 2010 – 2012	7
Figure 2.6.	Estimated operational stock of industrial robots 2011-	
	2012 and forecast for 2013-2016	7
Figure 3.1.	Coordinate frames are rigidly attached to the bodies	
	and described with reference to a global coordinate	
	system	9
Figure 3.2.	Kinematic equations describe the tool frame relative to	
	the base frame as a function of joint variables θ and	
	link lengths l	10
Figure 3.3.	The relationship of the joint velocities and the end	
	effector velocities is given by the Jacobian Matrix	11
Figure 3.4.	Basic structure of a SISO feedback control system for	
	a robot manipulator	12
Figure 4.1.	The propagation steps of the trajectory planning	14
Figure 4.2.	Task planning to trajectory planning, from Cartesian	
	space to joint space trajectories	15

vi

Figure 4.3.	Parametric descriptions of cartecian space trajectory	
	planning	16
Figure 4.4.	Position, velocity, acceleration and jerk of cubic	
	polynomial. $q_0 = 0, v_0 = 0, q_1 = 60, v_1 = 0$	20
Figure 4.5.	Position, velocity, acceleration and jerk of quintic	
	polynomial. $q_0 = 0$, $v_0 = 0$, $a_0 = 0$, $q_1 = 60$, $v_1 =$	
	$0, a_1 = 0$	22
Figure 4.6.	Position, velocity, acceleration and jerk of order	
	seventh polynomial. $q_0 = 0, v_0 = 0, a_0 = 0, j_0 = 0$	
	and $q_1 = 60, v_1 = 0, a_1 = 0, j_1 = 0$	25
Figure 4.7.	Composition of a linear trajectory with polynomial	
	blends	27
Figure 4.8.	Linear trajectory with fifth order polynomials blends	28
Figure 4.9.	Composition of a trapezoidal trajectory	29
Figure 4.10.	Position velocity and acceleration profiles of a	
	trapezoidal trajectory	30
Figure 4.11.	Composition of a 4-3-4 trajectory	31
Figure 4.12.	Position, velocity, acceleration and jerk profiles of a 4-	
	3-4 trajectory	32
Figure 4.13.	Concatenated spline trajectory for $n + 1$ points	34
Figure 4.14.	Two spline segments (parametric curves) meeting at a	
	interpolating point (knot or common point)	35
Figure 4.15.	Point-to-point motion profiles for $n = 2, 3, 4$, and 10.	
	The experimental curve is best fitted by minimum jerk	
	n = 3	37
Figure 4.16.	Jerk profiles for a motion of 0° to 60° in 1s; top: cubic,	
	middle: quintic, bottom: seventh order polynomial	
	trajectories	39
Figure 4.17.	Oscillatory behavior of higher order polynomial	
	interpolation (Runge's phenomenon)	40

vii

Figure 5.1.	Composition of novel 5-3-5 spline trajectory	43
Figure 5.2.	The 5-3-5 spline trajectory planner	43
Figure 5.3.	A reference Trajectory generated by 5-3-5 spline, for a	
	motion from 0° to 30° within 3s	45
Figure 5.4.	Composition of novel 5-3-5 spline trajectory	46
Figure 5.5.	'Zero starting' and 'zero ending' for velocity,	
	acceleration and jerk profiles for smoother transitions.	
	(circled in dashed lines)	50
Figure 5.6.	Terminology of 5-3-5 Trajectory	51
Figure 5.7.	5-3-5 spline trajectory, 0° to 60° in 3s, equidistant	
	interpolation timing	52
Figure 5.8.	5-3-5 spline trajectory, 0° to 60° within 3s, increased	
	5 th order polynomials timing for smoother starting and	
	ending	53
Figure 5.9.	5-3-5 spline trajectory, 0° to 60° within 3s, decreased	
	5 th order polynomials timing for quicker starting and	
	ending	54
Figure 5.10.	5-3-5 spline trajectory, 0° to 60° within 3s, equidistant	
	interpolation timing, non-zero end velocity.	55
Figure 5.11.	5-3-5 spline trajectory, 0° to 60° in 3s, increased first	
	5 th order polynomial timing for smoother starting,	
	non-zero end velocity	56
Figure 5.12.	Comparison of 5-3-5 spline trajectory with a single 5 th	
	order polynomial trajectory	57
Figure 5.13.	434 trajectory compared with 5-3-5 spline trajectory.	
	0° to 60° in 3s	58
Figure 5.14.	Composition of sample 5-3-5 spline trajectory	60
Figure 5.15.	5-3-5 spline trajectory, $0^{\circ} \rightarrow 60^{\circ} \rightarrow 45^{\circ}$ within 6s with	
	equidistant interpolation timing	62

viii

Figure 5.16.	5-3-5 spline trajectory, $0^{\circ} \rightarrow 60^{\circ} \rightarrow 45^{\circ}$ in 6s, increased	
	5 th order polynomials timing for smoother starting,	
	ending	63
Figure 5.17.	DENSO VP6 Robot manipulator setup	64
Figure 5.18.	Comparison of actual and planned trajectory. 5-3-5	
	spline trajectory, 0° to 60° in 3s, with equidistant	
	interpolation timing	65
Figure 5.19.	Comparison of actual and planned trajectory. 5-3-5	
	spline, 0° to 60° within 3s, increased 5 th order	
	polynomial timing for smoother starting and ending	66
Figure 5.20.	Comparison of actual and planned trajectory. 5-3-5	
	spline trajectory, $0^{\circ} \rightarrow 60^{\circ} \rightarrow 45^{\circ}$ within 6s with	
	equidistant interpolation timing.	67
Figure 5.21.	Comparison of actual and planned trajectory. 5-3-5	
	spline trajectory, $0^{\circ} \rightarrow 60^{\circ} \rightarrow 45^{\circ}$ within 6s, increased	
	5 th order polynomial timing for smoother starting and	
	ending.	68
Figure 5.22.	Experiment 5.5; Comparison of actual and planned	
	trajectories	70
Figure 5.23.	Robot motion captured at 2fps, (Experiment 5.5)	70
Figure 5.24.	Experiment 5.6; Comparison of actual and planned	
	trajectories	72
Figure 5.25.	Robot motion captured at 2fps, (Experiment 5.6)	72
Figure 6.1.	Features of 5-3-5 spline trajectory planning method	73

ix

LIST OF TABLES

Table 5.1.	Joint description of Simulation 5.1	52
Table 5.2.	Joint description of Simulation 5.2	53
Table 5.3.	Joint description of Simulation 5.3	54
Table 5.4.	Joint description of Simulation 5.4	55
Table 5.5.	Joint description of Simulation 5.5	56
Table 5.6.	Joint description of Simulation 5.6	57
Table 5.7.	Joint description of Simulation 5.7	58
Table 5.8.	Joint description of Simulation 5.8	62
Table 5.9.	Joint description of Simulation 5.9	63
Table 5.10.	Joint description of Experiment 5.1	65
Table 5.11.	Joint description of Experiment 5.2	66
Table 5.12.	Joint description of Experiment 5.3	67
Table 5.13.	Joint description of Experiment 5.4	68
Table 5.14.	Joint description of Experiment 5.5	69
Table 5.15.	Joint description of Experiment 5.6	71

LIST OF APPENDICES

Appendix-A. Classification of Industrial Robots according to ISO 8373:1994, Manipulating industrial robots – Vocabulary [5]

* AN LULE OF ALL OF ALL

79