DEVELOPMENT OF EMPIRICAL CORRELATIONS BETWEEN CALIFORNIA BEARING RATIO (CBR) AND SOIL INDEX PROPERTIES.

K.V.S.D. Jayamali

Degree of Master of Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2013

DEVELOPMENT OF EMPIRICAL CORRELATIONS BETWEEN CALIFORNIA BEARING RATIO (CBR) AND SOIL INDEX PROPERTIES.

Kevitiyagala Vithanage Sanjeewani Disna Jayamali

(09/8812)

Thesis submitted in partial fulfillment of the requirement for the degree Master of Engineering in Foundation Engineering and Earth Retaining Systems

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2013

DECLARATION

I hereby declare that the work presented in this dissertation is my own research except as cited in the references. I also declare that this report has not been accepted for any other University or Institute and no part of this project report has been submitted earlier or concurrently for same or any other Degree or Diploma, to the best of my knowledge.

K.V.S.D. Jayamali

Admission Date : University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Certified By

.....

Dr. U.P. Nawagamuwa

(Supervisor)

DEDICATION

This dissertation is dedicated to my loving husband and my parents and family, for their endless love, support and encouragement. I won't be here without their love, patience, bear and understanding throughout my life. My wholehearted thanks go to all of you giving me strength to achieve my dreams and lightened up my spirit to finish this state and this thesis. It is the state of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere appreciation to all people and organization that had contributed towards the successful completion of this project.

First and foremost, I would like to extend gratitude to my supervisor, Dr. U.P. Nawagamuwa, Senior Lecturer, Department of Civil Engineering, University of Moratuwa, Sri Lanka for his guidance and support throughout this study, and especially for his confidence on me. Once more I thank him for his able supervision with spending his precious time and valuable advices in completion of this research successfully.

Secondly, I wish to extend by sincere thanks to Geotech (Pvt) Ltd where I am employed, for the cooperation by funding me in successful completion of this project.

My special marks goes to all the staff of Group Engineering Laboratories (Pvt) Ltd for their assistant to carry out laboratory experiments, and laboratory manager of WWW.110.mrt.ac.1k Engineering & Laboratories (Pvt) Ltd who provided relevant information and data for achieving the research requirements while sharing her knowledge with me.

Last but not least, not to forget the full supports that has been given by my family during my study.

ABSTRACT

The California Bearing Ratio is a penetration test for evaluation of the mechanical strength of road sub-grades and base-courses. This can be used as a mean of designing the road pavement required for a particular strength of sub-grade by comparing the strength of different sub-grade materials.

However; civil engineers always encounter difficulties in obtaining representative CBR value for design of pavement. Over the years, many correlations had been proposed by various researchers in which the soil index properties were used to develop these correlations.

A study was carried out to find correlations between CBR value with soil index properties those best suit the type of soils in Sri Lanka. Analyses were carried out based on the published correlations and soil data obtained from several Sri Lankan project sites. Based on the results, it is observed that the current published correlations are not in good agreement with Sri Lanka soils. In addition, no typical range could be found based on the soil index properties. Electronic Theses & Dissertations

Mechanical Strength of soil depends only on the soil type but also on the observable physical characteristics which significantly influence on a soil's behavior. Therefore, a method is proposed for correlating soaked CBR value and compaction parameters with such index properties, for Sri Lankan soils. This research covers the entire soil types according to Unified Soil Classification System which are generally used as sub-grades and base-courses.

Among the several soil index properties, Atterberg Limits and grain size distribution data are used in this regard as these tests are much more economical and rapid than Compaction and CBR tests. The correlations are established in the form of an equation as a function of different soil properties by the method of regression analysis. Finally, results of the laboratory test are used to compare with the results of regression equation for the compiled data for the validation of the correlation.

Key Words : California Bearing ratio, Compaction Parameters, Index Properties, Regression Analysis

TABLE OF CONTENTS

PAGE

DEDICATIONIIIACKNOWLEDGEMENTSIVABSTRACTVTABLE OF CONTENTSVILIST OF TABLESIXLIST OF FIGURESXLIST OF APPENDICESXIIILIST OF SYMBOLSXIV	DECLARATION	II
ABSTRACTVTABLE OF CONTENTSVILIST OF TABLESIXLIST OF FIGURESXLIST OF APPENDICESXII	DEDICATION	III
TABLE OF CONTENTSVILIST OF TABLESIXLIST OF FIGURESXLIST OF APPENDICESXIII	ACKNOWLEDGEMENTS	IV
LIST OF TABLESIXLIST OF FIGURESXLIST OF APPENDICESXIII	ABSTRACT	V
LIST OF FIGURES X LIST OF APPENDICES XIII	TABLE OF CONTENTS	VI
LIST OF APPENDICES XIII	LIST OF TABLES	IX
	LIST OF FIGURES	Х
LIST OF SYMBOLS XIV	LIST OF APPENDICES	XIII
	LIST OF SYMBOLS	XIV

CHAPTER 1 : INTRODUCTION

1.1	Background	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	1
1.2	Problem Statement	www.lib.mrt.ac.lk	3
1.3	Aim and Objectives	of Study	3
1.4	Scope of Study		4
1.5	Significance of the S	Study	4

CHAPTER 2 : LITERATURE REVIEW

2.1	Introdu	ction	5
2.2	Index F	Properties of Soils	5
	2.2.1	Particle Size Distribution	5
	2.2.2	Atterberg Limits	7
2.3	Soil Cl	assification	9
2.4	Soil Co	ompaction	14
2.5	Califor	nia Bearing Ratio	15
	2.5.1	Applications of California Bearing Ratio	17
	2.5.2	Advantages and Disadvantaged of CBR Test	18
	2.5.3	Alternative to CBR & its Limitations	19

2.6	Existing	g Correlations between CBR and Index Tests	20
	2.6.1	Black (1962)	20
	2.6.2	de Graft – Johnson and Bhatia (1969)	22
	2.6.3	Agarwal and Ghanekar (1970)	23
	2.6.4	The Highway Agency (1994)	24
	2.6.5	National Cooperative Highway Research Program (2001)	25
	2.6.6	Kin (2006)	26
	2.6.7	Vinod and Cletus (2008)	27
	2.6.8	Roy et al (2009)	28
	2.6.9	Ayodele et al (2009)	28
	2.6.10	Patel and Desai (2010)	28
	2.6.11	Breytenbach (2009)	28
	2.6.12	Singh et al (2011)	33
	2.6.13	Agarawal et al (2011)	34

CHAPTER 3 : METHODOLOGY

		University of Moratuwa, Sr	1 Lanka.
3.1		Electronic Theses & Disser	tations 36
3.2	Data C	collection www.lib.mrt.ac.lk	38
	3.2.1	Data Selection and Grouping	38
3.3	Labora	ntory Test Methods	40
3.4	Data A	nalysis	41
	3.4.1	Regression Analysis	41

CHAPTER 4 : RESULTS AND DISCUSSION

4.1	Introdu	iction	43
4.2	Data C	ategorization	43
4.3	Data F	iltration	44
4.4	Data A	Analysis	51
	4.4.1	Individual Parameter Analysis by Graphical Representations	51
	4.4.2	Evaluation and Modification of Published Correlations	62
	4.4.3	Development of New Empirical Correlations	92
	4.4.4	General Discussion	107
	4.4.5	Validation of developed correlations	109

CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusion	111
5.2	Recommendations for Future Study	112

REFERENCES

114

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES TABLE

NO.	TITLE	PAGE
Table 2.1 :	Different methods of Proctor Compaction Test	14
Table 2.2(a):	Typical Values of CBR by Unified Soil Classification System (Semen, 2006)	16
Table 2.2(b):	Typical Values of CBR by Unified Soil Classification System(Semen, 2006)	17
Table 2.3 :	Subgrade CBR estimation of British soils compacted at natural moisture	24
	content (The Highway Agency, 1994)	
Table 2.4 :	Statistics of Data Used by International Journal of Computer Applications	34
Table 2.5 :	Correlation Equations Obtained by SRA	35
Table 2.6 :	Statistical Results of SRA.	35
Table 2.7 :	Correlation Equations Obtained By MRA	35
Table 2.8 :	Statistical Results of MRA	35
Table 4.1 :	Data Filtration	44
Table 4.2 :	Statistics of fine grained plastic soil data compacted to 100% MDD and Electronic Theses & Dissertations OMC in standard manner WWW.IIO.mrt.ac.lk	46
Table 4.3 :	Statistics of coarse grained plastic soil data compacted to 100% MDD and	47
	OMC in standard manner	
Table 4.4 :	Statistics of coarse grained non-plastic soil data compacted to 100% MDD	47
	and OMC in standard manner	
Table 4.5 :	Statistics of coarse grained plastic soil data compacted to 95% MDD and	48
	OMC in modified manner	
Table 4.6 :	Statistics of coarse grained non-plastic soil data compacted to 95% MDD	48
	and OMC in modified manner	
Table 4.7 :	Individual relationship between CBR and index properties of fine grained	53
	soils compacted to 100% MDD & OMC in Standard manner	
Table 4.8 :	Individual relationship between CBR and index properties of coarse grained	57
	soils compacted to 100% MDD & OMC in Standard manner	
Table 4.9 :	Individual relationship between CBR and index properties of coarse grained	61
	soils compacted to 95% MDD & OMC in Modified manner	

LIST OF FIGURES

FIG NO.	TITLE	PAGE
Fig.2.1 :	Soil Grading Curve	6
Fig 2.2 :	Soil Plasticity Stages	7
Fig 2.3:	Unified Soil Classification of fine grained soils	11
Fig 2.4:	Unified Soil Classification of Coarse grained soils	12
Fig 2.5:	Plasticity Chart	13
Fig 2.6:	Relationship between CBR and plasticity index at various liquidity index values (Black ,1962)	21
Fig 2.7:	Correction of CBR values for partial saturation (Black ,1962)	21
Fig 2.8(a):	Relationship between suitability index and soaked CBR values for Ghanaian Lateritic Soils (de Graft – Johnson et al ,1969)	22
Fig 2.8(b):	Relationship between suitability index and soaked CBR values for Ghanaian Lateritie-Quartz Gravel (de Graft – Johnson et al ,1979)	23
Fig 2.9:	Correlation of CBR, Maximum Dry Density and Optimum Moisture Content (Kin, 2006)	27
Fig 2.10 :	CBR estimation proposed by Stephenson et al (1967) Lanka.	31
Fig 3.1 :	Flow Charton Overall Research Methodologyssertations	37
Fig 3.2 :	Hierarchical Chart of Data Grouping k	39
Fig 4.1 :	Variation of CBR Values compacted to 100% MDD and OMC in a Standard Manner	45
Fig 4.2 :	Variation of CBR Values compacted to 95% MDD and OMC in a Modified Manner	45
Fig 4.3 :	Gradation curve for the sieve analysis	49
Fig 4.4 :	Graph for determination of liquid limit test	49
Fig 4.5 :	Compaction curve for determination of MDD and OMC	50
Fig 4.6 :	Graph showing load vs. penetration for determination of CBR value	50
Fig. 4.7(a):	Scattered plots of individual soils parameters Vs. CBR for fine grained plastic	51
	soils compacted to 100% MDD and OMC in standard manner (i)	
Fig. 4.7(b):	Scattered plots of individual soils parameters Vs. CBR for fine grained plastic	52
	soils compacted to 100% MDD and OMC in standard manner (ii)	
Fig. 4.8(a):	Scattered plots of compaction parameters Vs. CBR for coarse grained soils	54
	compacted to 100% MDD and OMC in standard manner	
Fig. 4.8(b):	Scattered plots of grading parameters Vs. CBR for coarse grained soils	55
	compacted to 100% MDD and OMC in standard manner	

Fig. 4.8(c):	Scattered plots of key particle sizes Vs. CBR for coarse grained soils	56
	compacted to 100% MDD and OMC in standard manner	
Fig. 4.8(d)	Scattered plots of Atterberg Limits parameters Vs. CBR for coarse grained	56
	soils compacted to 100% MDD and OMC in standard manner	
Fig. 4.9(a)	Scattered plots of compaction parameters Vs. CBR for coarse grained soils	58
	compacted to 95% MDD and OMC in modified manner	
Fig. 4.9(b):	Scattered plots of grading parameters Vs. CBR for coarse grained soils compacted to 95% MDD and OMC in modified manner	59
Fig. 4.9(c):	Scattered plots of key particle sizes Vs. CBR for coarse grained soils	60
	compacted to 95% MDD and OMC in modified manner	
Fig. 4.9(d):	Scattered plots of Atterberg Limits parameters Vs. CBR for coarse grained	60
	soils compacted to 95% MDD and OMC in modified manner	
Fig 4.10(a):	Comparison of de Graft – Johnson and Bhatia (1969) with Sri Lankan data	63
Fig 4.10(b):	Relationship between SI & CBR for local soils	63
Fig 4.10(c):	Relationship between MDD/PI & CBR for local sandy soils	64
Fig 4.11(a):	Comparison of Agarwal and Ghanekar (1970) with Sri Lankan data	65
Fig 4.11(b):	Comparison of Modified Correlation to Agarwal and Ghanekar (1970)	66
Fig 4.12(a):	Comparison of NGHRP (2001) with docatisoit datari Lanka.	67
Fig 4.12(b):	Relationship between wPi & CBRSfor 18caDioitertations	68
Fig 4.12(c):	Comparison of modified relationships between PI, P075 & CBR for local soils	69
Fig 4.13(a):	Comparison of Kin(2006) with local soil data	70
Fig 4.13(b):	Power relationship between the ratio of CBR/OMC vs. MDD for local soils	70
Fig 4.13(c):	Linear relationship between the ratio of CBR/OMC vs. MDD for local soils	71
Fig 4.14(a):	Comparison Graph of Vinod and Cletus (2008) with local plastic soils	72
Fig 4.14(b):	Relationship between WLM and CBR for local plastic soils	72
Fig 4.14(c):	Modified Relationship between WLM and CBR for plastic soils compacted to	73
	95% MDD & OMC in Modified Manner	
Fig 4.15:	Comparison of Roy et el (2009) with local soil data	74
Fig 4.16(a):	Comparison of Ayodele et al (2009) for soils compacted to 100% MDD &	76
	OMC in a Standard Manner	
Fig 4.16(b):	Comparison of Ayodele et al (2009) for soils compacted to 95% MDD &	76
	OMC in a Modified Manner with Sri Lankan data	
Fig 4.17(a):	Comparison of Patel and Desai (2010) for local plastic soils	77
Fig 4.17(b):	Comparison of modified Patel and Desai (2010) for local plastic soils	78

Fig 4.18(a):	Comparison of South African Railways (1970) with Sri Lankan data	79
Fig 4.18(b):	Relationship between I_f and CBR for coarse grained soils compacted to 95%	80
	MDD and OMC using Mod. Effort	
Fig 4.18(c):	Comparison of new regression correlation between CBR and LL, PL and P075	80
Fig 4.19(a):	Comparison of Sood et al. (1978) and Dhir et al(1987) with Sri Lankan data	81
Fig 4.19(b):	Comparison of modified correlation to Sood et al. (1978) and Dhir et al(1987)	82
Fig 4.20(a):	Comparison of Haupt(1980) for plastic soils compacted to 100% MDD &	83
	OMC in a Standard Manner	
Fig 4.20(b):	Comparison of Haupt (1980) for plastic soils compacted to 95% MDD &	84
	OMC in a Modified Manner	
Fig 4.21(a):	Comparison of Agarawal et al (2011) Eq. 2.28 with local plastic soils	87
Fig 4.21(b):	Comparison of Agarawal et al (2011) Eq. 2.29 with local plastic soils	87
Fig 4.21(c):	Comparison of Agarawal et al (2011) Eq. 2.30 with local plastic soils	87
Fig 4.21(d):	Comparison of Agarawal et al (2011) Eq. 2.31 with local plastic soils	88
Fig 4.21(e):	Comparison of Agarawal et al (2011) Eq. 2.32 with local plastic soils	88
Fig 4.22(a):	Comparison of Agarawal et al (2011) Eq.2.33 with local plastic soils University of Moratuwa, Sri Lanka.	89
Fig 4.22(b):	Comparison of Agarawal et at (2014) Eq.2.34 with local plastic soils	89
Fig 4.22(c):	Comparison of Agarawal et al (2011) Eq.2.35 with local plastic soils	89
Fig 4.22(d):	Comparison of Agarawal et al (2011) Eq.2.36 with local plastic soils	90
Fig 4.22(e):	Comparison of Agarawal et al (2011) Eq.2.37 with local plastic soils	90
Fig 4.22(f):	Comparison of modified Agarawal et al (2011) Eq.2.35 for plastic soils	92
	compacted to 95% MDD and OMC in a modified manner	
Fig 4.23 :	Comparison of developed empirical correlation for non-plastic coarse grained	95
	soils compacted to 100% MDD and OMC in a standard manner	
Fig 4.24 :	Comparison of developed empirical correlation for non-plastic coarse grained	97
	soils compacted to 95% MDD and OMC in a modified manner	
Fig 4.25 :	Comparison of developed empirical correlation for plastic fine grained soils	98
	compacted to 100% MDD and OMC in a standard manner	
Fig 4.26 :	Comparison of developed empirical correlation for plastic fine grained soils of	99
	CBR below 20% compacted to 100% MDD and OMC in a standard manner	
Fig 4.27 :	Comparison of developed empirical correlation for plastic coarse grained soils	100
	compacted to 100% MDD and OMC in a standard manner	
Fig 4.28(a):	Comparison of developed empirical correlation for SC soils compacted to	103
	100% MDD and OMC in a standard manner	

Fig 4.28(b):	Comparison of developed empirical correlation for SC soils with CBR below	104
	25% compacted to 100% MDD and OMC in a standard manner	
Fig 4.29 :	Comparison of developed empirical correlation for plastic coarse grained soils	105
	compacted to 95% MDD and OMC in a modified manner	
Fig 4.30:	Comparison of developed empirical correlation for 'SC' and 'SM-SC' soils	107
	compacted to 95% MDD and OMC in a modified manner	
Fig 4.31 :	Verification of developed new correlation - Eq.4.39	109
Fig 4.32 :	Verification of developed new correlation - Eq.4.47	110
Fig 4.33 :	Verification of developed new correlation -Eq.4.46	110

LIST OF APPENDICES University of Moratuwa, Sri Lanka. Appendix 1 - Summary of Compiled Data for Model Derivation www.lib.mrt.ac.lk

Appendix 2 - Summary of Tests Performed for Model Verification

LIST OF ABBREVIATIONS AND SYMBOLS

CBR	- California Bearing Ratio
CBR	- CBR value at top face of soil sample
CBR	- CBR value at bottom face of soil sample
DCP	- Dynamic Cone Penetrometer
D	- Diameter at 60% passing from grain size distribution (mm)
D ₅₀	- Diameter at 50% passing from grain size distribution (mm)
D ₃₀	- Diameter at 30% passing from grain size distribution (mm)
D ₁₀	- Diameter at 10% passing from grain size distribution (mm)
10 LL	 Liquid Limit
PL	- Plastic Limit
PI	- Plasticity Index
MDD	- Maximum Dry Density
OMC	 Optimum Moisture Content
SI	- Suitability Index
γd max	- Maximum Dry Density
γw	Density of Water of Moratuwa, Sri Lanka.
f	() Finese Content () Pheses & Dissertations
MC	Moisture Content, ac.lk
SRA	- Simple Regression Analysis
MRA	- Multiple Regression Analysis
С	- Fraction coarser than 0.425 mm sieve
WLM	- Modified Liquid Limit, equal to LL(1 - C/100)
А	- % retain on 2.4mm sieve
USCS	- Unified Soil Classification System
Cu	- Coefficient of Uniformity
Cc	- Coefficient of Curvature
P 425	- % Passing 0.425mm sieve
R 425	- % retain on 0.425mm BS sieve
P2360	- % Passing 2.4mm sieve
R2360	- % retain on 2.36mm sieve
P075	- % Passing 0.075 mm sieve
ASTM	- American Society for Testing and Materials
BS	- British Standards
AASHTO	- American Association of State Highway and Transportation Officials
ANOVA	- Analysis of Variance