UTILIZATION OF WASTE GLAZED TILES AS A RAW MATERIAL/ADDITIVE

D M HasanthieSandarekhaDissanayake

(09/8954)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Sustainable Process Development

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

January 2014

Declaration, copyright statement and the statement of the supervisor

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters/MPhil/PhD thesis/ Dissertation under my supervision.

Signature of the supervisor:

Date:

Abstract

To find alternative environmental friendly methods for disposing waste glazed tiles, a detailed scientific study was carried out on evaluating techno-economical feasibility of utilizing waste glazed tiles as a raw material/ additive. Economical feasibility of size reduction of waste glazed tiles and technical feasibility of utilizing ceramic tile dust as nonblack mineral filler in rubber were studied in this regard. Pilot-scale hammer mill and pot mill were utilized for size reduction process. Particle size distribution was analyzed according to standard testing methodologies by use of standard sieve analyzer and particle size analyzer. Rubber compounding was done for three master batch designs by use of pilot scale internal mixture having 1 kg capacity and two roll mill. Curing characteristics of the test samples and physical properties including hardness, tensile strength, tear strength and abrasion were analyzed. Moreover, literature review and baseline survey were carried out to collect information on waste tile generation index, available waste tile management practices, required particle size ranges to use waste glazed tiles as a raw material/ additive etc.

Results of the pilot studies revealed that use of ceramic floor tile waste as recycled aggregate in concrete production and application of this waste (ceramic tile dust) as non-black mineral filler in natural rubber is both technically and economically feasible in Sri Lanka. However, utilizing this waste as an alternative raw material in cement industry for clinkerization is not technically feasible for the currently available only cement kiln at Puttalam, Sri Lanka.

Key words: rejected ceramic tiles, recycling ceramic waste aggregate, recycling ceramic waste dust, size reduction cost of ceramic tiles, ceramic tile dust as filler in rubber

Electronic Theses & Dissertations www.lib.mrt.ac.lk

To my beloved Amma (Kusum) and Thaththa (Sarath)

Acknowledgement

Firstly, I would like to express my deepest and sincere gratitude to my supervisor, Dr. Shantha Walpolage, Senior Lecturer of the Department of Chemical and Process Engineering, University of Moratuwa. His wide knowledge and logical thinking have been of great value for me. His understanding, encouragement, invaluable comments and suggestions have provided a fruitful guidance for this dissertation.

I also wish to record grateful appreciation to Dr. P G Rathnasiri, Head of the Department of Chemical and Process Engineering, University of Moratuwa, Dr. Shantha Egodage, Dr. Shantha Amarasinghe, Dr. Maneesha Gunasekara and Prof. Suren Wijeyekoon, Senior Lecturers of the Department of Chemical and Process Engineering, University of Moratuwa for their assistance in selecting the research topic, evaluating the research progress and excellent corporation and guidance extended towards me during this study.

It's my pleasure to acknowledge Telemark University, Norway for the financial support provided for the research work.

I wish to record grateful appreciation to Lanka Floor Tiles PLC for providing samples for the pilot study.

Specific thanks go to former Director-CEO of Industrial Technology Institute (ITI) Dr. A M Mubarak for granting permission to carryout pilot-scale trials at CENTEC laboratory and approving duty leave for research related activities. I would like to extend thanks to Eng. H N Gunadasa, Senior Deputy Director and Eng. W R K Fonseka, Principal Research Engineer of the Environment Technology Section of ITI for approving duty leave to attend research work and senior level assistance in this regard. I'm obliged to the staff of Materials Technology Section, Materials Laboratory, Environmental Technology Section and Engineering Service Section of ITI, especially Mr. Ruwan, Mr. Nayanajith, Mr. Jayasinha, Mr. Kamal, Eng. Adhikari, Eng. Chaminda, Mr. Manoj, Mr. Prabath and Mr. Anuruddha for their invaluable support, timely assistance and enthusiasm throughout the pilot trial.

I would also like to thank Ms. Nalasara, Coordinator of the M.Sc. Course and Iroshini, Daham, Sumudu and Nalaka my postgraduate colleagues for clarifying things related to academic work in time.

My special gratitude is due to my colleagues and friends at ITI; Dushyanthi, Maduka, Geetha, Kalika and Yamuna for their encouraging words and numerous supports in making this educational process a success.

I owe my loving thanks to my husband, mother and mother-in-law for taking care of my son all through writing this manuscript. Without their encouragement, patience and understanding it would have been impossible for me to finish this work.

www.lib.mrt.ac.lk

v

Table of Contents

Declaration, copyright statement and the statement of the supervisor	i
Abstract	ii
Acknowledgement	iv
Table of Contents	vi
List of Figures	xi
List of Tables	xii
List of Abbreviations	xiv

CHAPTER 01: INTRODUCTION

01

1.1 Background	01
1.2 Research Problem	03
1.3 Justification	04
1.4 Scientific Hypothesis/ Research Question	04
1.5 Scope of the Study	05
1.6 Objectives of the Study.	06
1.7 Outline	06

CHAPTER 02: LTERATURE REVIEW

08

		00
2.1 Tile M	anufacturing Process	08
2.1.1	Glazed tiles	10
2.2 Solid V	Waste Generation from Tile Manufacturing Industry	10
2.2.1	Solid waste generation sources	10
2.2.2	Solid waste generation indices	12
2.2.3	Existing solid waste management practices for rejected glazed	
	tiles	13
2.3 Charac	eteristics of Glazed Tiles	13
2.3.1	Physical characteristics	13
2.3.2	Chemical composition	15
2.3.3	Pozzolanic property	15

2.4 Best Available Technologies (BAT) for Management of Rejected Glazed	
Tiles	17
2.4.1 Utilizing ceramic wastes as recycled aggregate	18
2.4.2 Utilizing ceramic wastes as an active additive with pozzolanic	
characteristics	18
2.5 Feasibility of Reusing/ Recycling Ceramic Waste	19
2.5.1 Construction sector applications	19
2.5.1.1 Technical feasibility of using ceramic waste in concrete	20
2.5.1.2 Technical feasibility of using ceramic waste in prefabricated	
building blocks	26
2.5.1.3 Technical feasibility of using ceramic waste in hydraulic	
binder	30
2.5.1.4 Technical feasibility of using ceramic waste in road	
construction	31
2.5.2 Industrial sector applications	32
2.5.2.1 Technical feasibility of using ceramic waste in cement industry	
for clinker production. Account of Landa	32
2.5.2.2 Technical feasibility of using ceramic waste in rubber	
industry	38
2.6 Environmental Cost Benefit Analysis	42
2.7 Outcome of the Literature Review	43
2.7.1 Suitability as a recycled aggregate that completely or partially	
substitute natural coarse/ fine aggregates	43
2.7.2 Suitability as an alternative raw material in cement industry for	
clinker production	44
2.7.3 Suitability as an active additive in rubber industry	44

CHAPTE	R 03: MATERIALS AND METHODS	45
3.1 Materi	als	45
3.2 Machin	nery, Equipments and Instruments	46
3.2.1	Pilot study 01	46
3.2.2	Pilot study 02	46
3.3 Metho	ds	47
3.3.1	Experimental setup and procedure of pilot study 01	47
3.3.2	Experimental setup and procedure of pilot study 02	51
3.3	2.1 Compounding	51
3.3	.2.2 Curing	52
3.3	2.3 Physical testing	52
3.3.3	Analytical/ measurement methods	52
СНАРТЕН	R 04: RESULTS	55
4.1 Results	s of Pilot Study 01	55
4.1.1	Hammer milling process	55
4.1	.1.1 Power consumption, and and a set test.	55
4.1	.1.2 Particle size distribution (PSD) of hammer milled product	55
4.1.2	Ball milling process	56
4.1	.2.1 Power consumption	56
4.1	.2.2 Particle size distribution (PSD) of ball milled product	56
4.1	.2.3 Results of XRD analysis	57
4.2 Results	s of Pilot Study 02	58
CHAPTE	R 05: DISCUSSION	61
5.1 Effecti	iveness of Size Reduction Technologies Used for Rejected Glazed	
Ceram	ic Floor Tiles	61
5.1.1	Hammer milling	61
5.1.2	Ball milling (dry)	61
5.2 Costs of	of Reusing/ Recycling Rejected Glazed Tiles	63
5.2.1	Size reduction cost	63

5.3 Mineralogy of Ceramic Waste Dust	64
5.4 Technical Feasibility of Utilizing Rejected Glazed Tiles as Non-Black Mineral	
Filler in Rubber Industry	65
5.4.1 Processing ability/ workability	65
5.4.1.1 Minimum torque	65
5.4.1.2 Curing time	66
5.4.1.3 Maximum torque	67
5.4.2 Comparative evaluation of physical properties of filled cured	
rubber	67
5.4.2.1 Hardness	67
5.4.2.2 Tensile strength	68
5.4.2.3 Elongation at break	68
5.4.2.4 Tear strength	68
5.4.2.5 Abrasion resistance	68
5.5 Economical Feasibility of Reusing/ Recycling Rejected Glazed Tiles	69
5.5.1 As an alternative raw material in cement industry for clinker	
production	69
5.5.2 As an active additive in rubber industry	69
CHAPTER 06: CONCLUSIONS AND RECOMMENDATIONS	70
6.1 Conclusions	70
6.2 Recommendations	70
6.2.1 Recommendations for scientific advancement	70
6.2.2 Recommendations for national/ socio-economic development	71
REFERENCE LIST	72

APPENDICES	76	
Appendix – I: Reuse/ Recycle Potential of Rejected Ceramic Glazed Tiles	76	
Appendix – II: Details and Specifications of Machinery, Analytical		
Equipments and Measuring Instruments Utilized For the Study	78	
Appendix – III: Details of Power Meter Readings		
Appendix – IV: PSD Graphs obtained from Particle size Analyzer for the Ball		
Milled Products	83	
Appendix – V: Results of XRD Analysis	88	
Appendix – VI: Cure Curves Obtained from the Rheometer Test	91	
Appendix – VII: Size Reduction Cost Calculation	95	

List of Figures

Figure 1.1: Open dump of rejected glazed tiles in a factory back yard	01
Figure 1.2: Abandoned raw material mine	02
Figure 2.1: Schematic view of the wall and floor tile manufacturing processes.	09
Figure 2.2: Tile glazing (bell/ waterfall method)	10
Figure 2.3: Solid waste generation sources of the tile manufacturing	
process	11
Figure 2.4: Use of ceramic floor tile waste as coarse and fine recycled	
aggregate in concrete manufacturing process	24
Figure 2.5: Concrete samples made of ceramic floor tile waste recycled	
aggregates	25
Figure 2.6: Concrete blocks and bricks manufactured with ceramic aggregate	27
Figure 2.7: Concrete Ceramic Waste Slab (CCWS)	28
Figure 2.8: Surfacing of SMA	31
Figure 2.9: Typical chemical composition of Portland cement clinker	33
Figure 2.10: Grain size and particle shape of ceramic waste at 500x magnification.	41
Figure 3.1: Hammer milling.	48
Figure 3.2: Ball milling (pot mill)	49
Figure 3.3: Analyzing PSD of ball milled samples in particle size analyzer	49
Figure 3.4: Experimental setup of pilot study 01	50
Figure 4.1: Hammer milled product	56
Figure 4.2: Ball milled products	57
Figure 5.1: PSD of the hammer milled product	62
Figure 5.2: Hexagonal crystalline system	64
Figure 5.3: Typical results obtained with a rheometer	65

List of Tables

Table 2.1: Average consumption figures of the raw materials utilized by the	
Sri Lankan tile industry	08
Table 2.2: Solid waste generation indices of Sri Lankan tile manufacturing	
industry	12
Table 2.3: Existing solid waste management practice of rejected glazed tiles	13
Table 2.4: Hardness, fracture toughness and brittleness of glazed tiles	14
Table 2.5: Chemical analysis of glazed ceramic tile	15
Table 2.6: Unit weights of recycled aggregates	24
Table 2.7: Composition of the aggregate mixtures under study of utilizing	
ceramic floor tile waste as recycled aggregate	25
Table 2.8: Bulk density and water absorption of concrete samples made of	
ceramic floor tile waste recycled aggregates	26
Table 2.9: Compressive and flexural strength of concrete samples made of	
ceramic floor tile waste recycled aggregates	26
Table 2.10: Control ratios of clinker	33
Table 2.11: Raw mix design in clinker production	34
Table 2.12: Comparison of chemical composition of clinker and glazed	
ceramic tiles	36
Table 2.13: Assessment of control ratios of raw mix with different proportions	
of glazed ceramic tiles	36
Table 2.14: Proposed aggregate mix for non-structural concrete	44
Table 3.1: Composition of rubber master batch	51
Table 3.2: Rubber mix design	51
Table 3.3: Sampling, testing and measurement methods used in pilot study 01	53
Table 3.4: Test methods used in pilot study 02	54
Table 4.1: Power meter readings during hammer milling process	55
Table 4.2: Results from sieve analysis - PSD of hammer milled product	55
Table 4.3: Power meter readings during ball milling process.	56
Table 4.4: Results from the particle size analyzer - PSD of ball milled product.	57

Table 4.5: Salient features of rheometer test.	58
Table 4.6: Hardness test results	58
Table 4.7: Tensile test results	59
Table 4.8: Tear test results	60
Table 4.9: Abrasion test results	60
Table 5.1: Average PSD of the ball milled product	61
Table 5.2: Size reduction cost of glazed ceramic floor tiles	63

List of Abbreviations

AFR	Alternative Fuels And Raw Materials
Al_2O_3	Aluminium oxide
AR	Alumina Ratio
B_2O_3	Boron trioxide
BAT	Best Available Technologies
CaO	Calcium oxide
CCWS	Concrete Ceramics Waste Slab
CENTEC	Centre of Technical Excellence for Ceramics in Sri Lanka
Cl	Chloride
CO_2	Carbon dioxide
EEPEx	Enhancing Environmental Performance in key Export Sectors
EIA	Environment Impact Assessment
Fe_2O_3	Iron(III) oxide
FTWA	Floor Tile Waste Aggregate
FTWD	Floor Tile Waste Dustauwa, Sri Lanka.
ITI	Industrial Technology Institute
K ₂ O	Potassium oxide
L.O.I.	Loss on ignition
LSF	Lime Saturation Factor
MgO	Magnesium oxide
Mn_2O_3	Manganese oxide
Na ₂ O	Sodium oxide
P_2O_5	Phosphorus pentoxide
PSD	Particle Size Distribution
R& D	Research and Development
SiO ₂	Silicon dioxide
Si-O-H	Silanols
SLINTEC	Sri Lanka Institute of Nanotechnology
SMA	Stone Mastic Asphalt

SO ₃	Sulfur trioxide
SR	Silica Ratio
SrO ₂	Strontium oxide
TiO_2	Titanium dioxide
XRD	X-ray diffraction
ZNO	Zinc oxide
ZrO_2	Zirconium dioxide

