Reference

[1] JESSE B. HOAGG and DENNIS S. BERNSTEIN, 'Nonminimum Phase Zeros - Much To Do about Nothing', JUNE 2007 IEEE CONTROL SYSTEMS MAGAZINE.
[2] D. M. Mitchell, 'Understanding the Right-Half-Plane Zero in Small-Signal DC-DC Converter Models' IEEE Power Electronics Society NEWSLETTER, January 2001.
[3] Santanu Kapat, Amit Patra, Member, IEEE, and Soumitro Banerjee, Senior Member, IEEE, "A Current-Controlled Tristate Boost Converter With Improved Performance Through RHP Zero Elimination" IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 3, MARCH 2009.
[4] Santanu Kapat, Amit Patra, Member, IEEE, and Soumitro Banerjee, Senior Member, "A Novel Current Controlled Tri-State Boost Converter with Superior Dynamic Performance" Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on May 2008.
[5] Kanakasabai Viswanathan, Member, IEEE, Ramesh Oruganti, Senior Member, IEEE, and Dipti Srinivasan, Senior Member, IEEE, "Dual-Mode Control of TriState Boost Converter for Improved Performance" IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 20, NO. 4, JULY 2005.
[6] Han-Hsiang Huang, Chi-Lin Chen, Dian-Rung Wu, and Ke-Horng Chen, Senior Member, IEEE "Solid-Duty-Control Technique for Alleviating the Right-HalfPlane Zero Effect in Continuous Conduction Mode Boost Converters" IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 1, JANUARY 2012.
[7] Ceylon Electricity Board Statistical Report 2012.
[8] Power electronics converters applications and design, $3^{\text {rd }}$ Edition, Mohan, Undeland, Robbins.
[9] Ramón Leyva, Member IEEE, Pedro Garcés, Javier Calvente, Member IEEE and Luis MartínezSalamero, Member IEEE "Feedback Linearization Control Applied to a Boost Power Converter"
[10] General Unified Approach to Modelling Switching-Converters Power Stages: R.D. Middlebrook and S. Cuk, IEEE PESC 1976, Cleveland, OH, June 8-10
[11] T. Grote, F. Schafmeister, H. Figge, N. Fröhleke, P. Ide, J. Böcker "Adaptive Digital Slope Compensation for Peak Current Mode Control"
[12] Jiri Lettl, Jan Bauer, and Libor Linhart "Comparison of Different Filter Types for Grid Connected Inverter" PIERS Proceedings, Marrakesh, MOROCCO, March 20-23, 2011
[13] EN 5002 - Power Electronics and Applications - Lecture notes
[14] www.mag-inc.com C058195A2 datasheet
[15] www.infineon.com IPW65R080CFD datasheet
[16] ww1.microchip.com/downloads/en/DeviceDoc/21389D.pdf

Uninersity of Mortuwil, Bri Linki Equirunic Theses \& Dishrindons wwwlibimnatlk

Appendix

The detailed calculations and the Matlab codes used in the thesis are given below.

A. Finding the L at the boundary

```
FSw = 45000; %50 kHz
V0 = 325;
Vd = 48;
IO max = 2;
Vrm
R_max = Vrms/I0_max;
TSW = 1/FSW;
D = 1 - Vd/V0; % this is ccm boundry
IO = 0.01:0.005:2;
L = (V0 * Tsw * D* (1-D)^2)./(2.*IO); % since this is the critical L we can
use the same D.
plot(I0,L)
grid on;
```


B. Finding current ripple for a given inductance

```
IO = 0.2; %this is the IOB
deltaV = 1; %1 volt ripple
L = (V0 * TSW * D* (1-D)^2)./(2.*I0);
Id_boundry = IO ./ (1-D); %average input current at boundry :: THis is
```



```
Id fullLoad = IO max ./ (I-D); %average input current at max load
```



```
Id_fullLoad_max = Id_fullLoad + deltaI / 2;
Id_fullLoad min = Id|ullmoadll deltaI / 2;
C = VO * D * Tsw / (R_max * deltaV);
```


C. Torroid calculation Testing 287 highflux

```
outter = 0.058; %mm convert to m
inner = 0.0255;
z = 0.0162;
%L = 126.7e-6; %253.4uH needed
L = 253e-6; %L = 335.7e-6; %335.7uH needed
%L = L/2;
R = (outter+inner)/4;
A = ((outter-inner)/2)*z;
u0 = (4*pi)*10^(-7);
ur = 125;
N = sqrt((L*2*pi*R) / (u0*ur*A)) % Can find the no of turns
Bsat = 1.5; %Tesla
Isat = (Bsat*2*pi*R) / (u0*ur*N) % Make sure inductor current is less than
this. else it will saturate.
%Finding using AL value
Al = 287e-9;
N_direct = sqrt(L/Al)
```

```
Isat_direct = Bsat*A/(N_direct*Al)
```


D. Heat sink calculations

```
Rca = 3.6;
Ta = 26;
%Boost
Rjc = 0.32;
Rja = Rjc + Rca;
P = 18.5; %Power in Boost MOSFET
Tj_boost = Rja * P + Ta;
%H bridge
Rjc = 2;
Rja = Rjc + Rca;
P L = 1.5671; %Power in lowside MOSFET
P_H = 1.3693; %Power in highside MOSFET
Tj_L = Rja * P_L + Ta;
Tj_H = Rja * P_H + Ta;
```


E. MOSFET related losses

```
Vin = 12;
Iout = 2;
Vout = 100;
d = 0.88;
%Let us assume it's 100% efficient and take a close approximation for the
%inductor current
```



```
Ids = Iin; 
Ron150 = 0.19;
tr= 18e-9;
tf=6e-9;
fsw = 45e3;
Psw boost = Vds*Ids*fsw*(tf+tr)/2
Pcon_boost25 = (Ids^2)*Ron25*d
Pcon_boost150=(Ids^2)*Ron150*d
Pin = Vin*Iin;
p_boost25 = Psw_boost + Pcon_boost25
p_boost150 = Psw__boost + Pco\overline{n_boost150}
effi_boost25 = (Pin - p_boost25)*100 / Pin
effi_boost150 = (Pin - p_boost150)*100 / Pin
%Hbridge
Iload = 2;
Vds = Vout;
Ids = Iload;
Ron25 = 0.54;
Ron150 = 1.4;
tr= 9e-9;
tf= 13e-9;
sinefreq = 50; %50 Hz
Davg = 0.633833948; % sum of all Ds / no of Ds -- done using excel
Psw_invL = (Vds*Ids*fsw*(tf+tr)/2)*2 % For 2 low side switches
Psw_invH = (Vds*Ids*sinefreq*(tf+tr)/2)*2 % the square wave is 50Hz
```

```
Pc_inv25 = (Iload^2)* Ron25 * Davg % no need to *by 2 since 1 is on half
of the time only
Pc_inv150 = (Iload^2)* Ron150 * Davg
P_inv_Lside_one_MOSFET = Pc_inv25 + PSw_invL;
P_inv_Hside_one_MOSFET = Pc_inv25 + Psw_invH;
```



```
Pinv25 = Psw inv + Pc inv25;
Pinv150 = Ps`w_invL + Psw_invH + Pc_inv150;
% Total power desipation
Ptot25 = p_boost25 + Pinv25
Ptot150 = p_boost150 + Pinv150
systemEff25 = (Pin - Ptot25)*100 / Pin
systemEff150 = (Pin - Ptot150)*100 / Pin
%power after tri state;
loss25 = 1.3949;
loss150 = 3.0438;
systemEff25 tri = (Pin - Ptot25 - loss25)*100 / Pin
systemEff150_tri = (Pin - Ptot150 - loss150)*100 / Pin
%efficiency drop due to tri state
systemEff25 - systemEff25_tri
systemEff150 - systemEff1\overline{50_tri}
```

F. Snubber Calculations of al Maroluwil, Sri Limkit
 cle; whw libinilite II
Vdc $=325.26$;
Iload $=2$;
Toff $=13 e-9 ; ~ \% ~ c h k ~ t h e ~ t i m e ~ 80+13 ? ~$
fsw = 45e3;
$C=$ Iload* Toff / Vdc $\%$ ans $=68 \mathrm{pF}$
\%R Calculations
Irep_peak $=18$; \% Pulsed Drain Current
Iload_max = 2;
ip = Irep_peak - Iload_max;
Rmin $=$ Vdc/ip
Ton_min $=9$; \% chk the time $9+12$
R_max $=$ Ton_min / (5*C)
R_wattage $=C^{*}\left(\operatorname{Vdc}^{\wedge} 2\right) *$ fsw $/ 2$

```
%L Calculations
di_by_dt_limit = 2/(9e-9); % during MOSFET turn on = iload / trise
L_min = Vdc/di_by_dt_limit
%R1 Calculations
%R1_min = 5*L_min/Toff
R1_min = 5*L_min/22e-8 % 1%duty cycle is taken as the toff
Vrep_peak = 650; % this is the drain source breakdown voltage
```

```
R1_max = (Vrep_peak - Vdc)/Iload_max
R1_wattage = L_min * Iload_max^2 * fsw /2
```


G. Modeling the Plant

```
Vin = 12; % input voltage
D = 0.88; % Stady state duty ratio
L = 253e-6;% Inductor
C = 220e-6;% Capacitor
R = 50; %Make R low to show the RHPZ effect
%Steady State Model of the ideal Boost Converter(Plant) given by
As,Bs,Cs,Ds
As = [0 - (1-D)/L; (1-D)/C -1/(R*C)];
Bs = [1/L 0 0; 0 -1/C 0]; % the d input is zero
Cs = [0 1; 1 0];
Ds = [0 0 0; 0 0 0]; % Bs and Ds should be the same dimentions.
Vo = -Cs(1,:) * inv(As) * Bs(:,1).*Vin; % Steady State Output Voltage
Ig = -Cs(2,:) * inv(As) * Bs(:,1).*Vin; % Steady State Input Current
%Small signal model of Boost Converter
a = [0 - (1-D)/L; (1-D)/C -1/ (R*C)];
b = [1/L 0 Vo/L; 0 -1/C -Ig/C]; % Steady state values Vo,Ig values are
needed.
```



```
c}=[\begin{array}{ll}{0}&{1}\end{array}];%\mathrm{ We r only interested in Vo |
d = [0 0 0]; %b & d dimentions should match 4mamalmatim
ulabels = ['Vin Iz d'];
ylabels = ['Vo Ig'];
xlabels = ['Il Vc'];
disp('The Steady State model');
printsys(As,Bs,Cs,Ds,ulabels,ylabels,xlabels); %Prints the Steady State
model of the system
disp('The Small Signal model');
printsys(a,b,c,d,ulabels,ylabels,xlabels); %Prints the Small Signal model
of the system
disp('Transfer Function in S Domain');
disp('Vo/d (s)');
sys = tf(ss(a,b(:,3),c,[0])); %Tr fn Vo/d
[np, dp] = ss2tf(a,b(:,3),c,[0]); %Tr fn Vo/d
tfBoostVo_d= zpk(tf(ss(a,b(:,3),c,[0]))); % Tr fn in Zero pole gain form
test = pzplot(sys);
pause;
Ts = 10e-6; %Sampling Time
sysd = c2d(sys,Ts,'zoh');
step(sys,'-',sysd,'--');
pause;
```


H. Modeling the Controller

```
%Define the controller structure---This is a PI controller
zero_c = 3000;
nc = [1 zero_c]; % numerator controller
dc = [1 0]; % dinominator controller
%Define the transfer function H
nh = [1];
dh = [1];
%Loop transfer function Gc.Gp.H
nl = conv(conv (nc,np),nh);
dl = conv (conv (dc,dp),dh);
loopTF = tf(nl,dl);
%Transfer Function in Zero Pole Gain form
loopTF ZPK = zpk(loopTF) % will be a third order system rlocus(loopTF)
% We have to select a suitable gain 'k' from the LHS of this plot
pause;
Ts = 10e-6; %Sampling Time
%Let's take k =0.104 The closed loop system will be:
%k =1.02e-5; %k = kp
k = 7.32e-6;
% Controller tr fn with gain k
ControllerTF = tf(nc*k,dc);
%Converting PI controller from continuous- to discrete-time
Controllerd = c2d(ControllerTF,Ts,'zoh');
% Close loop tr fn|with gain k
kp = k; |
ki=zerolc* k;
%Converting Closed loop system from continuous- to discrete-time
closedSysd = c2d(closedSys,Ts,'zoh');
step(closedSys,'-',closedSysd,'--');
%step(tf(n,d)); %step responce with the desired gain k
pause;
bode(tf(n,d)); grid on; % Gain and Phase of the Closed loop system
pause;
close;
```


I. Tri-State boost converter

```
Vin = 12;
Vo = 81.25;
    voltage
    % output voltage
L = 253e-6;
    % Inductor
C = 220e-6; % Capacitor
R = 50; % Load resistance
f = 45e3;
T = 1/f;
Ilavg = (Vo^2)/(Vin*R);
```

```
Ildelta = Vin*T/L*(1-Vin/Vo);
Ic = Ilavg - Ildelta/2;
Iref_max = Ilavg + Ildelta/2;
Db = L*(Iref_max - Ic)/(T*Vin); % Boost duty cycle
Do = Db/(Vo/Vin - 1); % Cap charge duty cycle
% Db, Do is reduced by 10% to introduce Df, without changing Boost
gain.
Df_tri = Db*0.1 + Do*0.1;
Db_tri = Db*0.9;
Do_tri = Do*0.9;
Vo_tri = Vin*(Db_tri + Do_tri)/Do_tri; % Gain unchanged
% The Iref_max will not get affected with the duty cycle change.
% (The diL/dt will be higher than in the classical case)
% However, Iref_min will be higher because of the introduction of
Df.
Iref_min = Iref_max - Do_tri*T*(Vo-Vin)/L;
k1 = Iref_min -- Ic;
%Freewhee\overline{ling current -> Idc}
Io = Vin*Ilavg/Vo;
Idc = Io/Do_tri - (Vo-Vin)/(2*L)*Do_tri*T;
%Steady Sta\overline{t}e Model of the ideal Trí}-state Boost Converter
As = [0 -Do_tri/L; Do_tri/C -1/(R*C)];
Bs = [(Db_tri + Do_tri)/L; 0 ];
Cs = [1 0; 0 1]; %Output matrix
Ds = [0 ; 0]; % Bs and Ds should be the same dimensions.
Ig = -Cs(1,:) * inv(As) * Bs(|, |1).*Vinm:%Steady|Stlate Input Current
vo = - Cs(2,:)|* inv(AS)* BS (:,1).*vin; %Steady State Output voltage
                                    mW%|bum|itulh
%Small signal model of Tri State Boost Converter
a = [0 -Do_tri/L; Do tri/C -1/(R*C)];
b = [Vin/L' -(Vo-Vin)/L (Db_tri + Do_tri)/L; 0 Ig/C 0]; % Steady
state values Vo,Ig values arre needed.
cv = [0 1]; % We r only interested in Vo
d = [0 0 0 0]; %.b & d dimentions should match
ci = [1 0];% Now we are only interested in IL.
disp('Il/db(s)');
G11 = tf(ss(a,b(:,1),ci,[0])) %Tr fn Il/db
[n_i, d_i] = ss2tf(a,b(:,1),ci,[0]) %Tr fn Il/db
G1\overline{1}_zpk = z zpk(G11)
disp('Il/do (s)');
G12 = tf(ss(a,b(:,2),ci,[0])) %Tr fn Il/do
G12_zpk = zpk(G12)
disp('Il/vin (s)');
F1 = tf(ss(a,b(:,3),ci,[0])) %Tr fn Il/vin
disp('Vo/db (s)');
G21 = tf(ss(a,b(:,1),cv,[0])) %Tr fn Vo/db
```

```
[n_v, d_v] = ss2tf(a,b(:,1),cv,[0]) %Tr fn Vo/db
G21_zpk = zpk(G21)
disp('Vo/do (s)');
G22 = tf(ss(a,b(:,2),cv,[0])) %Tr fn Vo/do
disp('Vo/vin (s)');
F2 = tf(ss(a,b(:,3),cv,[0])) %Tr fn Vo/vin
disp('Vo/iL (s)');
sys = tf(n_v,n_i) %Tr fn Vo/iL
```


Finding $\mathbf{k}_{\mathbf{1}}, \mathrm{k}_{\mathbf{2}}, \mathrm{k}_{\mathbf{3}}$ in the third state

For the third state to begin, the Boost period should be over, and after that when the inductor current I_{L} is falling from $i_{r e f}^{+}$to i_{C}, the third state could be introduced. For this experiment $i_{r e f}^{-}$was selected as the mid-point of the current ripple, and two reference voltages $81.25 \mathrm{~V}, 84 \mathrm{~V}$ were taken as test cases. For the two cases the inductor current midpoints were measured as 13.695 A and 14.635 A respectively from the Matlab Simulink simulation. From equation 4.4,

Case 1:

$$
13.695=\mathrm{k}_{1}+81.25 \mathrm{k}_{2}-12 \mathrm{k}_{3}
$$

Case 2:

$$
14.635=\mathrm{k}_{1}+84 \mathrm{k}_{2}-12 \mathrm{k}_{3}
$$

By the above k_{2} can be found as 0.3418 . Also for the capacitor charge state and the freewheeling state to exist,

$$
0<k_{1}<0.73
$$

should satisfy. So, k_{1} was selected as 0.5 , and k_{3} could be calculated as 1.2147 .

