RATIONAL USE OF PLANTS IN BUILDING INTERIORS
FOR THERMAL COMFORT: QUALITATIVE AND QUANTITATIVE ANALYSIS

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MORATUWA
AS A PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN ARCHITECTURE

J H DALUWATTA
DEPARTMENT OF ARCHITECTURE
UNIVERSITY OF MORATUWA
2000
ABSTRACT

Plants have increasingly become an integral part of the interior design of building in recent times. This is due to prevailing fashion and also in an attempt to produce an environment in which people feel psychologically comfortable. And it is also an attempt to be in touch with the nature. This research study aims to find how thermally comfortable environments could be achieved by using indoor plants and find how the different characteristics of plants, such as the color, leaf size, height and even the number of plants affect the internal thermal environment. The research was done in a model situation where all the factors were constant and only the types of plants were changed. Readings related to the indoor air temperature and the indoor relative humidity at different positions inside the house were taken at every one-hour through a full day.

The readings obtained with the plants were compared with readings obtained without plants involving the same indoor environment. The different readings found with different plants reveal that indoor plants directly contribute to its surrounding environment. The experiment further revealed that the indoor air temperature and indoor relative humidity the main variables related to human thermal comfort in building interiors vary with the use of plants. The observation shows green color plants, tall plant and more number of plants as variables, which affect the indoor air temperature. The colored plants effectively reduce air temperature only during the nighttime. The large leaf plants do not reduce the air temperature much effectively and they have a potential to increase the indoor air temperature. The research observations show that the plants do increase the relative humidity but it does not vary with the color of the plant, plant height and number of plants as in the case of air temperature. So the use of indoor plants reduces the indoor air temperature but they are increase relative humidity. Thus plants do not change the indoor environment at condition to a significant comfortable level, but when coupled with psychological comfort the plants offer their effect on the indoor environment, which is quite considerable.
ACKNOWLEDGEMENT

My sincere gratitude to the all the senior lectures of Department of Architecture for their assistance and helps in various ways from the beginning to the conclusion of the study.

My special thanks to Dr L S R Perera who has been very influential in development of text and been very kind enough to give helpful assistance, comments and guidance from the commencement to completion.

Without their generous help, encouragement and directions, this achievement would never have accomplished.

I wish particularly to thank the Senate Research Committee of University of Moratuwa for the grant given for me to carry out the experimental part of the dissertation.

I am also grateful to my Batchmates and Friends for their helping hands.

My sincere thanks to thatthi, ammi and hangi for their help to make this dissertation success.
CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

CHAPTER ONE

1.1. INTRODUCTION

1.2. THE PROBLEM AND ITS SETTING

1.3. THE RESEARCH RATIONALE

1.4. THE RESEARCH OBJECTIVES

1.5. THE HYPOTHESES

1.6. THE ASSUMPTIONS

1.7. THE METHOD OF STUDY

1.7.1. THE POPULAR PLANTS

1.7.1.1. SCHEFFLERA ARORICOLA

1.7.1.2. THE DIFFERENT TYPES OF PALMS

1.7.1.3. PLEOMELE REFEXA

1.7.2. METHOD OF COLLECTION OF DATA

1.7.3. THE REQUIRED DATA

CHAPTER TWO

2.1. THERMAL COMFORT

2.2. THERMAL COMFORT DEFINITIONS

2.3. COMFORT SCALES AND INDICES

2.4. APPLICATION OF COMFORT INDICES AND SCALES

2.5. FACTORS AFFECTING THE THERMAL COMFORT

2.6. USE OF PLANTS IN BUILDING DESIGNS

2.7. PLANTS BEHAVIOR AND EXPERIMENTAL STUDIES RELATED TO PLANTS
CHAPTER 03

3.1 RESPONSE DATA 34
3.2 THERMAL COMFORT STANDARD FOR SRI LANKA 35
3.3 COLLECTION PROCEDURES 37
3.4 THE TYPES OF INDOOR PLANTS 39
 3.4.1 TYPE 1 SCHEFFLERA ABORICOLA 39
 3.4.2 TYPE 2 PALM TREES 40
 3.4.3 TYPE 3 PELOMELE REFLEXA 41

CHAPTER FOUR

4.1. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGH OUT A DAY WITH OUT PLANTS 43
 4.1.1. THE AIR TEMPERATURE 43
 4.1.2. THE RELATIVE HUMIDITY 46
 4.1.3. THE AIR TEMPERATURE AND RELATIVE HUMIDITY DIFFERENCE 46
 4.1.4. SUMMARY 47
4.2. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGH OUT A DAY WITH SCHEFFLERA ABORICOLA GREEN PLANTS 48
 4.2.1. THE AIR TEMPERATURE 48
 4.2.2. THE RELATIVE HUMIDITY 48
 4.2.3. THE AIR TEMPERATURE DIFFERENCE 51
 4.2.3.1. THE COURTYARD AIR TEMPERATURE DIFFERENCE 51
 4.2.3.2. THE 1.5m AWAY AIR TEMPERATURE DIFFERENCE 51
 4.2.3.3. THE 3.5m AWAY AIR TEMPERATURE DIFFERENCE 51
 4.2.4. THE RELATIVE HUMIDITY DIFFERENCE 56
 4.2.4.1. THE COURTYARD RELATIVE HUMIDITY DIFFERENCE 56
 4.2.4.2. THE 1.5m AWAY RELATIVE HUMIDITY DIFFERENCE 56
 4.2.4.3. THE 3.5m AWAY RELATIVE HUMIDITY DIFFERENCE 56
4.3. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGH OUT A DAY WITH SCHEFFLERA YELLOW PLANTS

4.3.1. THE AIR TEMPERATURE

4.3.2. THE RELATIVE HUMIDITY

4.3.3. THE AIR TEMPERATURE DIFFERENCE
 4.3.3.1. THE COURTYARD AIR TEMPERATURE DIFFERENCE
 4.3.3.2. THE 1.5m AWAY AIR TEMPERATURE DIFFERENCE
 4.3.3.3. THE 3.5m AWAY AIR TEMPERATURE DIFFERENCE

4.3.4. THE RELATIVE HUMIDITY DIFFERENCE
 4.3.4.1. THE COURTYARD RELATIVE HUMIDITY DIFFERENCE
 4.3.4.2. THE 1.5m AWAY RELATIVE HUMIDITY DIFFERENCE
 4.3.4.3. THE 3.5m AWAY RELATIVE HUMIDITY DIFFERENCE

4.4. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGH OUT A DAY WITH SCHEFFLERA GREEN 18 PLANTS

4.4.1. THE AIR TEMPERATURE

4.4.2. THE RELATIVE HUMIDITY

4.4.3. THE AIR TEMPERATURE DIFFERENCE
 4.4.3.1. COURTYARD AIR TEMPERATURE DIFFERENCE
 4.4.3.2. THE 1.5m AWAY AIR TEMPERATURE DIFFERENCE
 4.4.3.3. THE 3.5m AWAY AIR TEMPERATURE DIFFERENCE

4.4.4. THE RELATIVE HUMIDITY DIFFERENCE
 4.4.4.1. THE COURTYARD RELATIVE HUMIDITY DIFFERENCE
 4.4.4.2. THE 1.5m AWAY RELATIVE HUMIDITY DIFFERENCE
 4.4.4.3. THE 3.5m AWAY RELATIVE HUMIDITY DIFFERENCE

4.5. SUMMARY

4.6. SUB CONCLUSIONS

4.7. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGH OUT A DAY WITH CANE PALM TREES
4.7.1. THE AIR TEMPERATURE
4.7.2. THE RELATIVE HUMIDITY
4.7.3. THE AIR TEMPERATURE DIFFERENCE
 4.7.3.1. COURTYARD AIR TEMPERATURE DIFFERENCE
 4.7.3.2. THE 1.5m AWAY AIR TEMPERATURE DIFFERENCE
 4.7.3.3. THE 3.5m AWAY AIR TEMPERATURE DIFFERENCE
4.7.4. THE RELATIVE HUMIDITY DIFFERENCE
 4.7.4.1. THE COURTYARD RELATIVE HUMIDITY DIFFERENCE
 4.7.4.2. THE 1.5m AWAY RELATIVE HUMIDITY DIFFERENCE
 4.7.4.3. THE 3.5m AWAY RELATIVE HUMIDITY DIFFERENCE
4.8. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGHOUT A DAY WITH QUEEN PALM TREES
 4.8.1. THE AIR TEMPERATURE
 4.8.2. THE RELATIVE HUMIDITY
 4.8.3. THE AIR TEMPERATURE DIFFERENCE
 4.8.3.1. COURTYARD AIR TEMPERATURE DIFFERENCE
 4.8.3.2. THE 1.5m AWAY AIR TEMPERATURE DIFFERENCE
 4.8.3.3. THE 3.5m AWAY AIR TEMPERATURE DIFFERENCE
 4.8.4. THE RELATIVE HUMIDITY DIFFERENCE
 4.8.4.1. THE COURTYARD RELATIVE HUMIDITY DIFFERENCE
 4.8.4.2. THE 1.5m AWAY RELATIVE HUMIDITY DIFFERENCE
 4.8.4.3. THE 3.5m AWAY RELATIVE HUMIDITY DIFFERENCE
4.9. SUMMARY
4.10. SUB CONCLUSIONS
4.11. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGHOUT A DAY WITH PLEOMELE REFLEX 1m HIGH PLANTS
 4.11.1. THE AIR TEMPERATURE
 4.11.2. THE RELATIVE HUMIDITY
4.11.3 THE AIR TEMPERATURE DIFFERENCE
4.11.2.1. COURTYARD AIR TEMPERATURE DIFFERENCE
4.11.2.2. THE 1.5m AWAY AIR TEMPERATURE DIFFERENCE
4.11.2.3. THE 3.5m AWAY AIR TEMPERATURE DIFFERENCE
4.11.3. THE RELATIVE HUMIDITY DIFFERENCE
4.11.3.1. THE COURTYARD RELATIVE HUMIDITY DIFFERENCE
4.11.3.2. THE 1.5m AWAY RELATIVE HUMIDITY DIFFERENCE
4.11.3.3. THE 3.5m AWAY RELATIVE HUMIDITY DIFFERENCE
4.12. THE INDOOR AIR TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS THROUGHOUT A DAY WITH PLEOMELE REFLEX 3m HIGH PLANTS
4.12.1. THE AIR TEMPERATURE
4.12.2. THE RELATIVE HUMIDITY
4.12.3. THE AIR TEMPERATURE DIFFERENCE
4.12.3.1. COURTYARD AIR TEMPERATURE DIFFERENCE
4.12.3.2. THE 1.5m AWAY AIR TEMPERATURE DIFFERENCE
4.12.3.3. THE 3.5m AWAY AIR TEMPERATURE DIFFERENCE
4.12.4. THE RELATIVE HUMIDITY DIFFERENCE
4.12.4.1. THE COURTYARD RELATIVE HUMIDITY DIFFERENCE
4.12.4.2. THE 1.5m AWAY RELATIVE HUMIDITY DIFFERENCE
4.12.4.3. THE 3.5m AWAY RELATIVE HUMIDITY DIFFERENCE
4.13. SUMMARY
4.14. SUB CONCLUSIONS
CONCLUSION
BIBLIOGRAPHY
APPENDIX
<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Schefflera aborolola plant</td>
<td>4</td>
</tr>
<tr>
<td>2. The common palm types in Sri Lanka</td>
<td>5</td>
</tr>
<tr>
<td>3. The common types of Ptemele refexa plants</td>
<td>5</td>
</tr>
<tr>
<td>4. The floor plan of the selected urban house</td>
<td>6</td>
</tr>
<tr>
<td>5. The psychometric chart develop by Yaglou</td>
<td>10</td>
</tr>
<tr>
<td>6. Biodimatic chart</td>
<td>13</td>
</tr>
<tr>
<td>7. ASHRAE Biodimatic chart</td>
<td>15</td>
</tr>
<tr>
<td>8. Utilization of incident heat radiation in different kind of ground surfaces</td>
<td>21</td>
</tr>
<tr>
<td>9. Influence of runways and grass cover on the air near the ground on an airfield in Hanover, Germany</td>
<td>21</td>
</tr>
<tr>
<td>10. The radiant temperatures between a lawn-black top terrace and street-under a tree</td>
<td>24</td>
</tr>
<tr>
<td>11. Influence on the kind of forest on the diminution of diurnal temperature fluctuation in the trundle space in comparison with open country</td>
<td>26</td>
</tr>
<tr>
<td>12. The behavior of the wind with in the trees</td>
<td>28</td>
</tr>
<tr>
<td>13. The temperatures in, different surfaces observed by D Watson and K Labs</td>
<td>28</td>
</tr>
<tr>
<td>14. Effectiveness of wall planting as sun control method</td>
<td>29</td>
</tr>
<tr>
<td>15. The apartment building Biel, Switzerland</td>
<td>30</td>
</tr>
<tr>
<td>16. The Research center, Varies, Italy</td>
<td>31</td>
</tr>
<tr>
<td>17. The commerzbank head quarters building</td>
<td>31</td>
</tr>
<tr>
<td>18. The commerzbank head quarters building</td>
<td>32</td>
</tr>
<tr>
<td>19. The Architects office, Santiago, Chile –courtyard</td>
<td>32</td>
</tr>
<tr>
<td>20. The Architects office, Santiago, Chile –court yard</td>
<td>33</td>
</tr>
<tr>
<td>21. The Architects office, Santiago, Chile –cross section</td>
<td>33</td>
</tr>
<tr>
<td>22. Monthly mean Air temperature in 1998 oC</td>
<td>35</td>
</tr>
<tr>
<td>23. Monthly mean Relative humidity in 1998 %</td>
<td>35</td>
</tr>
<tr>
<td>24. The proposed neutral temperatures</td>
<td>36</td>
</tr>
<tr>
<td>25. The floor plan of the model courtyard</td>
<td>38</td>
</tr>
<tr>
<td>26. The section of the model courtyard</td>
<td>38</td>
</tr>
<tr>
<td>27. Schefflera aborolola green plant</td>
<td>40</td>
</tr>
<tr>
<td>28. Schefflera aborolola plant</td>
<td>40</td>
</tr>
<tr>
<td>29. Cane palm tree</td>
<td>40</td>
</tr>
<tr>
<td>30. Queen palm tree</td>
<td>40</td>
</tr>
</tbody>
</table>
31. Plemele reflexa plant
32. Air temperature variation through a full day without plants
33. Relative humidity variation through a full day without plants
34. Air temperature variation through a full day with Schefflera green 9 plants
35. Relative humidity variation through a full day with Schefflera green 9 plants
36. Courtyard air temperature differences- without plants and Schefflera green 9 plants
37. 1.5m away air temperature differences- without plants and Schefflera green 9 plants
38. 3.5m away air temperature differences- without plants and Schefflera green 9 plants
39. The air temperature difference through out a day (without plants and with Schefflera green 9 plants)
40. Courtyard relative humidity differences- without plants and Schefflera green 9 plants
41. 1.5m away relative humidity differences- without plants and Schefflera green 9 plants
42. 3.5m away relative humidity differences- without plants and Schefflera green 9 plants
43. The relative humidity difference through out a day (without plants and with Schefflera green 9 plants)
44. Air temperature variation through a full day with Schefflera yellow 9 plants
45. Relative humidity variation through a full day with Schefflera yellow 9 plants
46. Courtyard air temperature differences- without plants and Schefflera yellow 9 plants
47. 1.5m away air temperature differences- without plants and Schefflera yellow 9 plants
48. 3.5m away air temperature differences- without plants and Schefflera yellow 9 plants
49. The air temperature difference through out a day (without plants and with Schefflera yellow 9 plants)
50. Courtyard relative humidity differences- without plants and Schefflera yellow 9 plants
51. 1.5m away relative humidity differences- without plants and Schefflera yellow 9 plants
52. 3.5m away relative humidity differences- without plants and Schefflera yellow 9 plants
53. The relative humidity difference through out a day (without plants and with Schefflera yellow 9 plants)
54. Air temperature variation through a full day with Schefflera green 18 plants
55. Relative humidity variation through a full day with Schefflera green 18 plants
56. Courtyard air temperature differences- without plants and Schefflera green 18 plants
57. 1.5m away air temperature differences- without plants and Schefflera green 18 plants
58. 3.5m away air temperature differences- without plants and Schefflera green 18 plants
59. The air temperature difference through out a day (without plants and with Schefflera green 18 plants)
60. Courtyard relative humidity differences- without plants and Schefflera green 18 plants
61. 1.5m away relative humidity differences- without plants and Schefflera green 18 plants
62. 3.5m away relative humidity differences- without plants and Schefflera green 18 plants
63. The relative humidity difference through out a day (without plants and with Schefflera green 18 plants)
62. 3.5m away relative humidity differences- without plants and Schefflera green 18 plants
63. The relative humidity difference through out a day (without plants and with Schefflera green 18 plants)
64. Air temperature variation through a full day with Cane palm
65. Relative humidity variation through a full day with Cane palm
66. Courtyard air temperature differences- without plants and Cane palm
67. 1.5m away air temperature differences- without plants and Cane palm
68. 3.5m away air temperature differences- without plants and Cane palm
69. The air temperature difference through out a day (without plants and with Cane palm)
70. Courtyard relative humidity differences- without plants and Cane palm
71. 1.5m away relative humidity differences- without plants and Cane palm
72. 3.5m away relative humidity differences- without plants and Cane palm
73. The relative humidity difference through out a day (without plants and with Cane palm)
74. Air temperature variation through a full day with Queen palm
75. Relative humidity variation through a full day with Queen palm
76. Courtyard air temperature differences- without plants and Queen palm
77. 1.5m away air temperature differences- without plants and Queen palm
78. 3.5m away air temperature differences- without plants and Queen palm
79. The air temperature difference through out a day (without plants and with Queen palm)
80. Courtyard relative humidity differences- without plants and Queen palm
81. 1.5m away relative humidity differences- without plants and Queen palm
82. 3.5m away relative humidity differences- without plants and Queen palm
83. The relative humidity difference through out a day (without plants and with Queen palm)
84. Air temperature variation through a full day with Pelomele 1 m high plant
85. Relative humidity variation through a full day with Pelomele 1 m high plant
86. Courtyard air temperature differences- without plants and Pelomele 1 m high plant
87. 1.5m away air temperature differences- without plants and Pelomele 1 m high plant
88. 3.5m away air temperature differences- without plants and Pelomele 1 m high plant
89. The air temperature difference through out a day (without plants and with Pelomele 1 m high plant)
90. Courtyard relative humidity differences- without plants and Pelomele 1 m high plant
91. 1.5m away relative humidity differences- without plants and Pelomele 1 m high plant
92. 3.5m away relative humidity differences- without plants and Pelomele 1 m high plant
93. The relative humidity difference through out a day (without plants and with Pelomele 1 m high plant)
94. Air temperature variation through a full day with Pelomele 3m high plant
95. Relative humidity variation through a full day with Pelomele 3m high plant
96. Courtyard air temperature differences- without plants and Pelomele 3m high plant
97. 1.5m away air temperature differences- without plants and Pelomele 3m high plant
98. 3.5m away air temperature differences- without plants and Pelomele 3m high plant
99. The air temperature difference throughout a day (without plants and with Pelomele 3m high plant)
100. Courtyard relative humidity differences- without plants and Pelomele 3m high plant
101. 1.5m away relative humidity differences- without plants and Pelomele 3m high plant
102. 3.5m away relative humidity differences- without plants and Pelomele 3m high plant
103. 3.5m away relative humidity differences- without plants and Pelomele 3m high plant