INVESTIGATION OF TWO-DIMENSIONAL INTERACTION BETWEEN PILES DUE TO PILE DRIVING ACTION

G.G.N.N. Amarakoon

(09/8801)

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2013

INVESTIGATION OF TWO-DIMENSIONAL INTERACTION BETWEEN PILES DUE TO PILE DRIVING ACTION

Gamaralale Gedara Nirmali Nisansala Amarakoon

Thesis submitted in partial fulfillment of the requirement for the degree Master of Engineering in Foundation Engineering and Earth Retaining Systems

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2013

ABSTRACT

Pre-Cast piles, which are mostly friction piles, are commonly used as deep foundations for bridges, multi storied buildings and as tower foundations. During the design stage, Engineers are not fully informed of the effect on adjacent pile due to pile driving and minimum safe distance between two piles for driving. The research is to investigate the effect on adjacent piles due to pile driving and to suggest suitable minimum spacing between piles.

Pile driving displaces adjacent piles. It is simulated numerically using Finite Element Analysis software package PLAXIS. This project investigates numerically the influence of spacing on the displacement of afore driven piles due to driving a pile in the case of driven piles, by using the Finite Element Method. Horizontal displacement caused by the above activities in the pile is used as the prime indicator of disturbance. Pile material and soils are idealized as linearly elastic materials and different soils are represented by varying the Young's modulus and Poisson's ratio. The pile is assumed as infinitely long walls and the smear zone is modeled around the pile using material of lower stiffness considering the compression of soil around. Pile driving is modeled by progressive expansion of a cavity and a parametric study is carried out with different soils and with different spacing.

University of Moratuwa, Sri Lank

Investigation is limited only to the variation of lateral displacements at the head of the adjacent pile caused by the actions mentioned above.

Finally, suggestions are made to validate the model, when relevant field data can be accessed.

ACKNOWLEDGEMENT

I take this opportunity to express my gratitude to my supervisor Prof. U. G. A. Puswewala for his guidance and valuable comments.

I extend my thanks to Dr. Nalin De Silva for facilitating the use of the PLAXIS software, and to the staff of computer laboratory who helped me with the installation.

I humbly acknowledge the assistance given by the staff of the soil mechanics lab.

Finally, I wish to thank my colleagues for their comments and support.

G.G.N.N.Amarakoon 20 - 09– 2013

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE OF CONTENTS

ABSTRACT				
ACKNOWLEDGEMENT				
TABLE OF CONTENT	iii			
LIST OF FIGURES	V			
LIST OF TABLES	V			
LIST OF APPENDICES				
LIST OF ABBREVIATIONS	vi			
CHAPTER 01	01			
1. Introduction				
1.1 Background	01			
1.2 Finite element method (FEM) in				
Geotechnical engineering	02			
1.3 Objectives	04			
1.4 Project Structure University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	05			
CHAPTER 02	06			
2. Literature Review	06			
CHAPTER 03	07			
3.1 Methodology				
3.2 Finite Element Program	08			
3.2.1 History	08			
3.2.2 Features of PLAXIS	08			
CHAPTER 04	09			
4. Analysis	09			
4.1 Verification of the Finite Element Program				
4.2 Idealization	11			
4.3 Presentation of Model for driven piles				

4.3.1 Introduction		
4.3.2 Finite Element Modelling	12	
4.3.3 Methodology	13	
4.4 Results	19	
4.4.1 Results for Very Soft Clay	19	
4.4.2 Results for Soft Clay	19	
4.4.3 Results for Medium Clay	20	
4.4.4 Results for Hard Clay	20	
4.4.5 Results for Sandy Clay	21	
CHAPTER 05	23	
5. Discussion	23	
CHAPTER 06		
6.1 Conclusions		
6.2 Suggestions for future work		
University of Moratuwa, Sri Lanka.		
References www.lib.mrt.ac.lk	25	
Appendix I: Results (Deformation Mesh)		
Appendix II: Horizontal and Total Displacements		

LIST OF FIGURES

Fig 4.1: Model for validation problem	
Fig 4.2: Results from PLAXIS for verification problem	
Fig 4.3: Model for pile driving	12
Fig 4.4: Model to simulate pile driving	16-18
Fig 4.5: Horizontal Displacement vs Spacing for Very Soft Clay	19
Fig 4.6: Horizontal Displacement vs Spacing for Soft Clay	19
Fig 4.7: Horizontal Displacement vs Spacing for Medium Clay	20
Fig 4.8: Horizontal Displacement vs Spacing for Hard Clay	20
Fig 4.9: Horizontal Displacement vs Spacing for Sandy Clay	21
Fig 4.10: Horizontal Displacement vs Spacing for different clayey soils	22
Fig 4.11: Total Displacement vs Spacing for different clayey soils	22

LIST OF TABLES Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table 4.1: Very Soft Clay	14
Table 4.2: Soft Clay	14
Table 4.3: Medium Clay	14
Table 4.4: Hard Clay	15
Table 4.5: Sandy Clay	15

LIST OF APPENDICES

Annexure I: Results (Deformation Mesh)	26
Annexure II: Horizontal and Total Displacements	51

LIST OF ABBREVIATIONS

Abbreviation		Description
Constitutive model		Relationship between forces and corresponding
		displacement
E		Young's Modulus
d		Diameter of the pile
F		Force
FE/FEM		Finite Element Method
Head		Top part of a pile
Pile		Slender member used as foundation when the
		soil is weak
Plaxis V8.2		Finite element programme developed in
		Netherlands
Spacing	12	Centre to centre distance between piles
Tip	٧	Bectronic Bottom part of the pile
USACE		United States Army Corps of Engineers
ν		Poisson's ratio