OPTIMIZATION OF SRI LANKAN UNDERGROUND GRAPHITE MINING METHODS, FROM A VIEW POINT OF ROCK MECHANICS AND COST

Manil Chathuranga Hettiwatte

128026R

Degree of Master of Science

Department of Earth Resources Engineering

University of Moratuwa
Sri Lanka

January 2014
OPTIMIZATION OF SRI LANKAN UNDERGROUND GRAPHITE MINING METHODS, FROM A VIEW POINT OF ROCK MECHANICS AND COST

Manil Chathuranga Hettiwatte

128026R

Thesis submitted in partial fulfilment of the requirements for the degree Master of Science

Department of Earth Resources Engineering

University of Moratuwa
Sri Lanka

January 2014
DECLARATION

“I declare that this is my own work and this research does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works”

Signatures of the candidate:

------------------------------------- -------------------------------------
M. C. Hettiwatte Date

The above candidate has carried out research of the Masters dissertation under our supervision.

Signatures of the supervisors:

------------------------------------- -------------------------------------
Prof. P. G. R. Dharmaratne Date

------------------------------------- -------------------------------------
Eng. P. V. A. Hemalal Date
ABSTRACT

This research includes the study of the mining method adopted at Bogala Graphite Mines and its suitability compared with other mining methods used in the mining industry. The mining method adopted in Bogala mines has been assessed through this study. It mainly focus on the rock mechanics and financial aspects with comparisons to the mining methods adhered by the Sri Lankan mining industry.

The major graphite occurrence discovered more than hundred years has produced highly valued the world over. In Sri Lanka, graphite mineralizations occur in the form of rich veins with steep dips in the South-Western sector of the island, the vast stretch of area which has been famous for graphite mining with thousands of pits in operation during the high demand of the first and second world wars.

Where an outcrop is encountered, a pit had been sunk and the steeply dipping vein had been followed to the depths. At Bogala mines, the adoption of Overhand Cut-and-Fill mining method is influenced by the steeply dipping vein environment with rock intercalations and high water inflows with less competent country rock.

Although cut–and–fill mining has been traditionally successful ensuring high recovery and safety, only limited studies has been carried out with an engineering input to evaluate this method.

With the use of literature and site visits to Bogala mines, the mining method used at Bogala mines, the underground environment and the other mining methods used in the mining industry both internationally and locally have been studied. In evaluating the most suitable mining method, workability, safety and ore dilution and recovery factors of different mining methods were considered and the most suitable method for Bogala mine was evaluated.
ACKNOWLEDGEMENT

It is of great pleasure to present my research report, but it could not be perfected without acknowledging the assistance of those who are the backbone to this successful research.

I am grateful to my supervisors Prof. P. G. R. Dharmaratne (Senior Professor) and Eng. P. V. A. Hemalal (Senior Lecturer), Department of Earth Resources Engineering, University of Moratuwa, Sri Lanka, for the excellent guidance, assistance, motivational continuous encouragement and evaluation that led me on the right path to success. Moreover, I appreciate the dedicated support and optimum patience.

In addition, my sincere gratitude goes to Dr. A. M. K. B. Abeysinghe, Head of the Department and Dr. H. M. R. Premasiri, Postgraduate Coordinator of the Department of Earth Resources Engineering, University of Moratuwa, Sri Lanka, for facilitating this study in many ways. My earnest gratefulness goes to Kahatagaha Graphite Lanka Ltd and Sakura Graphite PVT Ltd for helping me to compile informative set of field data.

I acknowledge, Especially to Mr. Gamini Kumburahena (General Manager-Mines), Mr. Chaminda Ekanayake (Assistant General Manager-Underground) and Mr. Kapila Ekanayake (Assistant General Manager-Quality Assurance) of Bogala Graphite Lanka PLC for providing access for data collection during the busy work hours. I am also obliged to convey my appreciation to all academic and non-academic staff for the assistance given for the success of this research.

This research was supported by University of Moratuwa Senate Research Grant Number SRC/LT/2012/11.
Contents

Declaration ..

Abstract ..

Acknowledgement... iii

List of figures ... vii

List of Tables ... ix

List of Abbreviations ... ix

List of Appendices ... x

1 Chapter 1 - Introduction .. 1

1.1 Introduction of Research .. 1

1.2 Overview of Bogala graphite lanka plc ... 2

1.2.1 Location of Bogala mines .. 2

1.2.2 History of Bogala Mines .. 2

1.2.3 Graphite Kropfmuehl AG (GK) ... 3

1.2.4 Present Performance.. 4

1.3 Problem Statement .. 5

1.4 Aim .. 5

1.5 Objectives ... 5

1.6 Limitations ... 5

1.7 Chapter Breakdown ... 6

2 Chapter 2 - Literature Survey .. 7

2.1 Graphite and it’s Occurences ... 7

2.1.1 Graphite .. 7

2.1.2 Occurences .. 9
2.2 Mining Methods Used in the World

2.2.1 Mining

2.2.2 Hard Rock Mining

2.3 Graphite Mining Methods

2.4 Graphite Mining Methods used in Sri Lanka

2.4.1 Bogala Graphite Lanka Plc

2.4.2 Kahatagaha Graphite Lanka Ltd

2.4.3 Sakura Graphite PVT Ltd

2.5 Mining of Vein Deposits

2.6 Selection of a Mining Method

2.7 Support systems used in Sri Lankan underground graphite mines

2.7.1 Supporting Methods

2.7.2 Material used in making support systems

3 Chapter 3 - Research Methodology

3.1 Spatial characteristics of the ore body

3.2 Physical, chemical and mechanical properties

3.2.1 Strength Tests

3.2.2 Fracture Survey

3.2.3 Diamond Drill Data from Bogala mines

3.3 Ground water and hydraulic conditions

3.4 Economic factors

3.5 Comparative mining and processing cost

3.6 Environmental factors

4 Chapter 4 - Analysis of Data

4.1 Data analysis under the six criteria mentioned in methodology
LIST OF FIGURES

Figure 1.1: Location of Bogala Mines ... 2
Figure 2.1: Graphite .. 7
Figure 2.2: Uses of Graphite .. 8
Figure 2.3: Mining Methods .. 10
Figure 2.4: Room and Pillar Mining ... 14
Figure 2.5: Block Caving method ... 15
Figure 2.6: North South and Plan sections of the major veins 18
Figure 2.7: Mining Block-Side View ... 19
Figure 2.8: Stope Profile .. 19
Figure 2.9: Roof Fixing in Bogala mines ... 20
Figure 2.10: Sid Wall Fixing in Bogala mines ... 21
Figure 2.11: Open Stoping in Kahatagaha mines .. 22
Figure 2.12: Graphite veins in Kahatagaha mines .. 22
Figure 2.13: Adit entrance in Ragedara mines ... 23
Figure 2.14: Graphite vein with quartz intrusions in Ragedara mines 23
Figure 2.15: Problem places in Ragedara mines .. 24
Figure 2.16: Unsupported mining in Ragedara mines 24
Figure 2.17: Longitudinal sublevel open stoping firing against fill 25
Figure 2.18: Modified Avoca mining method ... 26
Figure 2.19: Blind uphole sublevel open stoping with rib pillars 26
Figure 2.20: Longitudinal Retreat Mining Method (LRMM) 27
Figure 2.21: Narrow vein stopes linked by tracked developed 28
Figure 2.22: Central Access Retreat Pillar .. 29
Figure 2.23: Just In Time method ... 29
Figure 2.24: Inclined room and pillar method ... 30
Figure 2.25: Traverse long hole method .. 30
Figure 2.26: Long hole wall slash mining method 31
Figure 2.27: Multi-lode bulk stope mining method 31
Figure 2.28: Up dip bench stoping with pillars ... 32
Figure 2.29: Down dip bench stoping with pillars .. 32
Figure 2.30: Alimak stoping with two accesses .. 33
Figure 2.31: Shrinkage stoping ... 33
Figure 2.32: Anchor ... 36
Figure 2.33: Fixed Anchor ... 37
Figure 2.34: Rock Hitches ... 37
Figure 2.35: Roof of the Drive ... 38
Figure 2.36: Side Wall Fixing ... 39
Figure 2.37: Steel Set ... 39
Figure 2.38: Rock Bolts used in a roof fixing ... 40
Figure 2.39: Timber used as supports in Bogala mines 41
Figure 2.40: SH rails used as supports in Bogala mines 42
Figure 3.1: North South section of Bogala mines 45
Figure 3.2: Diamond drilling map in 260m level, Bogala mines 51
Figure 3.3: Heavy support system in Bogala mines 54
Figure 4.1: Open Stoping in Kahatagaha mines ... 58
Figure 4.2: Joint Patterns in Ragedara mines .. 59
Figure 4.3: Cap supports ... 62
Figure 4.4: Open stoping with concrete beam supports 65
LIST OF TABLES

Table 2.1: Advantages and disadvantages of narrow vein mining methods 34
Table 3.1: Classification of veins according to dip angle. (After Bieniewski) 46
Table 3.2: Classification of ore bodies by the thickness. (After Bieniewski) 46
Table 3.3: Rocks classified by strengths and the origin. (After Bieniewski) 47
Table 3.4: Classification of rocks by Point load strength. (After Deere-1966) 47
Table 3.5: Classification of rocks by compressive strength. (ISRM-1978) 48
Table 3.6: Sample test results.. 48
Table 3.7: Fracture survey data from in-situ analysis in Bogala mines 49
Table 3.8: Fracture survey data from in-situ analysis in Kahatagaha mines 49
Table 3.9: Fracture survey data from in-situ analysis in Ragedara mines 50
Table 3.10: Fracture survey data from in-situ analysis in Rangala mines 50
Table 4.1: Summary of the results obtained.. 56
Table 4.2: Comparison of local mining methods.. 57
Table 4.3: Rock Mass Classification.. 59
Table 4.4: Comparing of other vein mining methods with Bogala conditions 61
Table 4.5: Cost comparison for one cycle... 68

LIST OF ABBREVIATIONS

BGLP Bogala Graphite Lanka PLC
KGLL Kahatagaha Graphite Lanka Ltd
SGPL Sakura Graphite PVT Ltd
LRMM Longitudinal Retreat Mining Method
ISRM International Society for Rock Mechanics
LIST OF APPENDICES

Appendix A-Level Plan Views, Bogala Mines ... xi
Appendix B-Mining Operation Guidelines, Bogala Mines... xvi
Appendix C-Safety Trainings, Definitions and surveying data, Bogala mines xix
Appendix D-Maps of Rangala mines .. xxiv
Appendix E-Fracture Survey data in Bogala mines ... xxix
Appendix F-Fracture Survey data in Kahatagaha mines ... xxxiii
Appendix G-Fracture Survey data in Ragedara mines .. xxxv
Appendix H-Fracture Survey of Rangala mines ... xxxix
Appendix I-Diamond Drill Data at 260m level in Na vein Bogala mines xliii
Appendix J-Sample test results for Bogala mines .. xlvii
Appendix K-Sample test results for Kahatagaha mines .. liv
Appendix L-Sample test results for Ragedara mines .. lviii
Appendix M-Sample test results for Rangala mines .. lix
Appendix N-CSIR Geomechanics Classification of Joint Rock Masses lxii