# COMPUTERIZED OPTIMIZATION OF THE BASE WIDTH OF TRANSMISSIONTOWERS IN SRI LANKA

R.Ganeshwaran



Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2014

#### Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters under our supervision.

Signature of the supervisor:

Signature of the supervisor:

Date

Date

#### Abstract

Transmission line towers were mainly used in electrification works in all over the world. Optimization of base width of the transmission towers becomes necessary in order to reduce the cost and to avoid public objection. The use of narrow width tower becomes essential, as the land value appreciates drastically in Sri Lanka. This research is to design the transmission towers with reduced base width to minimize the coverage land with optimum weight and adequate strength.

There were number of models selected with 14.2m base width and analyzed by reducing the width in steps from 1m to 3.2m. For this purpose computerized model analysis software named PLS Tower was used. Accordingly cost analysis was carried out for different steel prices and the cost of land. As per this study Optimum base width of 6.2m was found considering both the land & steel price.

When compared with the towers used in Sri Lanka, it was found that the narrow width towers designed from this study showed a considerable amount of saving in cost and favourable impact on environmental issues.

8

Electronic Theses & Dissertations www.lib.mrt.ac.lk

#### Acknowledgement

I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude with respect I give to my supervisors, Dr. (Mrs.) M.T.P.Hettiarachchi and Dr.K.Baskaran, Department of Civil Engineering, University of Moratuwa, whose contribution in stimulating suggestions, encouragement, their guidance and constant supervision as well as for providing necessary information regarding the project.

I am also grateful to the course co-coordinator Dr.C.S.Lewangamage, teachers and the head of Department of Civil Engineering at University of Moratuwa for all kind of support and help.

Furthermore, I would also like to acknowledge with much appreciation the crucial role to R.C.V.Kumara, Senior Civil Engineer, Ceylon Electricity Board, who gave assistance in PLS Tower software, AutoCAD the valuable advices and friendly help for this research to end up with efficient result.

I would not forget to remember Eng. (Mrs.) Champa Sathurusinghe, Project Manager (Transmission Line Project), Ceylon Electricity Board for her unstinted encouragement and more over for her timely support. My sincere thanks goes to Mr.S.Thuvaragan, QS for his great support.

Finally my sincere gratitude goes to my family for their understandings and supports extended to me in completing this project successfully. I am of the firm opinion that the completion of this report would have been a nightmare without any of the supports mentioned above.

### Contents

| Declaration        | i    |
|--------------------|------|
| Abstract           | ii   |
| Acknowledgement    | iii  |
| Contents           | iv   |
| List of Tables     | vii  |
| List of Figures    | viii |
| Notations          | xi   |
| List of Appendices | xiii |

### **Chapter 01 Introduction**

| 1.1 Background and problem                     | 01 |
|------------------------------------------------|----|
| 1.2 Objectives ectronic Theses & Dissertations | 02 |
| 1.3 Scope of Work                              | 02 |
| 1.4 Methodology                                | 03 |
| 1.5 Outline of thesis                          | 03 |

### Chapter 02 Literature Review

| 2.1.1 Introduction                                                  | 04 |
|---------------------------------------------------------------------|----|
| 2.1.2 Study of 'Optimization of structural design for sustainable   |    |
| algorithm'                                                          | 04 |
| 2.1.3 Study of 'Optimal design of transmission towers using genetic |    |
| algorithm'                                                          | 05 |

| 2.1.4 Study of 'Cost related optimum design method for overhead l | high |
|-------------------------------------------------------------------|------|
| voltage transmission lines'                                       | 05   |
| 2.2 Design variables                                              | 06   |
| 2.3 Types of towers used in Sri Lanka                             | 06   |
| 2.3.1 Tower Anatomy                                               | 07   |
| 2.3.2 Tower Extension                                             | 07   |
| 2.3.3 Outline of Towers                                           | 09   |
| 2.3.4 Tower width depends on                                      | 09   |
| 2.4 Bracing Systems                                               | 10   |
| 2.5 Failures                                                      | 11   |
| 2.6 Study of 'Strength Assessment of Steel Towers'                | 12   |
| Chapter 03 Design Practice Theses & Dissertations                 |      |
| 3.1 Applicable Standards                                          | 13   |
| 3.2 Structural Loads                                              | 13   |
| 3.2.1 Loads Due to wind pressure                                  | 14   |
| 3.2.2 Loading on Tower                                            | 14   |
| 3.2.3 Vertical Loadings                                           | 17   |
| 3.2.4 Horizontal Forces: Transverse Forces                        | 18   |
| 3.3 Loading Parameters                                            |      |
| 3.3.1 Normal Condition                                            | 19   |
| 3.3.2 Broken Wire Condition                                       | 19   |
| 3.4 Type of Bracing System Use in Lattice Tower                   | 20   |

### Chapter 04 Structural Analysis and Modeling of Tower

| 4.1 Structural Analysis of Transmission Tower                  | 21 |
|----------------------------------------------------------------|----|
| 4.2 Software used for Structural analysis & Modeling           | 21 |
| 4.3 Design Criteria                                            | 25 |
| 4.4 Design Data                                                | 26 |
| 4.5 Clearance Diagram for Transmission Tower                   | 28 |
| 4.6 Determination of Loads                                     | 29 |
| 4.6.1 Calculation of Loads for - Normal Condition              | 29 |
| 4.6.2 Calculation of Loads for –Broken wire Condition          | 30 |
| 4.7 Explanation of a Tree Diagram and the detailed calculation | 31 |
| 4.8 Loads showing on Tree Diagram for Each Case                | 38 |
| 4.9 Nodal Diagram                                              | 47 |
| 4.10 Wind Distribution Drawing S & Dissert about               | 48 |
| 4.11 Modeling and Analysis in PLS – Tower                      | 49 |
| Chapter 05 Cost Analysis                                       | 55 |
| 5.1 Analysis for TDL +12m Tower Type                           | 55 |
| Chapter 06 Discussions and Results                             | 64 |
| 6.1 Conclusion                                                 | 66 |
| Reference                                                      | 67 |
| Appendix                                                       | 69 |

### List of Tables

| Table 3.1 Weight span of towers according to CEB guideline         | 17 |
|--------------------------------------------------------------------|----|
| Table 4.1 Loading values for 132kV D/C Tower type "TDLS"           | 32 |
| Table 5.1 Tower & Land cost variation with respect to the "TDL+12" |    |
| Tower's base width & Steel unit rate (LKR.250)                     | 57 |
| Table 5.2 Tower & Land cost variation with respect to the "TDL+9"  |    |
| Tower's base width & Steel unit rate (LKR.250)                     | 58 |
| Table 5.3 Tower & Land cost variation with respect to the "TDL+6"  |    |
| Tower's base width & Steel unit rate (LKR.250)                     | 59 |
| Table 5.4 Tower & Land cost variation with respect to the "TDL+3"  |    |
| Tower's base width & Steel unit rate (LKR.250)                     | 60 |
| Table 5.5 Tower & Land cost variation with respect to the "TDL+0"  |    |
| Tower's base width & Steel unit rate (LKR.250)                     | 61 |
| Table 5.6 Tower & Land cost variation with respect to the "TDL+12" |    |
| Tower's base width & Steel unit rate (LKR.250)                     | 62 |
| Table 5.7 Summary sheet for optimum tower width with respect to    |    |
| the total cost of land & tower weight                              | 63 |
| Table 6.1 Tower Weight comparison                                  | 65 |
| Table 6.2 Tower price & Land price comparison                      | 65 |

## List of Figures

| Figure 2.1 Tower Components                                        | 07 |
|--------------------------------------------------------------------|----|
| Figure 2.2 Body Extension                                          | 08 |
| Figure 2.3 Leg Extension                                           | 08 |
| Figure 2.4 Outline of Towers                                       | 09 |
| Figure 3.1 Loadings on Tower                                       | 14 |
| Figure 3.2 Loading pattern of Tower                                | 16 |
| Figure 3.3 Weight span                                             | 17 |
| Figure 3.4 Dead load of insulators, Hardware and other accessories | 18 |
| Figure 3.5 Wind Span                                               | 18 |
| Figure 4.1 Typical Towers Sity of Morahuwa, Sri Lanka.             | 22 |
| Figure 4.2 Large substation structures                             | 23 |
| Figure 4.3 Photograph associated with a particular tower           | 24 |
| Figure 4.4 Electrical Clearance Diagram                            | 28 |
| Figure 4.5 Loading Trees for 132kV D/C Tower type "TDLS            | 31 |
| Figure 4.6.1 Loading Tree Case 01                                  | 38 |
| Figure 4.6.2 Loading Tree Case 02                                  | 38 |
| Figure 4.6.3 Loading Tree Case 03                                  | 38 |
| Figure 4.6.4 Loading Tree Case 04                                  | 38 |
| Figure 4.6.5 Loading Tree Case 05                                  | 39 |

| Figure 4.6.6 Loading Tree Case 06  | 39 |
|------------------------------------|----|
| Figure 4.6.7 Loading Tree Case 07  | 39 |
| Figure 4.6.8 Loading Tree Case 08  | 39 |
| Figure 4.6.9 Loading Tree Case 09  | 40 |
| Figure 4.6.10 Loading Tree Case 10 | 40 |
| Figure 4.6.11 Loading Tree Case 11 | 40 |
| Figure 4.6.12 Loading Tree Case 12 | 40 |
| Figure 4.6.13 Loading Tree Case 13 | 41 |
| Figure 4.6.14 Loading Tree Case 14 | 41 |
| Figure 4.6.15 Loading Tree Case 15 | 41 |
| Figure 4.6.16 Loading Tree Case 16 | 41 |
| Figure 4.6.17 Loading Tree Case 17 | 42 |
| Figure 4.6.18 Loading Tree Case 18 | 42 |
| Figure 4.6.19 Loading Tree Case 19 | 42 |
| Figure 4.6.20 Loading Tree Case 20 | 42 |
| Figure 4.6.21 Loading Tree Case 21 | 43 |
| Figure 4.6.22 Loading Tree Case 22 | 43 |
| Figure 4.6.23 Loading Tree Case 23 | 43 |
| Figure 4.6.24 Loading Tree Case 24 | 12 |
|                                    | 43 |

| Figure 4.6.26 Loading Tree Case 26    | 44 |
|---------------------------------------|----|
| Figure 4.6.27 Loading Tree Case 27    | 44 |
| Figure 4.6.28 Loading Tree Case 28    | 44 |
| Figure 4.6.29 Loading Tree Case 29    | 45 |
| Figure 4.6.30 Loading Tree Case 30    | 45 |
| Figure 4.6.31 Loading Tree Case 31    | 45 |
| Figure 4.6.32 Loading Tree Case 32    | 45 |
| Figure 4.6.33 Loading Tree Case 33    | 46 |
| Figure 4.6.34 Loading Tree Case 34    | 46 |
| Figure 4.6.35 Loading Tree Case 35    | 46 |
| Figure 4.6.36 Loading Tree Case 36    | 46 |
| Figure 4.7 Nodal Diagram hb met ac lk | 47 |
| Figure 4.8 Wind Distribution Drawing  | 48 |

#### Notations

- BS British Standards for Design & Construction
- CEB Ceylon Electricity Board
- ISO International Organization for Standardization

OPGW - Optical Fibre Ground wire

- PLS Power Line System software
- TDL Tower Double circuitLine
- TD1 (Tower Double circuit –Deviation angle 0°- 10°)
- TD3 (Tower **D**ouble circuit –Deviation angle  $10^{\circ}$   $30^{\circ}$ )
- TD6 (Tower Double circuit –Deviation angle **30°- 60°**)
- TDT (Tower Double circuit Terminal)
  - 🦉 www.lib.mrt.ac.lk
- $WS_1 Wind \text{ span } 01$
- WS<sub>2</sub> Wind span 02
- W<sub>1</sub> Weight span 01
- W<sub>2</sub> Weight span 02

For Earth wire (OPGW)

- Ne –Numbers
- De (mm) Diameter
- We (kN/m) Weight
- Te (kN) Tension
- Pe  $(kN/m^2)$  Wind pressure

#### For Conductor

- Nc Numbers
- Dc (mm) Diameter
- Wc(kN/m) Weight
- Tc (kN) Tension
- Pc  $(kN/m^2)$  Wind pressure

#### For Insulator

- Ni Numbers
- Di (mm) Diameter
- Wi(kN/m) Weight
- Li (kN) Length
- Pi  $(kN/m^2)$  Wind pressure

Spans & deviation

- University of Moratuwa, Sri Lanka.
- Sw Wind span circonic Theses & Dissertations
- Sw<sub>1</sub> Max. Weight span
- Sw<sub>2</sub> Min. Weight span
- Ø angle of Deviation

# List of Appendices

| 70  |
|-----|
| 96  |
| 98  |
| 101 |
| 102 |
| 104 |
|     |
| 105 |
| 106 |
| 107 |
| 110 |
|     |
| 125 |
|     |