REFERENCE LIST

(n.d.). Non-Black Fillers For Rubber . RT Vanderbilt Company Inc.

Aeslina Abdul Kadir, A. M. (2011). Bricks: An Excellent Building Material For Recycling Wastes – A Review. *Iasted International Conference Environmental Management and Engineering*, (pp. 108-115). Calgary, AB, Canada.

Andres Juan, C. M. (2010). Re-use of ceramic wastes in construction. In W. W. (Ed.), *Ceramic Materials* (p. 228). Sciyo.

Boccaccini, A. R. (n.d.). *Comment on Surface Abrasion of Glazed Tiles*. Retrieved April 03, 2013, from http://ceramicayvidrio.revistas.csic.es

Byrne, M. F. (2008). *Properties of Ceramic Tile*. Retrieved from smartgreenbuild.com

CEB. (n.d.). *Electricity for your business*. Retrieved April 02, 2013, from Ceylon Electricity Board: http://www.ceb.lk/sub/business/tp_generalpurpose.html

César Medina, M. I. (2011). Using Ceramic Materials in Ecoefficient Concrete and Precast Concrete Products. In P. C. (Ed.), *Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment* (p. 550). InTech.

Chandana Sukesh, B. K. (2012). A Study of Sustainable Industrial Waste Materials as Partial Replacement of Cement. 2012 IACSIT Coimbatore Conferences.28, pp. 161-166. IACSIT Press, Singapore.

D. Tavakoli, A. H. (2013). Properties Of Concretes Produced With Waste Ceramic Tile Aggregate. *Asian Journal of Civil Engineering (BHRC), 14* (No.3), 369-382.

Design and Material Selection for Quality - Rectified Ceramic Tiles. (2010,
November 29). Retrieved April 03, 2013, from CONQUAS 21 Enhancement Series
Good Industry Practices Guide Book:
http://www.bca.gov.sg/publications/publications.html

Edificio Expo, c. I. (2007). Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry. Spain: European Commission. (2012). EIA Report, Proposed Clinker Manufacturing Plant and Excavation of Mineral Aruwakkalu- Puttalam. Holcim (Lanka) Limited.

EML Consultants, EIA for proposed co-processing of scheduled wastes in kiln of cement plant at Holcim Cement works-Puttalam, 2008 May

Eva Vejmelková, T. K. (2012). Application of Waste Ceramics as Active Pozzolana in Concrete Production. *2012 IACSIT Coimbatore Conferences*.28, pp. 132-136. IACSIT Press, Singapore.

F. Puertasa, I. G.-D.-R. (2008). Ceramic wastes as alternative raw materials for Portland cement clinker production. *Cement and Concrete Composites*, *30* (9), 798-805.

Graeme, M. (2003). Cements. In J. N. Choo (Ed.), Advanced Concrete Technology, Contituent Materials (Vol. 1). Elsevier.

H. Koyuncu, Y. G. (2004). Utilization of Ceramic Wastes in the Construction Sector. (H. M. Öveçoglu, Ed.) *Key Engineering Materials*, 264 - 268, pp. 2509-2512.

IFC. (2007, April 30). World Bank Group Environmental, Health, and Safety Guidelines. *Environmental, Health, and Safety Guidelines for Ceramic Tile and Sanitary Ware Manufacturing*. Washington, DC 20433 USA: International Finance Corporation (IFC).

Inc., N. A. (2008). Sri Lanka The Competitiveness Program (TCP), Final Report. USAID.

Industrial Technology Institute, Baseline Survey Data, EEPEx Project funded by the European Union Switch Asia Programme, 2009-2010

John Bensted, J. M. (2001). A discussion of the paper "The use of waste ceramic tile in cement production" by N. Ay and M. Unal. *Cement and Concrete Research, Vol* 31, 161-162.

Lamkins, C. (n.d.). *Distinguishing the Differences between Ceramic and Porcelain Tile*. Retrieved April 03, 2013, from cccfcs.com: cccfcs.com/uploads/.../ID%2009/Lamkins-Nov%202009-final.pdf

Lanka Tiles - Technical Specification. (n.d.). Retrieved April 03, 2013, from Lanka Tiles: http://www.lankatile.com/technical.htm

Md. Safiuddin, M. Z. (2010). Utilization of solid wastes in construction materials. *International Journal of the Physical Sciences*, 5 (13), 1952-1963.

Mohd Mustafa Al Bakri Abdullah, K. H. (2006). Concrete With Ceramic Waste And Quarry Dust Aggregates. *Engineering Journal Of Research And Education* (Version 3), 139-145.

Nuran Ay, M. U. (2000). The use of waste ceramic tile in cement production. (30), 497-499.

Ratnasamy Muniandy, E. A. (2011). The effect of type and particle size of industrial wastes filler on Indirect Tensile Stiffness and Fatigue performance of Stone Mastic Asphalt Mixtures. *Australian Journal of Basic and Applied Sciences*, 5 (No. 11), 297-308.

Ratnasamy Muniandy, E. E. (2009). An Initial Investigation of the Use of Local Industrial Wastes and By-Products as Mineral Fillers in Stone Mastic Asphalt Pavements. *ARPN Journal of Engineering and Applied Sciences*, *4* (No. 3), 54-63.

Richard A. Kruger, M. H. (1999). The Use of Fly Ash Fillers in Rubber. *International Ash Utilization Symposium - Paper #72* (p. 9). South Africa: Center for Applied Energy Research, University of Kentucky.

S. A. Jahan, S. P. (2008). Studies on the Physico-Chemical Properties of Ceramic Tiles Produced from Locally Available Raw Materials. *Bangladesh J. Sci. Ind. Res.* (43(1)), 77-88.

Saikiai, J. d. (2013). Recycled Aggregate in Concrete, Use of Industrial, Construction and Demolishion Waste. *Green Energy and Technology*. Springer-Verlag London.

Sujiyama, M. (2005). The Compressive Strength of Concrete Containing Tile Chips, Crushed Scallop Shells, or Crushed Roofing Tiles. *Journal of Hokkai-Gakuen University*, *No.124*, 9.

Sustainable Construction, A Guide on the Use of Recycled Materials. (2008). *BCA Sustainable Construction Series*(4) . (B. A. Environment, Compiler) Singapore: Building and Construction Authority.

Toyohiko Sugiyama, H. N. (2006). Ceramic Brick with High Water Retentivity Prepared from Ceramic Waste and by Products. (P. Vincenzini, Ed.) *Advances in Science and Technology*, *45*, pp. 2235-2239.

Wikipedia, the free encyclopedia, en.wikipedia.org/

Y.Tabak, M. E. (2012). Ceramic Tile Waste As A Waste Management Solution For Concrete. *3rd International Conference on Industrial and Hazardous Waste Management*, (p. 8).

Appendix – I

Reuse/Recycle Potential of Rejected Ceramic Glazed Tiles

Application	As Recycled Aggregate		As an Active Additive (with pozzolanic characteristics)		As an Alternative Raw Material	
	As a Coarse Aggregate	As a Fine Aggregate	As a Hydraulic Binder	As a Filler	1	
	(total/ partial replacement of	(total/ partial replacement of				
	natural stone aggregate)	natural river or sea sand)				
Non Structural	\checkmark	✓				Stud
Concrete	(30-100%)	(30-100%)				stren
Reinforced Concrete		✓				
Structural Concrete	\checkmark	✓				
	(10-20%)	(25-50%)				
Precast Concrete	✓	✓	✓			Can
Blocks	(4-31.5 mm)		(Partial replacement of			bloc
			Portland cement)			etc.
Concrete roofing tiles		✓	\checkmark			
		(5-10%)	(Partial replacement of			
			Portland cement: 5-15%)			
Bricks			\checkmark			
			(10%)			
Mortar		\checkmark				
		(20-50%)				
Pozzolanic Cements			~			Subs
			(Partial replacement of			nega
			Portland cement:<30%)			Port
						Ende
						- 1
						1
						- 6
						8
Unnafined Concept						
Unrefined Cement					v	A - 6
Stone Mastic Asphalt				v		AS I
(SMA)						Mini
Koad Sub-Base					v	WIX
Rockfill Motorial						Mivi
Improved Soil						Mixi
Fynansion Material					(40%)	
Cement clinker						Tech
production					(<0.05%)	kiln
production					(<0.05%)	KIIII row
						Iaw

Table I-1: Reusing	/ recycling p	otentials of rejected	ceramic tiles
--------------------	---------------	-----------------------	---------------

Remarks

lies reviled good abrasion resistance, good tensile and increased durability

be utilized as sub-base paving blocks, seating ks in recreational areas, roofing tiles, drain caver

stitution percentages of below 30% had no ative effects on the mechanical behaviour of land cement

ow the cements with positive characteristics

ncrease in mechanical strength in the medium and ong term

enhance the chemical resistance of concrete to aggressive agents, which has a positive impact on the material's service life

illers in asphalt concrete

ing with natural soil, sand and crushed aggregate

ing with lime, zeolite and cement ing ceramic tile dust with Na.bentonite

nnical feasibility depend on the process conditions, type and condition and other alternative fuels and materials utilized in the process Appendix – II

Details and Specifications of Machinery, Analytical Equipments and Bectronic Theses & Dissertations Measuring Instruments Utilized For the Study

Clamp On Power HiTester

Manufacturer's Name	: HIOKI E.E. CORPORATION
Manufacturer's Address	: 81 Koizumi, Ueda, Nagano 386-1192, Japan
Product Name	: CLAMP ON POWER HITESTER
Model Number	: 3286-20
Accessory	: 9635 VOLTAGE CORD
Options	: 9635-01 VOLTAGE CORD
Safety	: EN61010-1:2001, EN61010-031:2002, EN61010-2-
032:2002	
EMC	: EN61326-2-2-2006, Class B Equipment,
	Portable test, measuring and monitoring equipment
	used in low voltage distribution systems

Comply with the requirements of the Low Voltage Directive 2006/95/EC and the EMC Directive 2004/108/EC

Appendix – III

Details of Power Meter Readings

Mea. No.	Power (kW)		Mea. No.	Power (kW)
1	1.33		20	1.66
2	1.39		21	1.58
3	1.40		22	1.50
4	1.48		23	1.53
5	1.56		24	1.76
6	1.41		25	1.82
7	1.51		26	1.83
8	1.44		27	1.76
9	1.54		28	1.83
10	1.62		29	1.74
11	1.66		30	1.85
12	1.55		31	1.72
13	1.52		32	1.56
14	1.70 mic Th	Moratuwa, Sri eses & Dissert	tions 33	1.54
15	1.68	IC.IK	34	1.52
16	1.58		35	1.46
17	1.55		36	1.54
18	1.58		37	1.57
19	1.72		38	1.58

Table III-1: Power Meter readings during hammer milling process

Mea. No.	Power (kW)		Mea. No.	Power (kW)
1	1.10		33	1.03
2	1.11		34	1.04
3	1.09		35	1.03
4	1.07		36	1.05
5	1.10		37	1.05
6	1.09		38	1.05
7	1.08		39	1.04
8	1.11		40	1.04
9	1.10		41	1.03
10	1.08		42	1.03
11	1.10		43	1.03
12	1.09		44	1.04
13	1.04		45	1.06
14	1.03		46	1.05
15	1.05		47	1.05
16	1.04		48	1.04
17	1.04		49	1.03
18	1.07	f Moratuwa, S heses & Disse	ri Lanka50	1.04
19	1.03w.lib.mr	t.ac.lk	51	1.04
20	1.04		52	1.04
21	1.04		53	1.04
22	1.04		54	1.04
23	1.03		55	1.03
24	1.04		56	1.04
25	1.04		57	1.03
26	1.03		58	1.03
27	1.05		59	1.03
28	1.04		60	1.04
29	1.04		61	1.04
30	1.03		62	1.04
31	1.03		63	1.03
32	1.03		64	1.03

Table III-2: Power Meter readings during ball milling process

_

Appendix – IV

PSD Graphs obtained from Particle size Analyzer for the Ball Milled Products

Figure IV-1: 4hrs Ball Milled Product - Sample 1

Figure IV-2: 4hrs Ball Milled Product - Sample 2

Figure IV-3: 8hrs Ball Milled Product - Sample 1

Figure IV-4: 8hrs Ball Milled Product - Sample 2

Figure IV-5: 12hrs Ball Milled Product - Sample 1

Figure IV-6: 12hrs Ball Milled Product - Sample 2

Figure IV-7: 16hrs Ball Milled Product - Sample 1

Figure IV-8: 16hrs Ball Milled Product - Sample 2

Appendix –V

Results of XRD Analysis

Figure V-1: XRD analysis results of 16hrs ball milled sample

FPM Results for Silicate

Model Parameters:

Sample name:	silicate composition		
File name:	silicate composition.raw		
Date of fitting:	20/07/2012 14:35:56		
Fitting limits:	2.000 70.000		
Number of steps:	20		
R/R0:	1.22		
RWP:	28.2		
Delta displacement:	0.131 mm		
03-065-0466	Quartz low, syn		
	SiO ₂		
FWHM (30):	0.136 °		
Crystallite Size (Scherrer):	597.8 A		
System:	Hexagonal		
Space group:	P3221 (154)		
Cell parameter:	Initial Final		
a:	4.91410 Fixed		
c:	5.40600 Fixed		

	www.lib.mrt.ac.lk	
Fitting limits:	3.000	60.000
Background degree:	3	
Asymmetry [constant]:	0.9998	29
Asymmetry [/tan(th)^2]:	0.0004	19575
Asymmetry [/tan(th)^2]:	0.0001	17626
Broadening [*tan(th)]:	-0.1912	274
Broadening [*tan(th)^2]:	5.1309	9
Broadening [*tan(th)^3]:	0	Fixed
Lorentz width [Left const]:	1.1589	2
Lorentz width [Left/tan(th):	0.0133	586
Lorentz width [Right const]	: -0.036	0098
Lorentz width [Right/(tan(th	n)]: 0.2423	66

Appendix – VI

Cure Curves Obtained from the Rheometer Test

Figure VI-1: Cure curve of Compound 01 (sample 01)

Figure VI-2: Cure curve of Compound 02 (sample 02)

Figure VI-3: Cure curve of Compound 03 (sample 03)

Appendix - VII

Size Reduction Cost Calculation

Assumptions

- 1. Power consumption per unit product output in industrial-scale hammer milling and ball milling processes are similar to that of pilot-scale
- 2. Floor tile industry falls under Industrial –(I3) tariff category
- 3. Rejected tiles are processed during off peak time
- 4. Maximum demand is not influenced by this process

Tariff Category	Approved for 2011					
	Unit Charge	Fuel Adjustment	Fixed Charge	Demand		
		Charge		Charge		
	[LKR/kWh]	[%]	[LKR/month]	[LKR/kVA]		
Industrial-(I1)	10.50	15	240.00			
Industrial-(I2)						
Peak	13.60	nic Theses & Dissertatic[5 b mrt.ac.lk	3000.00	850.00		
Off peak	7.35	15				
Day	10.45	15				
Industrial-(I3)						
Peak	13.40	15	3000.00	750.00		
Off peak	7.15	15				
Day	10.25	15				

Table VII-1: Industrial purpose tariff plan of CEB

Source - (CEB)

Based on the power meter readings obtained during hammer milling process (Appendix -II) and ball milling process (Appendix -III), average power consumption can be calculated as below.

Avg. power consumption during hammer milling process= 1.59 kWAvg. power consumption during ball milling process= 1.05 kW

As per 3rd assumption, demand charge can be excluded. Thus only unit charge and the fuel adjustment charge should be calculated in this regard.

Process	Average Power	Milling	No. of	Unit Charge	Fuel Adjustment	Size Reduction Cost
	Consumption	Time	Units	iri Lanka.	Charge	
	[kW] 🧏	[hr]ib.m	[kWh]	[LKR/kg]	[LKR/kg]	[LKR/kg]
Hammer Milling	1.59	0.053	0.1	0.12	0.02	0.14
Ball Milling	1.05	4	4.2	10.01	1.50	11.51
	1.05	8	8.4	20.02	3.00	23.02
	1.05	12	12.6	30.03	4.50	34.53
	1.05	16	16.8	40.04	6.01	46.05

Table VII-2: Size reduction cost calculation