REFERENCES

- A. Keshtkar *et al.* "Mathematical modeling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure". *Bioresource Technology*, vol.87, pp.113-124, 2003.
- A. Khalid *et al.* "The anaerobic digestion of solid organic waste". *Waste Management*, vol.31, pp.1737–1744, 2011.
- A.S. Nizami and J.D. Murphy, "What type of digester configurations should be employed to produce biomethane from grass silage?," Renewable and Sustainable Energy Reviews, vol.14, pp. 1558-1568, 2010.
- A.W. Lawrence." Application of process kinetics to design of anaerobic processes". *Anaerobic Biological Treatment Processes*, vol. 105, pp. 163-189, 1971.
- B. Fezzani and R.B. Cheikh. "Implementation of IWA anaerobic digestion model No. 1 (ADM1) for simulating the thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a semi-continuous tubular digester". *Chemical Engineering Journal*, vol.141, pp.75–88, 2008.
- C.H. Burnett *and* A.P. Togna. "New high-rate plug flow anaerobic digester technology for small communities". Available :http://www.bvsde.paho.org/bvsaar/cdlodos/pdf/newhighrate383.pdf> [Sept. 13, 2012].
- D. Botheju and R. Bakke. "Oxygen effects in anaerobic digestion". *The open waste management journal*, vol.4, pp.1-19, 2011.
- D. J Batstone *et al.* "Anaerobic digestion model No 1 (ADM 1)". London: IWA Publishing. 2002.
- D. Neylan. "Operational modes for effective recovery of energy from ryegrass using anaerobic digestion." Ph.D. dissertation, University of Southampton, 2010.
- D.T. Hill, "A comprehensive dynamic model for animal waste methanogenesis". American Society of Agricultural and Biological Engineers, vol 25, pp.1374-1380, 1982.
- E. Ossiansson and O, Lidholm, (2002). *Application, uncertainty and sensitivity analysis of the anaerobic digestion model by Siegrist et al*[Online]. Available FTP: http://www.chemeng.lth.se Directory: exjobb/2012 File:E539.pdf.
- F. Boubaker and & B. C. Ridha. "Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature". *Bioresource Technology*, vol. 98, pp. 769-774, 2007.

- F. Fantozzi and C. Buratti. "Biogas production from different substrates in an experimental continuously stirred tank reactor anaerobic digester". *Bioresource Technology*, vol. 100,pp. 5783-5789, 2009.
- F. Joseph *et al.* "Design of anaerobic processes for the treatment of industrial and municipal wastes," Lancaster, USA: Technomic, 1992.
- F. Silva *et al*, "Modelling of anaerobic treatment of evaporator condensate (EC) from a sulphite pulp mill using the IWA anaerobic digestion model no. 1 (ADM1)." *Chemical Engineering Journal*, vol. 148, pp. 319-326, 2009.
- G. Kerroum *et al*, "Use of ADM1 model to simulate the anaerobic digestion process used for sludge waste treatment in thermophilic conditions," *TurkishJ.Eng.Env.Sci.* vol. 34, pp. 121 129, 2010.
- G. Lane.1984. "Laboratory scale anaerobic digestion of fruit and vegetable solid waste". *Biomass*, vol. 5, pp. 245–259, 1984.
- G. Lyberatos, I.V. Skiadas, "Modelling of anaerobic digestion- review". *Global Nest*, vol. 1, pp.63-76, 1999.
- G.H.Charles. "An Introduction to chemical engineering kinetics and reactor design." John wiley & sons, 1977.
- G.Tchobanoglous et al. "Waste water engineering treatment and reuse." Mcgraw-Hill, New delli: 2003.
- H.Bouallagui *et al.* "Bioreactor performance in anaerobic digestion of fruit and vegetable waste". *Process Biochemistry*, vol.40,pp. 989-995, 2005.
- H.Bouallagui *et al.* "Effect of temperature on the performance of an anaerobic tubular reactor fruit and vegetable waste". *Process Biochemistry*, vol.39, pp. 2143-2148, 2004.
- H.Bouallagui *et al.* "Mesophilic biogas production from fruit and vegetable waste in a tubular digester". *Bioresource Technology*, vol.86,pp. 85-89, 2003.
- H.M. Lo *et al.* "Modeling biogas production from organic fraction of MSW codigested with MSWI ashed in anaerobic bioreactors". Bioresource Technology, vol. 101, pp. 6329-6335, year
- I. Angelidaki and W. Sanders. "Assessment of the anaerobic biodegradability of macropollutants". *Environmental Science and BioTechnology*, vol. 3,pp. 117–129, 2004.

- I.V. Skiadas *et al*, "Modelling of the periodic anaerobic baffled reactor (PABR) based on the retaining factor concept." *Water Research*, vol. 34, pp. 3725-3736, 2000.
- J. Rapport *et al.* "Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste". *California Environmental Protection Agency*. 2008.
- J.A. Siles *et al*, "Kinetic modelling of the anaerobic digestion of wastewater derived from the pressing of orange rind produced in orange juice manufacturing." *Chemical Engineering Journal*, vol. 140, pp. 145–156, 2008.
- J.M. Alvarez. *Biomethanization of the organic fraction of municipal solid wastes*. London: IWA Publishing. 2003.
- K. Derbal *et al.* "Application of the IWA ADM1 model to simulate anaerobic codigestion of organic waste with waste activated sludge in mesophilic condition". *Bioresource Technology*, vol.100, pp.1539–1543, 2009.
- K. Yetilmezsoy and S. SAKAR, "Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions." *Journal of Hazardous Materials*, vol. 153, pp.532-543, 2008.
- L. Appels *et al.* "Principles and potential of the anaerobic digestion of waste-activated sludge". *Progress in energy and combustion science*, vol. 34,pp. 755-781, 2008.
- L.E. Rowse, "Design of small scale anaerobic digesters for application in rural developing countries." M.S. thesis, University of South Florida, 2011.
- M.J. Park *et al*, "Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses." *International journal of hydrogen energy*, vol. 35, pp. 6194-6202, 2010.
- M.Y. Lee. "Variation of ADM1 by using temperature-phased anaerobic digestion (TPAD) operation". *Bioresource Technology*, vol. 100, pp. 2816–2822, 2009.
- N. Cuzin *et al.* "Methanogenic fermentation of cassava peel using a pilot plug flow digester". *Bioresource Technology*, vol.41, pp.259-264, 1992.
- N. M. Musafer. "Biogas technology utilization in sri lanka". International Seminar on Biogas Technology for Poverty Reduction and Sustainable Development, Beijing, 2005.
- N. Mahmoud *et al*, "Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB-Digester system". *Water Research*, vol. 38, pp.2348-2358, 2004.

- O. Lidholm, E. Ossiansson, "Modeling Anaerobic Digestion," M.S. thesis, Lund University, 2008.
- P. Chávez *et al.* "Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor". *Bioresource Technology*, vol.96, pp.1730-1736, 2004.
- P. Namsree *et al.* "Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor". *Journal of Environmental Management*, vol. 110, pp. 40-47, 2012. .
- P. Reichert, "Aquasim 2.0 user manual. Computer Program for the Identication and Simulation of Aquatic Systems," *Swiss Federal Institute for Environmental Science and Technology (EAWAG)*, 1998.
- P. Vandevivere *et al.* "Types of anaerobic digesters for solid wastes," in *Biomethanization of the organic fraction of municipal solid wastes.* London: IWA Publishing, 2002.
- P.B. William and C.S. David, "The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review." *Water research*, vol. 33, pp. 1559–1578, 1999.
- P.D.C. Botheju, "Effects of free oxygen on anaerobic digestion," Ph.D. dissertation, Faculty of Technology, Norwegian University of Science and Technology, Norway, 2010.
- P.G. Rathnasiri, "Anaerobic digestion process using membrane integrated micro aeration," Ph.D. dissertation, Telemark university college, Norwegian university of science and technology, 2009.
- P.G. Rathnasiri, "Anaerobic digestion process using membrane integrated micro aeration." Ph.D. dissertation, Norwegian University of Science and Technology, 2009.
- P.G. Rathnasiri, private communication, August 2012.
- R.K. Dereli, *et al.* "Applicability of Anaerobic Digestion Model No. 1 (ADM1) for a specific industrial wastewater: Opium alkaloid effluents". *Chemical Engineering Journal*, vol.165, pp.89–94, 2010.
- S. Lansing, R.B. Botero, and J.F. Martin, "Waste treatment and biogas quality in small-scale agricultural digesters". *Bioresource Technology*, vol. 99, pp. 5881-5890, 2008.
- S. Verma, "Anaerobic digestion of biodegradable organics in municipal solid wastes." M.S. thesis, Columbia University, 2002.
- S.G. Pavlostathis and E. Giraldo-Gomez, "Kinetics of anaerobic treatment: a critical review." Crit. Rev. *Environ. Control*, vol. 21, pp. 411–490, 1991.

- S.J. Mu *et al.* "Anaerobic digestion model no. 1-based distributed parameter model of an anaerobic reactor: I. Model development," Bioresource technology, vol. 99, pp. 3665-3675, 2008.
- Y. Chen *et al.* "Inhibition of anaerobic digestion process: A review," *Bioresource Technology*, vol. 99, pp. 4044–4064, 2008.
- Y. Feng, et al. "Implementation of the iwa anaerobic digestion model no.1 (adm1) for simulating digestion of blackwater from vacuum toilets". Water Science and Technology: A Journal of the International Association on Water Pollution Research, vol.53 (9), pp.253-263, 2006.
- Y. Zhang *et al*, "Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste." *J Zhejiang Univ Sci B*, vol. 7, pp.180–185, 2006.

APPENDIX A: CELLULAR KINETICS - TABLE 1

Biochemical rate coefficients $(v_{i,j})$ and kinetic rate equations (ρ_j) for particulate components (i=1-12;j=1-19)

Cor	nponent → i	1	2	3	4	5	6	7	8	9	10	11	12	Kinetic Rates
j	Process ↓	S _{see}	S.,	Sta	Sva	Shu	Spen	S.	S _M	Sast	S _{EC}	S _{rN}	Sı	(ρ ₁ , kg COD·m ⁻³ ·d ⁻¹)
ı	Disintegration			100			416.60	1			- \(\sum_{\chi_1\chi_2\chi_2\chi_2} C_i \nu_{i,i} \)	$-\sum_{j+1,j,j=2k} N_j \nu_{j,j}$	$f_{B,\kappa}$	$k_{da} \cdot X_s$
2	Hydrolysis of carbohydrates	1									$-\sum_{i+1,i+3,i+3} C_i v_{i,3}$			K 200 , th · X , th
5	Hydrolysis of proteins		1								$-\sum_{i \in S,D \ni S} C_i v_{i,3}$			K 494 .pr - X pr
	Hydrolysis of lipids	$1-f_{\rm fid}$		$f_{g,s}$							$-\sum_{i=1,i,j=0,k}C_i\nu_{i,jk}$			$K_{lpd,li} \cdot X_{li}$
5	Uptake of Sugars	-1				(1-1/n)- form	$(1-Y_n)$ - f_{pages}	$(1-Y_{in})\cdot f_{min}$	$(1-Y_{\alpha})\cdot f_{\alpha,\alpha}$		$-\sum_{(n)=(i,j)=(j+1)} C_i^n v_{i,j}$	-(Y _m)-N _{mm}		k
5	Uptake of Amino Acids		-1		$(1-Y_{\alpha r})f_{\alpha r}$	(1-Y _{ac})-f _{fre,ac}	$(1-Y_{\mu\nu})\cdot f_{\mu\nu_{\mu}\mu\nu}$	$(1-Y_{ns})\cdot f_{ns,ns}$	(1-Y ₂₀)- f _{101,20}		$-\sum_{i\in\{0,1\},(j,d)}C_iv_{i,d}$	$-\sum_{j=1}^{n}N_{j}^{j}v_{j,j}$		k
1	Uptake of LCFA			-1				(I-Y _{th})-0.7	(t-Y ₀)-03		$-\sum_{j+1} C_j \kappa_{j,j}$	-(Y ₀)-N _{bm}		$k_{m,h} \frac{S_{jh}}{K_{s,h} + S_{h}} X_{jh} I_{s}$
	Uptake of Valerate				-1	(British	onic These	r.(40%) 931	(Ark E.) - 0.15		- \(\sum_{i=1/h,\alpha} \)	-(Y ₋₁)-N _{bum}		$k_{n,et} \frac{S_{ne}}{K_{net} + S_{ne}} X_{et} \frac{1}{1 + S_{in}/S_{ne}}$
,	Uptake of Butyrate				4	The second second	lib.mrt.ac.l	$(1-F_{ct})$ -0.8	$(1 - Y_{rt}) \cdot 0.2$		$-\sum_{j+1} C_j V_{i,j}$	$-(Y_{rt})\cdot N_{bum}$		$k_{a,a} \frac{S_{ba}}{K_{c,a} + S_{ba}} X_{ca} \frac{1}{1 + S_{ca}/S_{ba}}$
0	Uptake of Propionate						-1	(I-F _{pm})-0.57	(1 - Y _{pec})- 0.43		- \sum_{i=1-0.10-14} C_i v_{i,10}	-(Y _{pre})- N _{kkim}		$k_{n,pm} \frac{S_{pm}}{K_{s,pm} + S_{pm}} X_{pm} I_4$
11	Uptake of Acetate							-1		(1-1°-)	$-\sum_{i=0}^{n}C_{i}W_{i,(i)}$	-(Y_)-N		$k_{\pi,\pi} = \frac{S_{\pi}}{K_{1,\pi} + S_{\pi}} X_{\pi} I,$
12	Uptake of Hydrogen								-1	(1-Y _{s7})	- \sum_{i=0.12i-24} C_i \nu_{i,j:0}	-(Y _{k2})-N _{hore}		$k_{\pi, \pm 1} \frac{S_{\pm 1}}{K_{\tau, \pm 1} + S_{\pm 1}} X_{\pm 1} I$
3	Decay of X _m										$-\sum_{i \in \{i,j\}, i \neq i} C_i \nu_{i,j\pm}$	$-\sum_{i \in \{0,1\}} N_i v_{i,i,k}$		$k_{dec, Nm}X_{m}$
4	Decay of X,										$-\sum_{j=0,0,0,0,0} C_j w_{j,j+1}$	$-\sum_{i+1,i,j>2\delta} N_i \nu_{i,j+1}$		$k_{dec,Xas}X_{as}$
5	Decay of X _{fa}	1									- \(\sum_{color=0.00} C_{(C_{color})} \)	- \(\sum_{1,10} N_1 \nu_{1,20} \)		$k_{ac,xp}X_{g}$
6	Decay of X _{et}										- \(\sum_{10-04} C_i \nu_{i,je} \)	$-\sum_{i\neq 1} N_i \nu_{i,j;i}$		k _{thc, 304} X _{c4}
17	Decay of X _{pre}	1									- \(\sum_{\text{(1)} \cdot \text{(1)}} \cdot \text{(1)}	- \(\sum_{\text{pol-start}} N_{\text{p}} \varphi_{\text{1.2}} \rightarrow \)		k _{dec,Abro} X _{pro}
18	Decay of X _{at}	+									$-\sum_{i=1}^{N} C_{i}^{i} v_{ijk}$	$-\sum_{i=1,2,3,3,4,33} N_i V_{i,33}$		k _{duc,Xuc} X _{pu}
19	Decay of X _{h2}										- \(\sum_{\text{P} \text{\tint{\text{\tint{\text{\ti}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}	$-\sum_{i \in \{i,j\} \in M} N_i v_{i,i0}$		k _{dec,Xh2} X _{h2}
	,	Sugar (kg COD/m²)	Amino acids	LCFA Ger COD/m ³	Total Valerate (kg COD/m ³)	(kg COD/m²)	Total propionate (kg COD/m ³)	Total acetate (kg COD/m²)	Hydrogen (kg COD/m²)	Methane (kg COD/m³)	Inorganie Carbon (kmole C/m²)	Inorganie Nitrogen (kmole N/m³)	Soluble inerts (kg COD/m²)	Long Control Control

APPENDIX B: CELLULAR KINETICS - TABLE 2

Biochemical rate coefficients $(v_{i,j})$ and kinetic rate equations (ρ_j) for particulate components (i=13-24;j=1-19)

Com	sponent -> i	13	14	15	16	17	18	19	20	21	22	23	24	25	26	Kinetic Rates
j	Process ↓	Xc	Xch	Xpr	Xa	Xsu	X.,	Xta	Xet	Xpre	X.	X ₈₂	X _t	Seat	Sen	(ρ _j , kg COD·m ⁻³ ·d ⁻¹)
1	Disintegration	-1	fin,ie	f presie	$f_{k,\infty}$					- 0/			$f_{N,m}$			$k_{dis} \cdot X_c$
2	Hydrolysis of carbohydrates		-1													$K_{spd,cih} \cdot X_{ch}$
3	Hydrolysis of proteins			-1												$K_{ipd.,pr} \cdot X_{pr}$
4	Hydrolysis of lipids				-1											$K_{hod,it} \cdot X_{it}$
5	Uptake of Sugars					Ym					ė i					$K_{hpd,R} \cdot X_R$ $k_{m,m} \frac{S_m}{K_{s,m} + S_m} X_m I_s$
6	Uptake of Amino Acids						Y_{oa}									$k_{-} = \frac{S_{-}}{K} - X_{-}I,$
7	Uptake of LCFA							Y_{fi}								$k_{m,m} = \frac{S_{im}}{K_{i,m} + S_{im}} X_{im} I_1$ $k_{m,jk} = \frac{S_{jk}}{K_{i,jk} + S_{jk}} X_{jk} I_2$
8	Uptake of Valerate				ä	Univ			a.y§gi Lar	ika.						$k_{n,rt} \frac{S_{nt}}{K_{-r} + S_{-r}} X_{rt} \frac{1}{1 + S_{-r}/S_{-r}} I_2$
9	Uptake of Butyrate				1	1	.lib.mrt.a		Y_{c4}							$k_{max} \frac{S_{ba}}{K_{ba} + S_{ba}} X_{ab} \frac{1}{1 + S_{aa}/S_{ba}} I_3$
10	Uptake of Propionate									Y_{pre}						$k_{m,pm} \frac{S_{pm}}{K_{s,pm} + S_{pm}} X_{pm} I_4$
11	Uptake of Acetate										Ym					$k_{m,m} \frac{S_m}{K_{+,m} + S_m} X_m I,$
12	Uptake of Hydrogen											Y _{A2}				$k_{n,m} \frac{S_{m}}{K_{s,m} + S_{m}} X_{m} I_{s}$ $k_{m,h_{2}} \frac{S_{h_{2}}}{K_{s,h_{2}} + S_{h_{2}}} X_{h_{2}} I_{s}$
1.3	Decay of X _m	1				-1								+	_	$k_{der,Xm}X_{m}$
14	Decay of X _m	1					-1					-				$k_{dec,Xao}X_{out}$
15	Decay of X _b	1						-1								$k_{dec,Xla}X_{fa}$
16	Decay of Xet	1							-1							$k_{der,Xc4}X_{c4}$
17	Decay of Xpm	1								-1						$k_{dec,Npro}X_{pro}$
18	Decay of X _{set}	1									-1					$k_{doc,Tisc}X_{ss}$
19	Decay of X ₆₂	1		-								-1				k _{dec,Mh2} X _{h2}
		Composites (kg COB/m²)	Carbohydrates (kg COD/m²)	Proteins (kg COD/m²)	Lipids (kg COD(m ²)	Sugars degraders (kg COD/m²)	Amino acids degraders (kg COD/m²)	LCFA degraders (kg COD/m²)	Vale- & Butyrate degraders (kg COD/m²)	Propionate degraders (kg COD/m²)	cetate egraders og COB(m²)	Hydrogen degraders (kg COD(m ¹)	Particulate inerts (kg COD/m²)	Cations (kmole/m²)	Anions (kmole./m²)	

APPENDIX C: PAPER 1

Study of inhibition in plug flow anaerobic digesters using mathematical modeling and simulation. Journal of The Institute of Incorporated Engineers, Sri Lanka, Vol 13, No 1, July 2013. (Karunarathne H.D.S.S., Rathnasiri P.G., University of Moratuwa)

