AN EFFECTIVE METHOD OF SEGREGATION OF LOSSES IN DISTRIBUTION SYSTEMS

Mestiyage Don Paduma Ravindra Gunathilaka

(109215 K)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2014

AN EFFECTIVE METHOD OF SEGREGATION OF LOSSES IN DISTRIBUTION SYSTEMS

Mestiyage Don Paduma Ravindra Gunathilaka

(109215K)

Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2014

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such

as articles or books).

Signature: Date:

M. D. P. R. Gunathilaka

The above candidate has carried out research for the Masters Dissertation under my

supervision.

Signature of the supervisor: Date:

Dr. W. D. A. S. Rodrigo

Signature of the supervisor: Date:

Dr. Tilak Siyambalapitiya

i

ACKNOWLEDGEMENT

I wish to express my sincere gratitude and appreciation to my project supervisor, Dr. W. D. A. S. Rodrigo and Dr. Tilak Siyambalapitiya for their guidance and immense support given.

I thank the staff of Energy Management Branch and Planning Division, Western Province North, Ceylon Electricity Board for the support given in providing necessary information for the project. I would like to convey my gratitude to Dr. Narendra De Silva, who provided valuable guidance and suggestions to make this a success.

Last but not least, I would express my heartiest gratitude and love to my wife Thakshila, who took a lot of burden and patience helping me to complete this work in difficult circumstances.

Abstract

Power system losses have turned out to be a major challenge for electricity utilities worldwide. Bulk of the losses occurs in electricity distribution. In 2012, the overall energy loss and the distribution system loss in the Sri Lanka power system were about 14% and 10% of the gross generation respectively. Before formulating strategies for loss reduction, it is essential to determine the losses at each level. Once losses are segregated, utility can clearly identify their priorities and launch effective programmes to arrest losses.

The objective of this research study is to segregate losses in a selected area of the distribution system of Ceylon Electricity Board, and evaluate an advanced metering solution in view of reduction of losses. Western Province North of which the distribution network spreads in the entire Gampaha district, Sri Lanka, was selected for the study. Accordingly, the losses were segregated into medium voltage network loss, losses in distribution transformers and low voltage network loss. The total energy loss in the distribution system was 7.1% of the energy input to the system in 2012. The loss in the low voltage network was 5.1 % of the total energy input. However, it was 15.7% of the energy input to the low voltage network itself.

A study was also carried out to determine losses in the low voltage networks of two distribution substations. The technical losses were estimated and thereby the non-technical losses were derived. The total losses were 13.9% and 8.8% of the respective energy input to the low voltage networks of the two substations. The technical losses were 5.1% and 4.8% while non-technical losses were 8.9% and 3.9% respectively. The viability of an advanced metering solution was assessed based on the same low voltage networks. Deployment of advanced metering systems solely with the purpose of arresting non-technical losses is not viable. However, viability of full scale deployment of advanced metering shall be studied at broader level considering any future requirements for time of use metering, avenues for demand side management, opportunity to reduce system peak through demand response principles, possible levels of reduction of losses and other benefits to utility and country as a whole.

Key words – Technical Loss, Non-technical loss, Load factor, Load loss factor, Advanced metering

TABLE OF CONTENT

Declaration of the candidate and supervisors	i
Acknowledgement	ii
Abstract	iii
Table of Content.	iv
List of Figures.	vii
List of Tables.	ix
List of Abbreviations.	xi
List of Appendices.	xii
1. INTRODUCTION	1
1.1 Background	1
1.2 Distribution Losses	4
1.3 Electricity Consumer categories in distribution system	5
1.4 Existing metering system of low voltage consumers	6
1.5 Scope of study	8
1.5.1 Objectives	8
1.5.2 Methodology	8
2. ELECTRICITY DISTRIBUTION SYSTEM IN SRI LANAKA	10
2.1 Electricity distribution systems	10
2.2 Electricity distribution in Sri Lanka	11
2.3 Technical losses in distribution system	15
2.4 Non-technical losses (NTL)	17
2.4.1 Overview and Sri I ankan scenario	17

2.4.2 Electricity theft	18
2.4.3 Other forms of Non-Technical Losses	21
2.5 Economic impact of losses	21
2.6 Reduction of distribution losses	22
2.7 Case study of Western Province North (WPN)	24
2.7.1 Overview of distribution system in WPN	24
2.7.2 Electricity distribution system in WPN, CEB	25
2.7.3 Distribution losses in WPN	26
3. MODELLING AND ESTIMATION OF DISTRIBUTION LOSSES	28
3.1 Introduction	28
3.2 Medium voltage network	28
3.3 Power distribution transformers	29
3.3.1 Losses in transformers	29
3.3.2 Load loss factor and estimation of energy loss	30
3.3.3 Calculating energy loss of a large number of transformers	31
3.4 Low voltage distribution network	32
3.4.1 Overview of low voltage network	32
3.4.2 Uniformly distributed loads	34
4. ESTIMATION OF DISTRIBUTION LOSSES IN WPN	39
4.1 Introduction	39
4.2 Medium voltage network	40
4.3 Transformers of low voltage bulk consumers	41
4.4 Distribution transformers (Supplying low voltage consumers and street	
4.5 Overall energy flow in the distribution network in WPN	45
5. SAMPLE STUDY – LOW VOLTAGE NETWORK LOSSES	49

5.1 Introduction	49
5.2 Selection of substations and low voltage network for sample study	50
5.3 Methodology	51
5.4 Calculation of distribution system losses	53
5.4.1 Calculation of distribution losses (Technical + Non-technical)	53
5.4.2 Calculation of technical losses	54
5.4.3 Derivation of Non-technical losses	58
5.5 Meter testing results	60
6. ADVANCED METERING TECHNOLOGY FOR LV CONSUMERS	61
6.1 Advanced metering technology – overview	61
6.2 Comparison with existing metering and billing system of CEB	63
6.3 Cost benefit analysis of AMI	63
7. CONCLUSIONS, REMARKS AND DISCUSSION	69
Reference list	72
Appendix A: Calculation of energy losses of distribution transformers and low	
voltage heavy consumer transformers	75

List of Figures

		Page
Figure 1.1	Structure of Electricity Industry in Sri Lanka	2
Figure 2.1	Energy flow in distribution system	12
Figure 2.2	Geographical boundaries & operational areas of distribution licensees	13
Figure 2.3	Single and three phase electro-mechanical meters used by CEB	19
Figure 2.4	Parts of a single phase meter where tampering often occurs	20
Figure 2.5	Area of distribution network of WPN	24
Figure 3.1	Single phase equivalent circuit	33
Figure 3.2	Phasor diagram of single phase equivalent circuit	34
Figure 3.3	Uniformly distributed loads	35
Figure 3.4	Load lumped at midpoint	35
Figure 3.5	One-half load lumped at end point	36
Figure 3.6	Power loss model of uniformly distributed load	38
Figure 3.7	Exact lumped load model	38
Figure 4.1	Major components in distribution system in WPN with energy flows	39
Figure 5.1	Metering installations at H 048 substation	52
Figure 5.2	Metering installations at G 011 substation	52
Figure 5.3	Layout of feeders in Gampaha G 011 substation	55

Figure 5.4	Percentage peak power losses of the Gampaha	
	G 011 substation	55
Figure 5.5	Layout of feeders in Veyangoda H 048 substation	56
Figure 5.6	Percentage peak power losses the Veyangoda	
	H 048 substation	56
Figure 6.1	Architecture of an AMI solution	62
Figure 6.2	Existing metering and billing system of CEB	63

List of Tables

		Page
Table 1.1	System Losses in Sri Lanka	3
Table 1.2	Performance of distribution licensees	5
Table 2.1	Tariff wise consumer mix among DL areas	13
Table 2.2	Tariff wise energy sales (GWh) mix among DLs	14
Table 2.3	Energy loss in distribution system	14
Table 2.4	Statistical data on WPN distribution system	24
Table 2.5	Distribution network data in WPN	25
Table 2.6	Consumer details and energy sales in WPN	25
Table 2.7	Results of meter testing in WPN	27
Table 3.1	Calculation of losses in transformers	32
Table 4.1	Details of medium voltage network in WPN	40
Table 4.2	Average peak loading of bulk consumer	
	transformers	41
Table 4.3	No load and full load losses of distribution transformers	41
Table 4.4	Calculation of LF, LLF and CF of transformers	42
Table 4.5	Calculation of monthly energy loss of transformers	42
Table 4.6	Energy loss of the LV bulk consumer transformers	43
Table 4.7	Average loading of distribution transformers	44
Table 4.8	Calculation of average loading of transformers	44

Table 4.9	Total power loss of the distribution transformers	45
Table 4.10	Summary of annual energy flow in the distribution system, WPN	46
Table 5.1	Details of electricity sales and LV line lengths	49
Table 5.2	Substations selected for the sample study	50
Table 5.3	Calculation of total energy loss of the LV feeders	53
Table 5.4	Peak loading of the feeders	54
Table 5.5	Calculation of load factors of the feeders	57
Table 5.6	Energy loss (Technical) of the feeders	58
Table 5.7	Non-technical losses of the feeders	59
Table 5.8	Results of meter testing	60

List of Abbreviations

Abbreviation Description

AMI Advanced Metering Infrastructure

CEB Ceylon Electricity Board

CFL Compact Fluorescent Lamps

DER Distributed Energy Resources

DL Distribution Licensee

GDP Gross Domestic Production

LECO Lanka Electricity Company Pvt. Ltd

LF Load Factor

LLF Load Loss Factor

LV Low Voltage

MD Maximum Demand

MDMS Meter Data Management System

MV Medium Voltage Voltage MV

NTL Non-Technical loss

PLC Power Line Communication

PUCSL Public Utilities Commission Sri Lanka

RF Radio Frequency

TL Transmission Licensee

TOU Time Of Use

UF Utilization Factor

UTL Utilization Time of Losses

WPN Western Province North

List of Appendices

Appendix	Description
Appendix - A	Calculation of energy losses of distribution substations
	and low voltage heavy consumer transformers

