ESTIMATION OF VEHICLE KILOMETERS TRAVELLED IN SRI LANKA

Darshika Anojani Samarakoon Jayasekera

(108610J)

Degree of Master of Engineering in Highway & Traffic Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2014

ESTIMATION OF VEHICLE KILOMETERS TRAVELLED IN SRI LANKA

Darshika Anojani.Samarakoon Jayasekera

(108610J)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Engineering in Highway & Traffic Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2014

Declaration

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters under my supervision.

Signature:

Date:

Abstract

Vehicle kilometers traveled (VKT) is the total kilometers traveled by motor vehicles on the highway system during a given period (particular year). Vehicle kilometers traveled by passenger automobile is an important factor in Transport planning, allocating resources, estimating vehicle emissions computing energy consumption, assessing traffic impact, analysis of accidents (i.e. the number of deaths per billion vehicle kilometers driven) Infrastructure investment decision and to make policy decisions.

In this report VKT is calculated by multiplying of vehicle factor, total fuel sale volume, and fuel consumption rate. Vehicle factor was estimated by dividing the fuel usage each vehicle type by total fuel usage. In order to estimate the vehicle factor, initially vehicles are classified, based on the Petrol and Diesel vehicles and prepared the Survey form in order to collect the fuel usage data and fuel consumption rate. By analyzing the collected data, vehicle factor and average fuel consumption rate were determined for each vehicle type. Since direct measurement of vehicle kilometers traveled has never been used, the several assumptions have been made in this study.

VKT has been calculated for each vehicle type for the year 2012 based on survey carried out in the year 2012. Considering the 2010, 2011 and 2012 fuel sale data, fuel sale growth factor is calculated for the year 2013 and 2014. VKT has been estimated for the year 2013 and 2014 for each vehicle type assuming the vehicle factor is used in 2012 is same for the year 2013 and 2014. In similar manner VKT for each vehicle type can be determined for the future years, Fuel consumption and fuel sale data can be obtained for each year and vehicle factor need to be estimated since it may not be same for each year. Therefore in this report illustrates the methodology to find the minimum no of survey focation for estimation of Vehicle factor at a 95% of accuracy. It was found that Motor Cycle factor for Colombo District can be estimated using eight number of Survey locations.

Acknowledgement

The author is immensely grateful to the research supervisor, Dr. W.K.Mampearachchi of the Department of Civil Engineering for his invaluable guidance and support throughout the research period.

The fruitful support given by Eng. R.W.R. Pemasiri,Secretary, Ministry of Highways Ports and Shipping, Eng. W.A.S Weerasinghe, Director General of Road Development, Eng.H.M.K.G.G.Bandara, Director of Planning Division, Eng. Mrs. Namali Siyamblapitiya Deputy Director of Planning Division Road Development Authority, all the Provincial Directors, Chief Engineers, Executive Engineers and all the other staff members in Road Development Authority who helped in collecting data is greatly appreciated.

The support given by Prof.M.R.T.Jayasinghe (Head, Department Civil Engineering) and University of Moratuwa, Sri Lanka. Prof.J.M.S.J.Bandara (Research, Coordinator, Department of Civil Engineering) are greatly appreciated www.lib.mrt.ac.lk

Finally, author extend her kind appreciation to all the staff of the Department of Civil Engineering, all the non-academic staff of the Department of Civil Engineering and all people who helped and encouraged her to complete this research successfully.

Contents

Abstract		iii
Acknowle	edgement	iv
1. INT	RODUCTION	1
1.1	General	1
1.2	Objectives	2
1.3	The Methodology	2
1.4	The Scope of the Research	3
2. LITE	RATURE REVIEW	4
2.1	Introduction	4
2.2	Models Developed to Calculate VKT	5
2.3	Traffic Measurement Methods	
2.3.	1 Odometer Reading Method of Moratuwa, Sri Lanka.	5
2.3.		6
2.4	Non-traffic measurement methods	6
2.4.	1 Household/Driver survey method	7
2.4.	2 Fuel sales	9
2.5	Definitions Related to Calculation of VKT 1	.1
3. THE	PROPOSED METHOD FOR CALCULATING THE VKT 1	.2
3.1	Sample Calculation for the Base Year 2012 1	.2
3.2	Calculation Steps 1	.2
3.2.	1 Sample Calculation for Motor Cycles in Colombo District 1	.3
3.3	Sample Calculation with Fuel Growth 1	.4
4. DAT	A COLLECTION AND ANALYSIS 1	.6
4.1	Data Collection 1	.6
4.2	Analysis of Petrol Vehicles 1	.7
4.3	Analysis of Diesel Vehicles	28
5. DEV	ELOPMENT OF METHODOLOGY TO FIND THE FUTURE VKT	8
5.1	The Sample Calculation Performed for Colombo District for Motor Cycles	88

5.1.1 Limit The	Accuracy of the Selected Sample Stations in Colombo District with Use of Central orem
5.1.2	Testing the Sample with Hypothesis Testing
5.2 Ana	lysis with Randomly Selected Station41
5.2.1	Analysis with Randomly Selected 8 Station
5.2.2	Analysis with Randomly Selected 5 Station
5.2.3	Analysis with Randomly Selected 3 Station
6. CONCLUSIC	9N
7. FURTHER R	ESEARCH
8. REFERENCE	S52
9. Annexes	
9.1 Annex I	- Survey Form for Petrol and Diesel53
9.2 Annex II	- Summary of the Data collection54
9.3 Annex II	- Collected Fuel Consumption Rates for each Vehicle type65
9.4 Annex IV	⁷ - Night time Factor
9.5 Annex V	
9.6 Annex V	I Puel SalevDatta. lib.mrt.ac.lk
9.7 Annex V	II - Average Fuel Consumption Rate for Petrol vehicle in District wise75
9.8 Annex V	III - Average Fuel Consumption Rate for Diesel vehicle in District wise76
9.9 Annex IX	VKT for Petrol Vehicles in 2012, 2013
9.10 Annex I	X - VKT for Diesel Vehicles in 2012, 201387

Table of Figures

Figure 3.1: Predicted Fuel Growth Factor	15
Figure 4.1: VKT of Passenger Vans	28
Figure 4.2:VKT of Diesel Vehicles in Whole Country	28
Figure 4.3: VKT of Three Wheelers	32
Figure 4.4: VKT of Pick Ups	33
Figure 4.5: VKT for cars and wagons	33
Figure 4.6: VKT for Jeeps and Pajeros	34
Figure 4.7: VKT of Passenger Van	34
Figure 4.8 : VKT for Mini Bus	35
Figure 4.9: VKT for Bus	35
Figure 4.10: VKT for Light Truck	36
Figure 4.11: VKT for Medium Truck	36
Figure 4.12: VKT for Large Truck	37
Figure 5.1:Motor Cycle factor of the population	38

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table of Tables

Table 3.1: Calculation of Motor Cycle Factor	13
Table 3.2: Annual VKT Calculation 2012	14
Table 3.3 Fuel Sale Data Collected from IOC and CEYPETCO	14
Table 4.1: VKT for petrol vehicles in Province vise and Island wide in 2012	18
Table 4.2: VKT for Diesel Vehicles in 2012	29
Table 4.3: VKT for Diesel Vehicles in 2012	30
Table 4.4 : VKT for Diesel Vehicles in 2012	31
Table 5.1: Randomly Selected 8 Stations	41
Table 5.2: Randomly Selected 8 Stations	42
Table 5.3; Randomly Selected 8 Stations	43
Table 5.4: Randomly Selected 5 Station	
Table 5.5: Randomly Selected 5 Station	
Table 5.6: Randomly Selected 5 Station	46
Table 5.7: Randomly Selected 3 Station Table 5.8: Randomly Selected 3 Station	47
Table 5.8: Randomy Selected 3 Station	47
Table 5.9: Randonly Selecter bestationic Theses & Dissertations	48
www.lib.mrt.ac.lk	

1. INTRODUCTION

1.1 General

Vehicle kilometres travelled (VKT) is the total kilometres travelled by motor vehicles on the highway system during a given period.(Particular year.) Vehicle kilometres travelled by passenger automobile is an important factor in Transport planning, allocating resources, estimating vehicle emissions computing energy consumption, assessing traffic impact, analysis of accident (i.e. the number of deaths per billion vehicle kilometres driven) Infrastructure investment decision and to make policy decisions.

Transport is a vital link that brings people and goods together across a country. People rely on it to get to work and for educational, social and recreational activities. Transport also connects suppliers to markets and helps showcase our natural environment through tourism.

Road transport is the dominant mode of transportation in Sri Lanka. While it provides many economic and social benefits, it also has environmental and health impacts. For example, road transport is a primary source of harmful air pollutants in some urban areas. Waterways can be affected by contaminated run-off from roads, and wastes such as used oil, batteries and tyres require careful disposal.

University of Moratuwa, Sri Lanka. It is difficult to quantify the actual environmental and health impacts, number of accidents, of

road transport at the national level. However, the distance travelled on our roads (also known as vehicle kilometres travelled or VKT) is a good proxy for the pressure road transport puts on the environment. This measure is widely used internationally to assess the magnitude of the pressure and how it is changing over time.

By understanding the total distance travelled on Sri Lankan roads, the types of vehicles we use, and fuel type and how intensively we are using our road transport, we can learn more about the pressure on road transport is placing on the environment, the expenditure spent on roads. As the growth of the economy the VKT factor for a country and area changes. To conclude about the other related measures the VKT should be calculated accurately every year.

For a developing country like Sri Lanka, very expensive to carry out the surveys on island wide for estimation of VKT for each year. T

he same expenditure cannot be allocated to calculate the annual VKT every year. With this condition the research focuses on predicting the future VKT with the developed model.

1.2 Objectives

- The main objective of this research is to estimate the VKT in Sri Lanka and to develop a model to predict the VKT factor in the future years
- The sub objectives of the research are to calculate the vehicle factors in province vise, in Petrol Diesel vise and in Vehicle type vise.

1.3 The Methodology

To achieve objectives following methodology was adopted.

- The vehicles in Sri Lanka were classified (1)Motor Cycles, (2) Three wheelers, (3) Cars, (4) S/Wagons, (5) Pick Up, (6) Jeep (7)Pajero, (8) Passenger Van, (9) Goods Van, (10) Mini Bus, (11) Bus, (12) Light Truck, (13) Medium Truck, (14) Large Truck, (15) 3 Axle Rigid Truck, (16) 3 Axle Art'd Truck., (17)4 Axle Art'd Truck., and (18) Hand Tractor
- Collected the fuel volume pumped for each type of vehicle from 6:00 am to 6:00pm in selected fuel stations covered in all roads in Sri Lanka
- The total fuel relume was obtained for these achtidistrict in Petrol and Diesel separately www.lib.mrt.ac.lk
- The proportion of the each vehicle type was found by dividing the total fuel volume pumped for each vehicle in the district by the total fuel pumped for all the vehicles in the district
- Vehicle Kilometers Travelled was found for each vehicle type for each district, each province and island wide.
- To predict the future VKT, vehicle factor, Fuel usage, Fuel consumption rate are required, and in order to find vehicle factor, hypothesis analysis was carried out to find the minimum no of survey points which has 95% accuracy.

1.4 The Scope of the Research

Chapter 2 presents a detailed literature review covering the main topics related to the research.

Chapter 3 illustrates the proposed methodology for calculating the VKT for the base year.

Chapter 4 illustrate the analysis of the data collected on the fuel consumption by different type of vehicles in Sri Lanka and the conclusions made on the results.

Chapter 5illustrates the developed methodology to find the future VKT.

Chapter 6 illustrates the developed methodology to find the future VKT.

Chapter 7 illustrates the Conclusion of the Research

Chapter 6 illustrates the future work that can be done with the base of this research.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

2. LITERATURE REVIEW

2.1 Introduction

Road transport is an essential element of the Sri Lankan transport network, and enabler of the Sri Lankan economy and society. However, a number of externalities arise from motor vehicle usage on roads, including pollution, congestion and road traffic accidents. Motor vehicle activity levels are characterized in terms of traffic volume or vehicle–kilometers travelled (VKT). Total VKT provides a proxy measure of the overall pressure on the environment from all forms of road transport (NZ Ministry for the Environment 2009). Annual VKT at the national level can be defined as the number of kilometers travelled in a country by all vehicles during a one year period and it is expressed as follows

VKT = Number of Vehicles \times Distance Travelled (EIA 2005)

Fort Collins LUTRAQ Team (2001) stated that however, the estimation of VKT is not as straightforward as the traffic flow. VKT has always been a difficult indicator, because it is not measured directly, rather it is always estimated.

Kumapley and Fricker(1996) pointed out thatVKT estimation methods can be classified into two broad categories i.e traffic measurement methods and non-traffic measurement methods University of Moratuwa, Sri Lanka. Under these two broad categories, there are four basic methods. Traffic measurement methods are of two types e.g. odometer readings (vehicle-based method) and traffic counts (roadbased method), while non-traffic measurement methods consist of household/driver survey method and fuel sales method.

Since estimates of VKT are used extensively in transport planning for allocating resources, estimating vehicle emissions, computing energy consumption and assessing traffic impact, the estimation of VKT of Sri Lanka is important for planning purposes, environmental monitoring, accident analysis, highway fund allocation, trend extrapolation, and estimation of vehicle emissions. In addition, VKT is the best available measure of exposure with which to transform fatalities into a rate (i.e. the number of deaths per billion vehicle kilometers driven). Furthermore, VKT estimates can also contribute information necessary to inform infrastructure investment decisions and road safety policy. Due to its importance to policy decisions, it is critical to have accurate estimates of VKT.

An increase in vehicle kilometer travelled can be due to several factors – more people, more vehicles in the fleet and more individual travel. These three factors have combined to steadily increase total VKT.

Generally speaking, a growing population is accompanied by a growing number of vehicles. As population grows, so too does the total distance travelled by road, unless balanced by a significant drop in the distance each person drives. Increase of vehicles leads to increased access to transport, an increase in total VKT, and can lead to greater congestion on our roads. More greenhouse gas emissions are produced for each kilometer travelled on congested roads. Greater vehicle numbers also lead to greater waste in terms of used oil, batteries and tyres, and greater numbers of scrapped vehicles.

2.2 Models Developed to Calculate VKT

Kumapley and Fricker(1996) stated thatVKT estimation methods can be classified into two broad categories—traffic measurement methods and non-traffic measurement methods.AfzalHossain and David Gargette (2011) pointed out the traffic measurement VKTestimation methods are more preferable than the non-traffic measurement methods.

2.3 Traffic Measurement Methods

2.3.1 Odometer Reading Method Odometer readings are the only regular records of accumulated travelled distances for the Electronic Theses & Dissertations majority of vehicles, making the calculation of the exact number of kilometers driven within a given time period possible. At regular vehicle inspections, the average distance travelled by the vehicles is determined and then multiplied by the number of road vehicles. (AfzalHossain and David Gargett, 2011)

2.3.1.1 Advantages

This method provides a more accurate record of the total distance travelled, by all vehicle types, within a given year. (AfzalHossain and David Gargett, 2011).

2.3.1.2 Disadvantages

AfzalHossain and David Gargett, (2011) stated that Odometer readings do not allow any association with geographical data regarding where these travelled distances are made. Due to this disadvantage, other sources of information are used to estimate VKT by region or road class.

In addition to that they pointed out there are several other disadvantages of this method, including the possibility of reading/reporting errors, notation/transcription errors, odometer

tampering (i.e. modification of odometer records), and vehicle drop-out caused by accidents or aged vehicles.

2.3.2 Traffic Counts (Road-Based Method)

The annual VKT estimation models based on traffic counts use the data collected on a sample of monitored road sections to estimate the VKT of the entire network. Traffic flow, usually represented by the Annual Average Daily Traffic (AADT), and length of the sampled road sections are the main variables used. To annualize this value, it is multiplied by the number of days in a year. In estimating VKT using traffic counts, it is customary to assume that a vehicle counted on a section of road travels the entire length of the section. Under this method, some vehicles travelling only a portion of the section will be counted while others will not, depending on whether they cross the counting location.

(AfzalHossain and David Gargett, 2011).

2.3.2.1 Advantages of Traffic Count Method

This traffic count method has several advantages. It allows the disaggregation of VKT by type of road, while a tributes, time periods or regions (AfzaHossain and David Gargett, Electronic Theses & Dissertations www.lib.mrt.ac.lk

2.3.2.2 Disadvantages of Traffic Count Method

This type of model does not allow the estimation of VKT by type of driver or trip motivation. Also, as they are usually based on a spatial and temporal sample of counts, sampling errors and instrumental and other counting errors must be carefully analyzed. (AfzalHossain and David Gargett, 2011).

2.4 Non-traffic measurement methods

The non-traffic measurement methods for estimating VKT use non-traffic data, such as socioeconomic data, including fuel sales, trip-making behavior, household size, household income, population, number of licensed drivers, and employment. Only two methods, i.e. household/driver survey and fuel sales, are discussed below

2.4.1 Household/Driver survey method

In this method, a questionnaire is sent every year to thousands of households (owning one or more cars) which are requested to provide various information; the number of kilometers driven by each vehicle during the whole year. (AfzalHossain and David Gargett, 2011).

VKT estimation models based on demographic and socioeconomic characteristics usually require extensive data including:

• Population, employment and land use data

• Personal and household characteristics, such as income, household composition, vehicle ownership and licensed driver status

• Personal and household travel characteristics, as determined from household travel surveys, such as average annual miles driven per licensed driver by sex and age cohorts, average annual household VKT by area type, household and personal trip-making behavior. These models assume a constant driving pattern over a period, say five to six years, and require only the annual change in licensed drivers or household population for the estimation and forecasting of VKT. Estimates of average annual kilometers driven per licensed driver or household are entry contexted by aking the respondents to guess the amount of travel they Electronic Theses & Dissertations of a vehicle taken over a period. VKT is then calculated by multiplying this estimate of average annual mileage per household unit (or licensed driver) by the population of households (or licensed drivers). (AfzalHossain and David Gargett, 2011).

Prof. Amal .S. Kumarage, (1992), carried out the estimation of VKT in Sri Lanka by road side interview. A sample data collection was done to obtain the annual kms operated by a particular vehicle along with its operational characteristics such as ownership, age (series) and type of usage. In order to do this a team of surveyors was trained and dispatched to Colombo and Kandy. The surveys were done during the period March 19 to April 12, 1992.

In this method, drivers of vehicles parked along the road sides were interviewed, the drivers of vehicles arriving at the petrol stations were interviewed, and company records were used.

Petrol Vans have a significantly lower annual kms than the diesel counterpart. In the case of Lorries, which are engaged in long distance haulage were found to have a significantly higher mean annual kms of 41800 whereas other Lorries averaged only 16900kms. In the case of buses, a similar relationship was observed for the vehicle in long distances routes which were

doing 21100 kms more than vehicles in other routes. It was also established that minibuses averaged only 29900kms per year when compared to the 46 700kms by the larger buses.

2.4.1.1 Dependent variable of the model

The number of Vehicle Kilometers Travelled (VKT) is obtained from the House hold Travel Survey(HTS) as the total road distance travelled by each household for all trips where the mode is vehicle driver. When the dependent variable VKT was fitted, one of the assumptions of linear regression (the requirement for the errors to have constant variation) was violated. A simple square root transformation fixed this problem. Therefore, the recommended model has the square root of VKT as the dependent variable. To predict VKT, we merely square the output from the model. (Grace Corpuz, Michelle McCabe and KamilaRyszawa 2001),

2.4.1.2 Predictor variables of the model

The initial set of predictor variables that were tested were jointly chosen by TPDC (Transport and Population Data Centre) and the Sustainability Unit. These variables measure three main characteristics: location, socio demographics and urban form / neighborhood design. (Grace Corpuz, Michele McCabe and KamilaRyszawa 2001), Electronic Theses & Dissertations

2.4.1.3 The recommended model

The recommended model is represented by the following linear equation relating the square root of VKT to a number of significant predictor variables2.

 $y = a + b1x1 + b2x2 + \dots + bnxn$

 $\sqrt{VKT} = 3.920 + 2.4510*A + 0.0124*B - 1.8057*C - 0.0021*D - 0.0099*E + 0.0084*F$ (Grace Corpuz, Michelle McCabe and Kamila Ryszawa 2001)

Where \sqrt{VKT} - Square root of the household

- A Number of vehicles
- B Closest distance to major center or CBD

www.lib.mrt.ac.lk

- C land use mix
- D local employment
- E housing density
- F distance to nearest Train, ferry, light rail or high frequency bus)

2.4.1.4 5 Limitations of the model

The regression model makes predictions of VKT for given values of the explanatory variables in the model. These predictions are subject to errors because of the imperfect fit of the model which can predict three quarters but not all of the variability of (the square root of) household VKT. Users should be mindful of this limitation when using the predictions on their own for say, inputs for another process. But for the purpose of comparing predictions, such as between locations which is main purpose of the model, the errors of the predictions become less of an issue. The comparisons remain valid because of the use of a single model as the same basis, and especially since the errors have constant variance and do not vary systematically between predictions. (Grace Corpuz, Michelle McCabe and KamilaRyszawa 2001),

2.4.1.5 Advantages

Using this method, it is possible to reach a high level of detail and flexibility in the collecteddata. (AfzalHossain and David Gargett, 2011)

2.4.1.6 Disadvantages University of Moratuwa, Sri Lanka.

There are several disadvantages of this method. These include: low response rates, www.lib.mrt.ac.lk inconsistent data, sampling errors, response bias and estimation errors and high implementation costs (AfzalHossain and David Gargett, 2011)

2.4.2 Fuel sales

In the USA, fuel sales have been adopted for VKT estimation for over half a century. However, there is no documentation of the actual procedure used. The use of fuel sales to estimate state VKT is not new in Australia. (Kumapley, 1994)

The volume of road traffic (i.e. VKT) is estimated from information about fuel supply and fuel consumption, as derived from estimates of kilometers driven per of liter fuel for typical types of vehicles (Leduc 2008). Regression, logic, and other model types have been developed for VKT estimation based on fuel use and sales; however, a ballpark estimate of VKT can be generated by dividing the total number of liters of fuel sold by the fleet fuel economy, in kilometers per liter (usually expressed as l/100km). VKT can be estimated from a simple equation which is shown below (Fricker and Kumapley, 2002):

VKT = TNL (fuel use) / FKMPL (fuel intensity) (2.1)
Where VKT = annual vehicle kilometers travelled;
TNL = total number of liters of fuel sold (petrol, diesel and LPG);
FKMPL = total fleet kilometers per liter, In other words, kilometers = liters / (kilometers per liter).

In the context of transport, 'fuel intensity' more commonly refers to the energy efficiency of a particular vehicle model, where fuel intensity is given as a ratio of distance units per amounts of input fuel (petrol, diesel, LPG, etc). In Australia, this ratio is measured as liters per 100 kilometers (Liters per 100 km).

2.4.2.1 Advantages associated with the fuel-based VKT estimation model

The fuel-based VKT estimation model is very useful for several reasons. The fuel-based method estimates total area-wide VKT and provides an estimate for each year (LUTRAQ Team 2001).

Another advantage of this method is that it does not require travel distances (Azevedo and University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

www.lib.mrt.ac.lk 2.4.2.2 Problems associated with the fuel-based VKT estimation model

Even though the fuel sales method is very useful when there is no record of travelled distances, it has some important limitations, such as the need for multiple data sources and the need for several assumptions in the estimation of average fuel consumption (Azevedo and Cardoso 2009). The errors associated with the VKT estimation are dependent on the accuracy of retail fuel sales data and the fleet fuel efficiency figures used (Kumapley and Fricker 1996). However, the estimation of fleet fuel intensity, in liters per kilometer (LPKM), presents the most difficult problem for fuel-based VKT models. The LPKM depends on the following: fleet age mix, condition or state of the vehicle, driving patterns and habits, weather, topography, fuel loss in motion (evaporation, spillage, etc). Improvements in combustion technology, together with legislation on emissions, complicate the estimation of fleet fuel economy due to driving and other characteristics. Commercial vehicles (trucks) have lower fuel efficiency than automobiles and light trucks. Data are currently not available to facilitate the estimation of fleet (all vehicles) fuel economy. Due to differences in the unit price of fuel

across the country, drivers tend to buy fuel in states with lower fuel prices during interstate travel, thus estimation of the amount of fuel bought in the state, used for travel on state roads is even more difficult to estimate.

2.5 Definitions Related to Calculation of VKT

Daily vehicle kilometers travelled are calculated by multiplying the observed 24-hour average annual weekday traffic volumes by the single center-line length of the primary roadways within city limits only. (The City of CalgaryTransportation Planning, 2010)

Annual vehicle kilometers travelled are calculated by multiplying daily VKT with a daily-toannual conversion factor for each year. (The City of CalgaryTransportation Planning, 2010) As daily VKT represent a 24-hour weekdaytraffic volume, a daily-to-annual factor is used (not simply 365) to estimate the annual VKT.

A formula for the annual VKT calculation is given below:

Annual VKT = Daily VKT x Daily-to-annual factor

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

3. THE PROPOSED METHOD FOR CALCULATING THE VKT

VKT is calculated by multiplying of vehicle factor, total fuel sale volume, and fuel consumption rate. Vehicle factor was estimated by dividing the fuel usage each vehicle type by Total Fuel usage. In order to estimate the vehicle factor, initially vehicles are classified, based on the Petrol and Diesel vehicles and prepared the Survey form in order to collect the fuel usage data and fuel consumption rate. By analyzing the collected data, vehicle factor and average fuel consumption rate are determined for each vehicle type.

Therefore following equation was used for calculating the VKT.

Annual VKT (km)= Vehicle Factor x Fuel Usage (l) x average Fuel Consumption rate (km/l)

Vehicle Factor = Fuel usage by particular Vehicle/Total Fuel usage (Annex V) Total Fuel Usage (l) = Obtained by fuel sale data from IOC and CEYPETCO for the year 2012 (Annex VI)

Average Fuel Consumption rate = Obtained from collected Survey data (Annex III)

3.1 Sample Calculation for the Base Year 2012 Belectronic Theses & Dissertations www.lib.mrt.ac.lk

Step 1:

Vehicle factor was calculated from the collected data(Annex V)

Step 2:

The fuel sales data is obtained from IOC and CEYPETCO for the year 2012 (Annex VI) Average Fuel consumption rate (km/l) for each vehicle type for each province was obtained from the survey data. (Annex III)

Step 4:

VKT has been estimated using following equation.

VKT (km)=Vehicle Factor x Fuel Usage (l) x average Fuel Consumption rate (km/l)

3.2.1 Sample Calculation for Motor Cycles in Colombo District

Step 1:

Total Petrol Consumption per day in Colombo division by all types of vehicles (From Collected Data) = (5312.01+7352.73+47165.70+18534.53+3610.00+4495.46)*1.2

(Refer table 3.1) and where Night time factor -1.2 (Annex IV)

Total Petrol Consumption per day in Colombo division by Motor Cycles = 5312.01

Motor Cycle Factor for Colombo division = 5312.01/47165.70 = 0.14

Similarly the motor cycle factor obtained for Avissawella division is 0.28.

The average motor Cycle factor for Colombo District = (0.14+0.28)/2 = 0.21

Step 2:

Sales data for petrol stations obtained for the year 2012 from CEPETCO and IOC for

Colombo district = 274144107.6 liters

Step 3:

Average consumption rate for motor cycles obtained from the survey data = 55.09 km/liter

Step 4:

VKT for Motor Sycles in Colombo District for the year 2012 = 0.21 x 274,144,107.6 x 55.09 Electronic Theses & Dissertations

www.lib.mrt.ac.lk = 3,166,298,052k

			Collecte	Collected	etrol Usage	Collecte	Collecte	Total Petrol Pumped	ped			
Provi nce	District	EE Division	d Data for Motor Cycles (1)	Data for Three wheelers (2)	Data for Cars & S/Wagons (3)	d Data for Jeep &Pajer o (4)	d Data for Passeng er Van (5)	Per Day (6)=1.2* (1+2+3+4+ 5)	Motor Cycles (7) =1/(6)	Average for the District		
	a 1 1	Colombo	5312.01	7352.73	18534.53	3610.00	4495.46	47,165.70	0.14	0.21		
Wester	Colombo	Avissawella	9492.375	10289.96	10687.63	1746.90	1186.21	40,083.69	0.28	(0.14+ 0.28)/2)		
n		Gampaha	6322.14	6032.19	9643.75	251.42	1627.53	28652.46	0.26			
Provin	Gampaha	Negombo	4183.91	4119.28	4931.42	571.72	1210.49	18020.19	0.28	0.31		
ce		Nittambuwa	11938.91	10331.47	7487.24	236.41	752.02	36895.28	0.39			
	Kalutara	Kalutara	1592.704	1261.53	1071.06	0	44.70	4764.01	0.40	0.40		
		Horana	1296.305	1044.43	708.40	266.65	15.31	3997.33	0.39			

Table 3.1: Calculation of Motor Cycle Factor

The table 3.1 shows the calculation of vehicle factor for the motor cycles in western province. The calculation was done with the collected data from the manual survey.

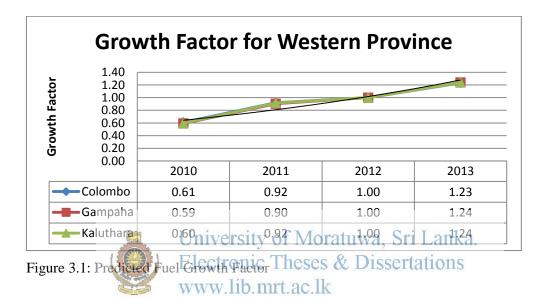
The annual VKT factor for motor Cycles for Western Province can be obtained as, 0.31

Province	District	Factor of Motor Cycles	Petrol Consumption by Vehicles in 2012	Average Consumption Rate	VKT(Km) For District	VKT for Province
	Colombo	0.21	274144107.6	55.09	3,166,298,052	
Western Province	Gampaha	0.47	154277491.2	52.17	3,749,168,679	8,156,531,342
	Kalutara	0.40	56683900.2	55.41	1,241,064,610	

Table 3.2: Annual VKT Calculation 2012

The table 3.2 shows the annual VKT calculation for Motor Cycles. University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Annual VKT for Motor; Cycles = 8,156,531,342km

3.3 Sample Calculation with Fuel Growth


Table 3.3 Fuel Sale Data Collected from IOC and CEYPETCO

	DISTRICT WISE SALES									
	2010 (01.04.201031.04.2010)			2011			2012			
	PETROL	DIESEL		PETROL	DIESEL		PETROL	DIESEL		
Colombo	112,642,200	141,018,900		169,982,466	257,316,476		184,807,107	249,223,425		
Gampaha	73,293,014	128,831,011		111,927,809	219,337,800		123,871,491	226,426,389		
Kalutara	24,763,200	43,335,600		38,029,200	76,074,900		41,556,900	74,589,944		

Considering the base year as 2012 Growth Factor is calculated using 2010, 2011, 2012 Fuel sale data and predicted the Fuel sale Growth Factor for 2013 and 2014.

District	Fuel Sale Growth Factor								
	2010	2011	2012	2013	2014				
Colombo	0.61	0.92	1.00	1.23	1.43				
Gampaha	0.59	0.90	1.00	1.24	1.44				
Kalutara	0.60	0.92	1.00	1.24	1.44				

 Table 3.4 Shows Calculated Fuel Growth Factor for Petrol

The figure 3.1 depicts the annual fuel growth rate. With use of the predicted fuel growth factor the following sample calculation was done to obtain annual VKT for motor cycles. The calculation was done for the Western province. The figure 3.3 shows the predicted VKT for 2013 for the western province for motor cycles.

Table 3.5: Predicted VKT for the year 2013 for Motor Cycles

Province	District	VKT(Km) For District (Motor Cycles)	Fuel Growth Factor for 2013	VKT for 2013	VKT for Province
Western	Colombo	3,166,298,052.13	1.23	3,905,873,740	
Province	Gampaha	3,749,168,679.08	1.24	4,649,188,632	10,095,354,573
	Kalutara	1,241,064,610.73	1.24	1,540,292,201	

4. DATA COLLECTION AND ANALYSIS

4.1 Data Collection

The vehicles in Sri Lanka were classified as Motor Cycles, Three wheelers, Cars & S/Wagons, Pick Up, Jeep & Pajero, Passenger Van, Goods Van, Mini Bus, Bus, Light Truck, Medium Truck, Large Truck, 3 Axle Rigid Truck, 3 Axle Art'd Truck ., 4 Axle Art'd Truck., and Hand Tractor. Fuel Consumption Survey Forms were prepared specimen is attached in Annex I.

The data was collected by Road Development Authority planning division by distributing it to Executive Engineering divisions in all around the country. The survey forms were distributed and collected the fuel volume pumped for each type of vehicle from 6:00 am to 6:00pm in selected fuel stations in whole country. Collected Raw data is shown in Annex II.

The fuel sales data was collected from the Petroleum Corporation as well as from the IOC. The Data sheets are attached in the Anoex Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

Figure 4.1: Data Collection

Figure 4.2: Data Collectioniversity of Moratuwa, Sri Lanka. **Electronic Theses & Dissertations** 4.2 Analysis of Petrol Vehicles

The VKT was found for each vehicle and was added up the results to find the total vehicle Km travelled in Sri Lanka.

The figure 4.3 shows the VKT of petrol vehicles in Island wide. From that it's evident that motor cycles have the highest Vehicle Kilometers travelled within the petrol Vehicles. That is more than 15 billion kilometers. The second most highest is three wheelers and then the cars and wagons. It's clear that the motor cycle usage in Sri Lanka is higher than the other vehicle types. Figure 4.8 shows the breakdown of the VKT for motor cycles. It's well depicted that in Western Province and in North Western Province the motor cycle usage is higher than the other provinces.

	VKT Calculation for Petrol Vehicles								
	Motor Cycles	Three wheelers	Cars & S/Wagons	Jeep &Pajero	Passenger Van				
Island wide	15,410,788,711.18	8,103,267,002.94	3,911,332,175.42	481,026,800.44	706,940,547.67				
Western Province	6,056,704,461.34	3463496057	2,236,086,618.75	270,380,246.54	376,268,941.38				
Central Province	758,661,110.53	1078448961	319,250,445.68	21,327,274.12	62,137,728.85				
Uwa Province	561,202,663.82	377618057.2	111,056,125.03	5,091,456.62	12,698,200.33				
Sabaragamuwa Province	830,431,471.16	776057547	214,759,749.05	10,795,557.47	28,717,174.95				
North Western Province	2,788,360,080.94	837440958.2	414,529,421.47	14,283,021.51	55,106,291.89				
North Central Province	958,855,897.48	214071357.1	109,519,721.02	91,440,740.28	107,063,624.74				
Northern Province	1,144,825,914.59	281785613.5	37,713,940.25	16,422,083.09	29,669,628.19				
Eastern Province	624,114,907.68	431713488.6	132,887,782.65	20,008,779.98	24,521,126.73				
Southern Province	Univers	ity of Moratu ic ^{642634963.4} &	wa, Sri Lank D ^{335s528t37t153} ts	a. 31,27 7,640.84	10,757,830.6				

Table 4.1: VKT for petrol vehicles in Province vise and Island wide in 2012

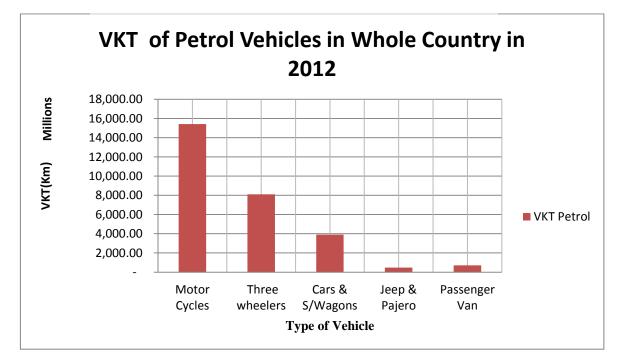


Figure 4.3: VKT of Petrol Vehicles in Whole Country

•

		VKT for Diesel Vehicles							
	Three wheelers	Cars & S/Wagons	Pick Ups	SUV	Passenger Van				
Island wide	1,664,253,619.5 4	505,192,062.38	515,785,961.44	466,700,992.30	1,546,734,865.44				
Western Province	1,026,164,675.1 3	317,662,610.50	231,700,684.27	224,797,244.26	730,401,622.47				
Central Province	46,885,662.84	18,931,256.76	29,006,786.35	41,043,564.24	190,216,743.58				
Uwa Province	20,225,591.99	7,376,076.45	23,600,748.71	14,008,020.23	45,750,577.43				
Sabaragamuwa Province	85,563,362.06	22,975,373.52	35,230,910.37	28,295,519.57	104,756,499.96				
North Western Province	100,227,063.55	54,029,177.52 rsity of Morat	58,548,315.51	56,084,111. 02	241,069,058.83				
North Central Province	99, 578 actr	oniç255,3785395 & lib.mrt.ac.lk			30,857,754.61				
Northern Province	306,553,368.31	6,404,514.14	39,294,430.60	28,866,683.83	43,705,533.75				
Eastern Province	20,413,212.76	47,829,862.10	141,311,683.46	39,613,848.82	112,277,393.09				
Southern Province	54,420,704.43	51,134,617.62	53,489,128.15	58,403,473.68	156,539,861.34				

 Table 4.2: VKT for Diesel vehicles in Province vise and Island wide in 2012

	VKT for Diesel Vehicles								
	Goods Van	Mini Bus	Bus	Light Truck	Medium Truck				
Island wide	585,506,327.19	249,863,338.68	647,050,561.39	1,284,608,549.67	1,403,304,873.1				
Western Province	314,557,998.86	73,144,612.20	251,870,204.08	601,095,073.37	765,231,321.95				
Central Province	49,685,957.20	46,427,704.52	126,938,623.37	111,864,074.23	208,198,204.57				
Uwa Province	17,633,273.28	7,725,964.40	35,584,112.56	39,256,992.50	37,393,903.40				
Sabaragamuwa Province	32,114,640.06	23,957,518.94	48,982,673.51	94,032,748.23	117,124,572.57				
North Western Province	Electron	nic Theses &	n 684,63,760.80n Dissertation		184,653,287.55				
North Central Province	WWW.11	b.mrt.ac.lk 3,989,094.46	10,368,329.16	26,068,449.41	20,753,999.94				
Northern Province	30,259,960.81	14,162,420.06	83,288,156.53	70,795,474.85	47,924,360.43				
Eastern Province	45,179,325.36	30,934,614.85	125,202,919.70	106,950,603.71	60,953,070.77				
Southern Province	71,034,750.09	27,063,982.30	63,565,468.68	132,419,743.32	119,081,220.75				

Table 4.2: VKT for Diesel vehicles in Province vise and Island wide in 2012

	VKT for Diesel Vehicles						
	Large Truck	Large Truck3 Axel Rigid Tk4 Axel Rig		Fk Tractors			
Island wide	1,117,990,771.08	60,176,013.27 208,010,853		125,666,475			
Western Province	558,242,017.21	57,902,775.25	174,198,114.73	61,454,285.11			
Central Province	109,922,946.31	1,795,280.12	8,584,170.40	12,855,221.45			
Uwa Province	40,089,525.47	4,093,162.58	1,726,388.87	4,358,713.44			
Sabaragamuwa Province	49,223,856.97	6,271,306.99	3,251,590.83	7,789,236.49			
North Western Province	171,136,469.89	6,168,773.69	8,583,313.39	15,278,128.98			
North Central Province	21,725,274.47 University o	^{21,725,274.47} 842,828.90 University of Moratuwa, Si		2,497,898.44			
Northern Province	Electronic T 168,585,448,27 WWW.110.mr	heses & Disserta 1.ac.lk	18,779,416. 48	6,937,471.57			
Eastern Province	148,305,356.85	39,196,305.78	8,626,677.75	10,162,344.87			
Southern Province	97,889,148.89	4,199,343.30	6,529,778.18	10,033,478.04			

Table 4.2: VKT for Diesel vehicles in Province vise and Island wide in 2012

Note:

- The above figures don't include the VKT of Ceylon Transport Board buses and Private buses. The data can be collected directly from CTB and corresponding private bus companies and can calculate the VKT separately.
- The heavy vehicles like containers were not considered because the data for them should be collected from the container yards.
- The fuel usage factor was calculated by only considering the fuel stations since others fuel usage factors can be directly calculated from the directly available data.Ex: For CTB buses number of buses and the fuel consumption is readily available in CTB.

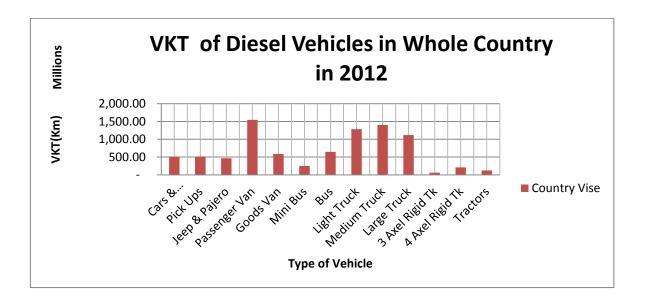


Figure 4.4: VKT of Diesel Vehicle in Whole Country

The figure 4.3 depicts the VKT of all the petrol vehicles in whole country. The figure 4.4 depicts the VKT of diesel vehicles where the passenger van shows the highest VKT out of all the diesel vehicle

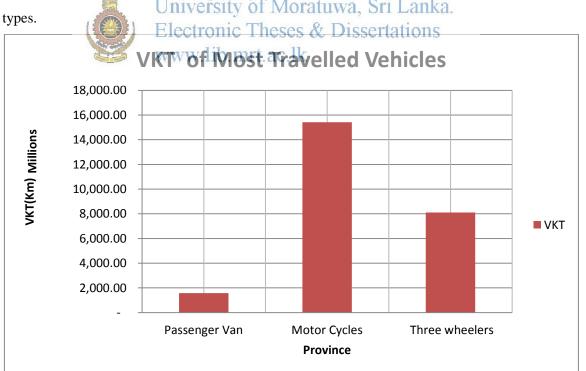


Figure 4.5:VKT of Most Travelled Vehicles

Figure 4.5 shows the chosen highest Vehicle Kilometers Travelled vehicles including diesel and petrol vehicles. It's evident that the motor cycles has the highest vehicle kilometers travelled in Sri Lanka.

CLASS OF VEHICLE	2002	2003	2004	2005	2006	2007	2008	2009	2010
Motor cars	12,003	21,184	19,116	17,283	27,578	22,603	20,237	5,762	23,072
Motor Tricycle	20,876	36,204	43,789	41,085	64,466	43,068	44,804	37,364	85,648
Motor Cycles	54,762	86,877	124,474	130,696	156,626	182,508	155,952	135,421	204,811
Buses	1,429	1,949	2,167	2,069	3,346	2,637	1,180	739	2,491
Dual purpose vehicles	8,591	13,268	10,736	6,851	7,245	5,193	2,856	1,280	11,712
Lorries	8,166	11,158	10,703	14,262	20,436	18,408	14,038	8,225	11,845
Land vehicles-Tractors	7,078	10,004	11,535	15,597	19,040	21,346	24,357	13,951	17,363
Land vehicles-Trailers	446	858	1,322	1,826	1,785	2,129	1,775	1,333	2,301
TOTAL	113,351	181,502	223,842	229,669	300,522	297,892	265,199	204,075	359,243

Table 4.1 New Registration (2002 - 2010) From Department of Motor Traffic

University of Moratuwa, Sri Lanka. Table 4.2:Predicted Vehicle Population for the year 2013 Pertations

CLASS OF VEHICLE	ac.lk 2012
Motor cars	452444
Three wheelers	639919
Motor Cycles	2433597
Buses	88774
Dual purpose vehicles	221862
Lorries	327311
Land vehicles-Tractors	315536
Land vehicles-Trailers	50303
TOTAL	4529745

The table 4.2 shows the number of vehicles in the year 2012. With respect to that the figure 4.6 shows the VKT per vehicle when considered the whole country. From that it's evident that the most used vehicle in the country is three wheelers where the second most used vehicle is motor cycles.

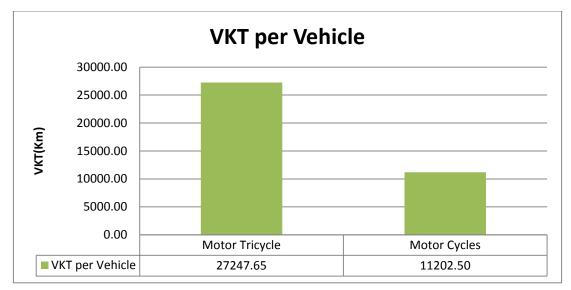


Figure 4.6: VKT per Vehicle

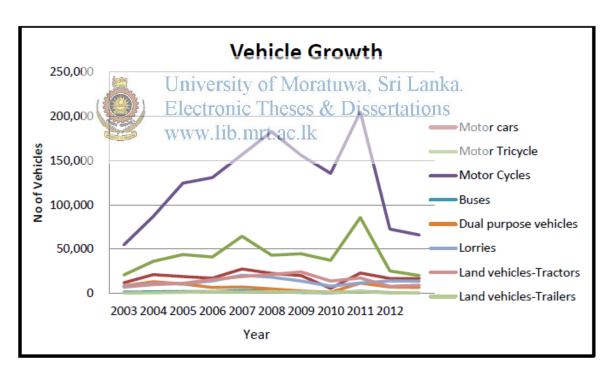


Figure 4.7: Vehicle Growth

The figure 4.8 shows the VKT for motor cycles in province wise. It was proven from the figure 4.6 the motor cycles are the second most used vehicle in Sri Lanka. From the provincial breakdown of the VKT for motor cycles it's clear that there's higher usage in western province and the second highest is North Western province.

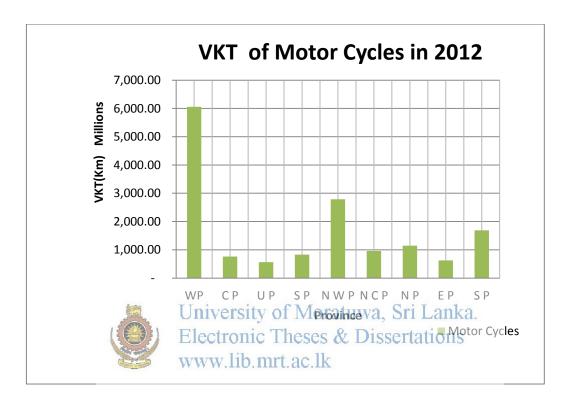
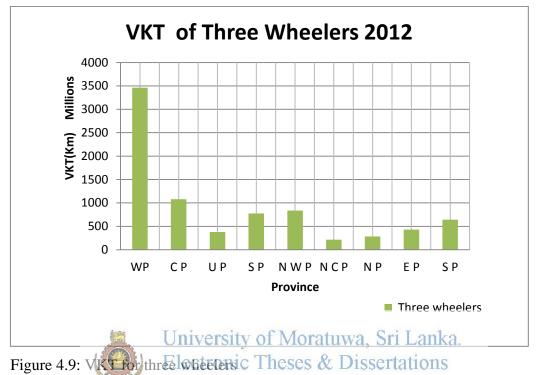



Figure 4.8 : VKT of Motor Cycles

The figure 4.9 shows the VKT for in province wise. It was proven from the figure 4.6 the three wheelers are the most used vehicle in Sri Lanka. From the provincial breakdown of the VKT for Three wheelers, it's clear that there's higher usage in western province and the second highest is North Western Province.

The figure 4.10 shows the WKT labelysis for the cars and wagons. The highest usage is in western province. And that is comparatively higher by 5 billion kilometers than all the other provinces. The second highest is north western province.

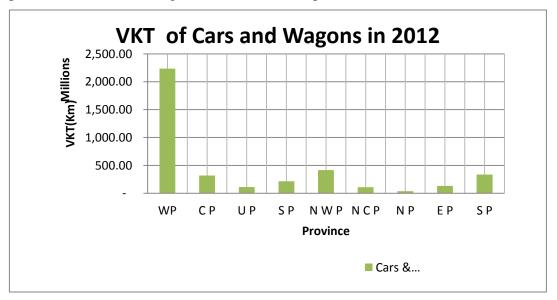


Figure 4.10: VKT of cars and Wagons

The figure 4.11 shows the VKT analysis for the SUV. When considered the geographical distribution the usage of this vehicle type is different than the usage of other vehicle types. For this vehicular category the vehicle usage is almost same in Western and North Central Province. It is nearly 9.5 billion kilometers. The minimum usage is in Uva Province.

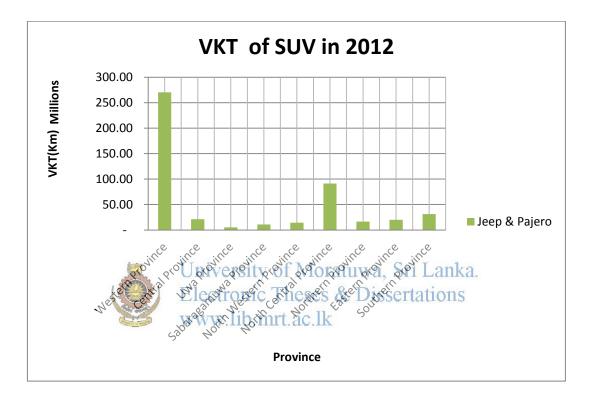


Figure 4.11: VKT of SUV

VKT analysis for the passenger vans is shown in the figure 4.8 shows the VKT analysis for the passenger vans. When considered the geographical distribution the usage of this vehicle type is far more same as Jeeps and Pajeros. The maximum usage is in Western Province and the second highest usage is in North Central Province. In other provinces the usage is far below than those two.

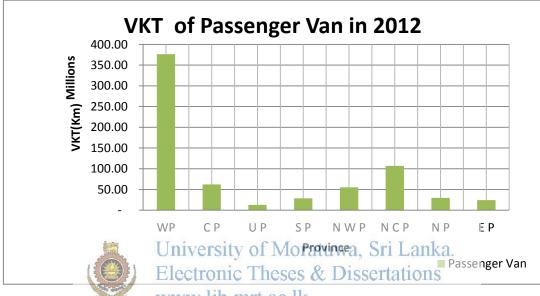
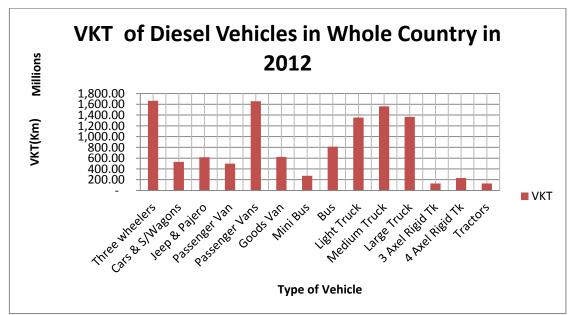



Figure 4.1: VKF of Passenger Vals mrt. ac.lk

4.3 Analysis of Diesel Vehicles

Figure 4.2:VKT of Diesel Vehicles in Whole Country

The table 4.3 shows the VKT values for the different vehicles.

	Three wheelers	Cars & S/Wagons	Pick Ups	SUV
Country Vise	1,664,253,619.54	530,633,863.99	617,778,231.00	498,695,148.02
Western				
Province	1,026,164,675.13	317,662,610.50	231,700,684.27	224,797,244.26
Central Province	46,885,662.84	18,931,256.76	29,006,786.35	41,043,564.24
Uwa Province	20,225,591.99	7,376,076.45	23,600,748.71	14,008,020.23
Sabaragamuwa				
Province	85,563,362.06	22,975,373.52	35,230,910.37	28,295,519.57
North Western				
Province	100,227,063.55	54,029,177.52	58,548,315.51	56,084,111.02
North Central				
Province	3,799,978.46	4,290,375.39	5,595,543.59	7,582,682.37
Northern				
Province	306,553,368.31	6,404,514.14	39,294,430.60	28,866,683.83
Eastern Province	20,41 3,31276ers	ity off, 929,862 aluwa	, S141,311,683.46	39,613,848.82
Southern	Electron			
Province	54,420,704.43 WWW.1it	51,134,617.62 mrt.ac.lk	53,489,128.15	58,403,473.68

Table 4.2: VKT for Diesel Vehicles in 2012

	Passenger Van	Goods Van	Mini Bus	Bus	Light Truck
Country Vise	1,655,575,045.06	622,941,776.81	272,329,024.76	814,263,248.38	1,352,611,178.17
Western					
Province	730,401,622.47	314,557,998.86	73,144,612.20	251,870,204.08	601,095,073.37
Central					
Province	190,216,743.58	49,685,957.20	46,427,704.52	126,938,623.37	111,864,074.23
Uwa Province	45,750,577.43	17,633,273.28	7,725,964.40	35,584,112.56	39,256,992.50
Sabaragamuwa					
Province	104,756,499.96	32,114,640.06	23,957,518.94	48,982,673.51	94,032,748.23
North Western					
Province	241,069,058.83	55,967,005.05	44,923,113.03	68,462,760.80	170,128,018.55
North Central					
Province	30,857,754.61	6,508,866.08	3,989,094.46	10,368,329.16	26,068,449.41
Northern	inte TT			Tranta	
Province	43,705,533.7511VE			83,288,136.53	70,795,474.85
Eastern	Electr	onic These	s & Disserta	ations	
Province	112,277,393,097W	145179325.360.1	₹30,934,614.85	125,202,919.70	106,950,603.71
Southern					
Province	156,539,861.34	71,034,750.09	27,063,982.30	63,565,468.68	132,419,743.32

Table 4.3: VKT for Diesel Vehicles in 2012

	Medium Truck	Large Truck	3 Axel Rigid Tk	4 Axel Rigid Tk	Tractors
Country Vise	1,561,313,941.92	1,365,120,044.33	130,065,195.52	231,091,450.25	131,366,778.39
Western Province	765,231,321.95	558,242,017.21	57,902,775.25	174,198,114.73	61,454,285.11
Central Province	208,198,204.57	109,922,946.31	1,795,280.12	8,584,170.40	12,855,221.45
Uwa Province	37,393,903.40	40,089,525.47	4,093,162.58	1,726,388.87	4,358,713.44
Sabaragamuwa Province	117,124,572.57	49,223,856.97	6,271,306.99	3,251,590.83	7,789,236.49
North Western Province	184,653,287.55	171,136,469.89	6,168,773.69	8,583,313.39	15,278,128.98
North Central Province	20,753,999.94	21,725,274.47 Sity of Moratur	842,828.90	811,999.62	2,497,898.44
Northern Province	24,360143Ctro	ni68,583,448.275 & I	wa, Sri Lan Dissentation		6,937,471.57
Eastern Province	WWW.11 60,953,070.77	b.mrt.ac.lk 148,305,356.85	39,196,305.78	8,626,67 7.75	10,162,344.87
Southern Province	119,081,220.75	97,889,148.89	4,199,343.30	6,529,778.18	10,033,478.04

Table 4.4 : VKT for Diesel Vehicles in 2012

VKT analysis for the diesel vehicles are shown in the figure 4.13 shows the VKT analysis for the passenger vans. The road usage of Three Wheelers and passenger vans are almost same in the country. The second most important vehicles to be considered are trucks.

The figure 4.14 shows the VKT for Three Wheelers with respect to different provinces. From that it's evident that the highest usage is in the Western Province. The second highest is in the Northern Province.

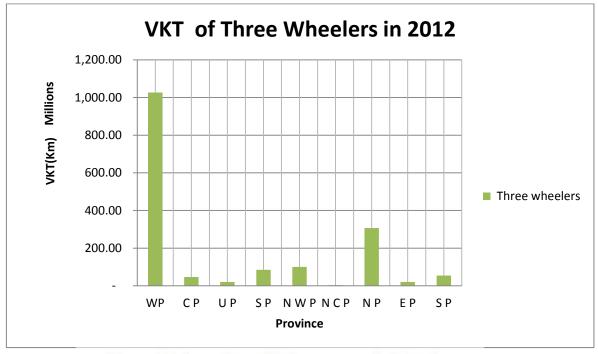


Figure 4.3: VKT of Three Wheeters of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The figure 4.15 shows the VKT for Pick Ups with respect to different provinces. From that it's evident that the highest usage is in the Western Province. The second highest is in the Eastern Province. In Eastern, Southern and in North Western the usage is almost same.

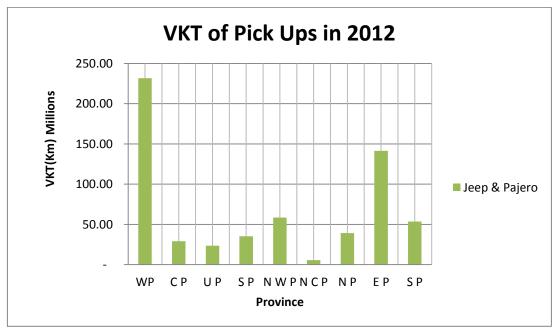


Figure 4.4: VKT of Pick Ups

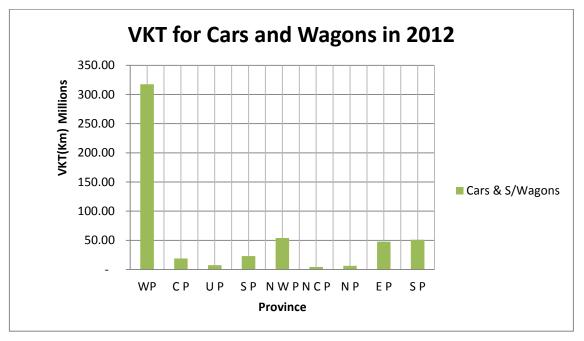
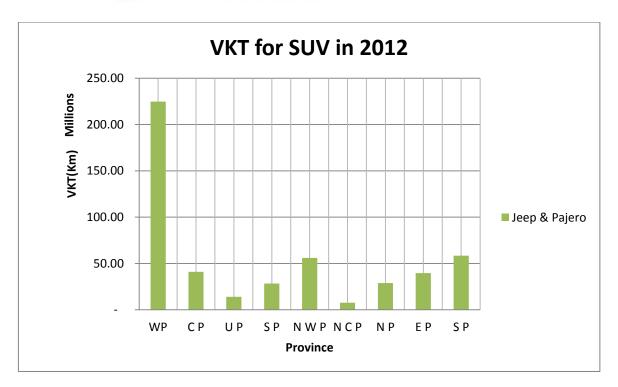



Figure 4.5: VKT for cars and wagons

The figure 4.17 shows the VKT for SUV with respect to different provinces. From that it's evident that the highest usage is in the Western Province. The second highest is in the North Electronic Theses & Dissertations www.lib.mrt.ac.lk

The figure 4.18 shows the VKT for passenger vans with respect to different provinces. From that it's evident that the highest usage is in the Western Province. In Southern and in North Western the usage is almost same.

Figure 4.7: VKT of Passenger Van

The figure 4.19 shows the VKT for Mini Bus with respect to different provinces. From that it's evident that the highest usage is in the Western Province. In Central and in North Western the usage is almost same.

The figure 4.19 shows the VKT for Buses with respect to different provinces. From that it's evident that the highest usage is in the Western Province. In Central and in Eastern the usage is almost same.

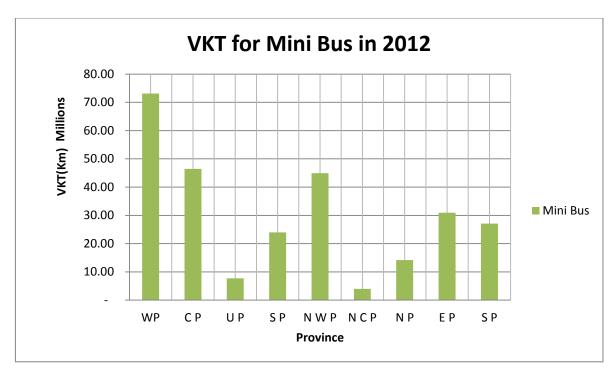


Figure 4.8 : VKT for Mini Bus

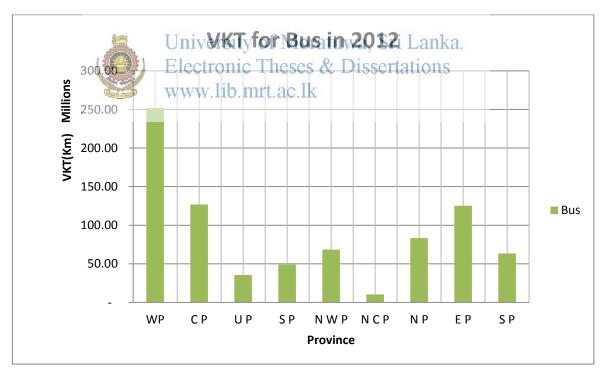


Figure 4.9: VKT for Bus

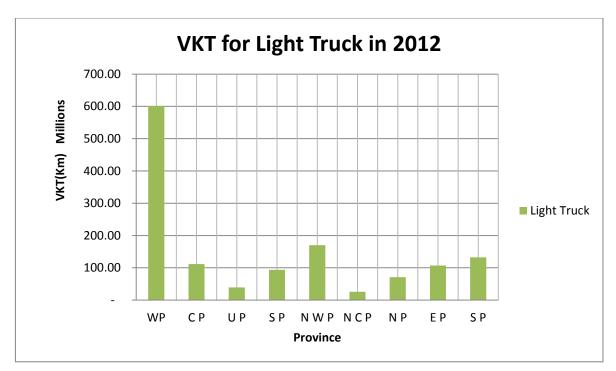


Figure 4.10: VKT for Light Truck

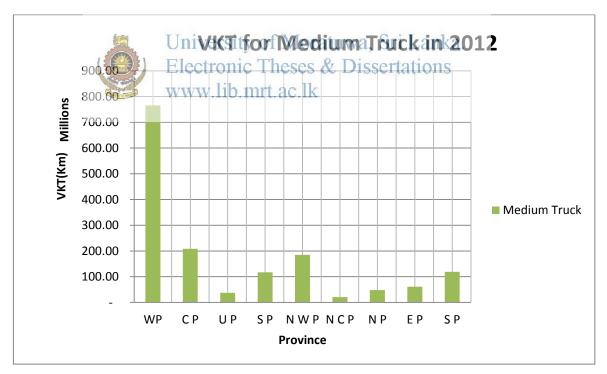
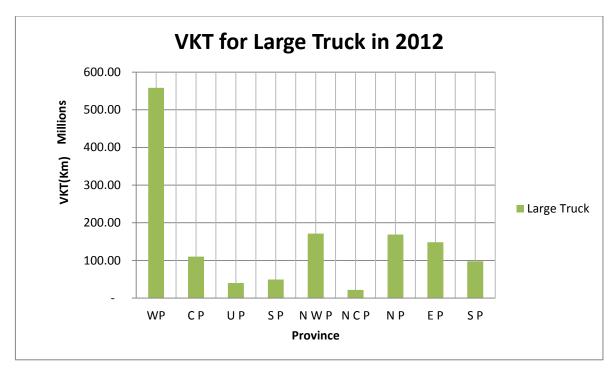
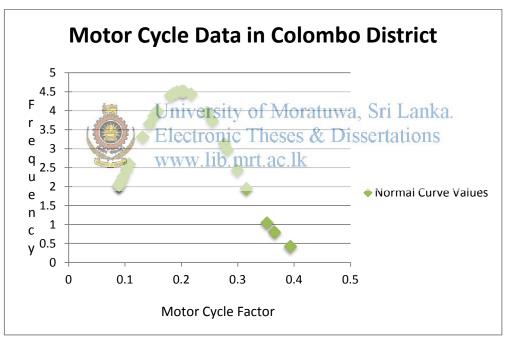


Figure 4.11: VKT for Medium Truck




Figure 4.12: VKT for Large Truck

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

5. DEVELOPMENT OF METHODOLOGY TO FIND THE FUTURE VKT

The sample study was done for the motor cycles for the Colombo District. The collected data from all 30 stations were used for this calculation. With the collected data factor of motor cycle was calculated for each station. The distribution of data was analyzed through hypothesis testing to find the number of stations that should be selected under the probability of 95%. The same procedure should be followed for each district and each vehicular type. After finding the possible number of stations for each district to calculate the each vehicular proportion the calculation of VKT for future years can be performed by collecting data from those selected sample stations.

5.1 The Sample Calculation Performed for Colombo District for Motor Cycles

Figure 5.1: Motor Cycle factor distribution

The figure 5.1 shows the density distribution of the collected data. It reveals that the data is normally distributed.

5.1.1 Accuracy of the Selected Sample Stations in Colombo District with Use of Central Limit Theorem

Mean of the Population (m) = 0.21

Standard Deviation of the Population (s) = 0.088

If 8 samples stations are selected randomly the probable region for the means for them to be under 95% probability region is

= Mean \pm Probability Factor x Standard Dev. / (Sample Size) ^0.5

 $= 0.21 \pm 1.96 \times 0.0885/\sqrt{8}$

= 0.15 to 0.27

5.1.2 Testing the Sample with Hypothesis Testing

Selected following hypotheses where m_1 represents the mean of the population and m_2 represents the mean of the sample.

Null Hypothesis: $H_0 = m_1 = m_2 = 0.21$

Other Hypothesis: $H_1 = m_2 \neq 0.21$

Sample mean which lies closer to sample mean would be considered as evidence in favor of null hypotheses. On the other hand, sample mean that is considerably less than or more than the population mean would be evidence inconsistent with null hypotheses, therefore favoring H₁.

Mean of the population (m) = 0.21

Standard Deviation of the population (s) = 0.088

Selected Sample size is (n) = 5

Sample standard deviation = $0.088/\sqrt{5}$

= 0.039

The probability of committing a type I error is

$$\alpha = P(m_2 > 0.19 \text{ when } m_1 = 0.21) + P(m_2 < 0.23 \text{ when } m_1 = 0.21)$$

The Z values corresponding to $m_{2'} = 0.19$ and $m_{2''} = 0.23$ when H_0 is true.

$$Z_1 = \frac{0.19 - 0.21}{0.039} = -0.5128$$
 $Z_1 = \frac{0.23 - 0.21}{0.039} = 0.5128$

Therefore,

$$\alpha = P(Z > -0.5128) + P(Z < 0.5128) = 2P(Z > -0.5128)$$
$$= 0.3050x2$$
$$= 0.61$$

Thus 6% of all samples of size 5 would lead us to reject $m_1=m_2=0.21$ when in fact it is true. To reduce α , we have a choice of increasing the sample size or widening the fail to reject region. Suppose that we increase the sample size to 8.

Then

Sample standard deviation = $0.088/\sqrt{8}$

$$= 0.0311$$

$$Z_{1} = \frac{0.19 - 0.21}{0.0311} = -0.642$$

$$Z_{1} = \frac{0.23 - 0.21}{0.0311} = 0.642$$

$$\alpha = P(Z > -0.642) + P(Z < 0.642) = 2P(Z > -0.642)$$

$$= 0.2611 \text{ x } 2$$

$$= 0.522$$

Thus 5% of all samples of size 8 would lead us to reject m1=m2=0.21

Hence 8 stations can be selected randomly to obtain the motor cycle proportion in Colombo District with 95% probability.

Total Population - Total No of station

Sample - Minimum No of stations that can represent by the total No of Station In the case of determination of Motor cycle factor for Colombo District, only 8 station can be

randomly selected and can find the Motor sycle factor uwa, Sri Lanka.

Similarly other vehicle types also can be tested by hypothetically and can be found the minimum no of stations that can represent the entire fuel stations.]]

5.2 Analysis with Randomly Selected Station

5.2.1 Analysis with Randomly Selected 8 Station

						Petrol			Motor Cyles			
	andwide H umption S	urvey	Motor Cycles	Three wheelers	Cars & S/Wagon s	Jeep & Pajero	Passenger Van	Total Petrol Consumption	Using one Sample	Average	Standard Dev	Stdv/(n)^ 0.5
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	Companytion				
Western Province	Colombo	910, Lanka Filling Station, Ranala	1002.24	1396.106	1786.092	72.439	93.67	4350.5465	0.191975786			
Western Province	Colombo	R.C.Wikr amarachc hi, No.107, Avissawe lla Rd., Kaduwel a	322.785	563.34	302.118	47.19	93.909	1329.342	0.212346349			
Western Province	Colombo	No.131, Bekariya junction, Attidiya	385.928	540.64	1217.99	437.23	555.33	3137.118	0.102516599			
Western Province	Colombo	Nor133, New Galie Rd, Moratusy a	251.66			of Mo Theses rt.ac.1		0	anka. 0115 0.185805373	0.20	0.051	0.031
Western Province	Colombo	No134, Horana Road, Kesbewa	613.5	334.33	599.05	100.1	203.3	1850.28	0.276309532			
Western Province	Colombo	No.19 A, Horana Colombo Road, Polgasow ita	327.412	216.78	437.23	127.59		1109.012	0.246023788			
Western Province	Colombo	Ishangi Enterpris es, No.331, Boralugo da, Kosgama	430.58	769.4	515.46	42.03	3.64	1761.11	0.213744608			
Western Province	Colombo	No.19, Horana Rd, Rilawala, Polgasow ita	418.71	433.32	504.5	38.7	309.2	1704.43	0.204716533			

Table 5.1: Randomly Selected 8 Stations

			Petrol Motor Cyles									
	landwide I sumption S		Motor Cycles	Three wheelers	Cars & S/Wagon s	Jeep & Pajero	Passenger Van	Total Petrol	Using one Sample	Average	Standard Dev	Stdv/(n)^ 0.5
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	Consumption	Sample		Dev	0.5
Western Province	Colombo	910, Lanka Filling Station, Ranala	1002.24		1786.092	72.439	93.67	4350.5465	0.191975786			
Western Province	Colombo	R.C.Wikr amarachc hi, No.107, Avissawe lla Rd., Kaduwel a	322.785	563.34	302.118	47.19	93.909	1329.342	0.212346349			
Western Province	Colombo	No.131, Bekariya junction, Attidiya	385.928	540.64	1217.99	437.23	555.33	3137.118	0.102516599			
Western Province	Colombo	No.133, New Galle Rd, Moratuw	251.66	234.6	633.86		8.57	1128.69	0.185805373	0.20	0.051	0.031
Western Province	Colombo	No134, Horana Road, Kesbewa	613.5 E	nive ^{334.33} lectro	599.05	of Mor	atuwa & Di	, Sri La sertatio	nka. 0.276309532 ns			
Western Province	Colombo	No 19 A Horana Colombo Road, Polgasow ita	W 327.412	WW.] 216.78		rt.ac.lk 127.59		1109.012	0.246023788			
Western Province	Colombo	Ishangi Enterpris es,	430.58	769.4	515.46	42.03	3.64	1761.11	0.213744608			
Western Province	Colombo	No 331 No.19, Horana Rd, Rilawala, Polgasow ita	418.71	433.32	504.5	38.7	309.2	1704.43	0.204716533			

Table 5.2: Randomly Selected 8 Stations

						Petrol				Motor (Cyles	
	andwide I sumption S		Motor Cycles	Three wheelers	Cars & S/Wagon s	Jeep & Pajero	Passenger Van	Total Petrol Consumption	Using one Sample	Average	Standard Dev	Stdv/(n)^ 0.5
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	Consumption	Sumpre		500	0.5
Western Province	Colombo	No.415, Galle Rd, Ratmalan a	793.72	767.64	3116.58	1455.32	715.68	6848.94	0.096574555			
Western Province	Colombo	No.184, Galle Rd, Ratmalan a	159.68	396.75	440.99	321.4	173.7	1492.52	0.089155701			
Western Province	Colombo	No.133, New Galle Rd, Moratuw a	251.66	234.6	633.86		8.57	1128.69	0.185805373			
Western Province	Colombo	No.300, Horana Road, Miriswatt a, Piliyandal	357.22	382.85	1086.1	29.9	42.31	1898.38	0.156809139			
Western Province	Colombo	a Filling Station,Pa hathgama , Hanwela	653:27		rsity	of Mor	atuwa	I, SII La	.0.851919501 nKa.	0.21	0.109	0.031
Western Province	Colombo	No 106 Lower Road, Hanwella	891.921	1CCUT(WW.] 1078.572		rt.ac.lk ^{24.54}	& D1	2641.793	0.281349636			
Western Province	Colombo	No.27, Colombo Rd, Avissawe Ila	542.092	1185.1	1093.77	41.35	123	2985.312	0.151321984			
Western Province	Colombo	No.138, Raththan apitiya, Boralesga muwa	692.96	508.59	161.03	52	166.4	1580.98	0.365258679			

Table 5.3; Randomly Selected 8 Stations

Mean values of the selected 8 stations are 0.2, 0.2 and 0.21. For Ho hypothesis to be true the sample mean should be in the range of $0.19 < m_2 < 0.23$. The above randomly selected 8 stations verify that when 8 samples are selected randomly the result will be accurate by the probability of 95%.

5.2.2 Analysis with Randomly Selected 5 Station

					Pet	trol			Motor Cyles					
	andwide F umption S		Motor Cycles	Three wheelers	Cars & S/Wagon s	Jeep & Pajero	Passenge r Van	Total Petrol	Using one	Average	Standard Dev	Stdv/(n)^ 0.5		
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	Consump tion	Sample		Dev	0.5		
Western Province	Colombo	910, Lanka Filling Station, Ranala	1002.24	1396.106	1786.092	72.439	93.67	4350.547	0.191976					
Western Province	Colombo	Multi purpose cooperati ve society ltd, Kaduwel a	719.285	1101.968	2823.521	65.86	2018.76	6729.394	0.089073					
Western Province	Colombo	No. 829) A thaikott e: Mirihana	Elect	ronic	These		Disser	i Lanl tation 2459.889		0.120777	0.043347	0.039355		
Western Province	Colombo	No.131, Bekariya junction, Attidiya	385.928	540.64	1217.99	437.23	555.33	3137.118	0.102517					
Western Province	Colombo	No.184, Galle Rd, Ratmalan a	159.68	396.75	440.99	321.4	173.7	1492.52	0.089156					

					Pet	trol				Motor	Cyles	
	andwide F umption S		Motor Cycles	Three wheelers	Cars & S/Wagon s	Jeep & Pajero	Passenge r Van	Total Petrol	Using one	Average		Stdv/(n)^
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	Consump tion	Sample		Dev	0.5
Western Province	Colombo	Multi purpose cooperati ve society ltd, Kaduwel a	719.285	1101.968	2823.521	65.86	2018.76	6729.394	0.089073			
Western Province	Colombo	No.184, Galle Rd, Ratmalan a	159.68	396.75	440.99	321.4	173.7	1492.52	0.089156			
Western Province	Colombo	No134, Horana Road, Kesbewa	613.5	334.33	599.05	100.1	203.3	1850.28	0.27631	0.180861	0.087629	0.039355
Western Province	Colombo	No.19 A, Horana Colombo Road, Polgasow	^{327.412} Univ Elect	ersity				i Lanl				
Western Province	Colombo	Istrangi Enterpris es, No.331, Boralugo da, Kosgama		v.lib.n	nrt.ac.	lk			0.203745			

Table 5.5: Randomly Selected 5 Station

Tal	andwide F				Pet	trol			Motor Cyles				
	umption S		Motor Cycles	S/Wagon 1		Using one Sample	Average	Standard Dev	Stdv/(n)^ 0.5				
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	tion	Sample				
Western Province	Colombo	No.829, Athulkott e, Mirihana	387.184	475.817	1327.347	51.496	218.045	2459.889	0.131166				
Western Province	Colombo	No.184, Galle Rd, Ratmalan a	159.68	396.75	440.99	321.4	173.7	1492.52	0.089156				
Western Province	Colombo	No.300, Horana Road, Miriswatt a, Piliyandal a	357.22	382.85	1086.1	29.9	42.31	1898.38	0.156809	0.176074	0.101829	0.039355	
Western Province	Colombo	Filling Station,Pa hathgama , Hanwella	653.27	660.061	233.59			1546.921	0.35192				
Western Province	Colombo	No.27, Colombo	Elect	ronic	of M 1093.77 These	es & I	va, Sr Disser	i Lanl ^{2985.312} tation	Ka 0.151322 S				

Table 5.6: Randomly Selected 5 Station

Mean values of the selected 5 stations are 0.12, 0.17 and 0.18.

For Ho hypothesis to be true the sample mean should be in the range of $0.19 < m_2 < 0.23$. The above randomly selected 5 stations verify that when 5 samples are selected randomly the result won't be accurate by the probability of 95%.

5.2.3 Analysis with Randomly Selected 3 Station

					Pet	trol				Motor	r Cyles	
	andwide F umption S		Motor Cycles	Three wheelers	Cars & S/Wagon s	Jeep & Pajero	Passenge r Van	Total Petrol	Using one	Average	Standard Dev	Stdv/(n)^ 0.5
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	Consump tion	Sample		Dev	0.5
Western Province	Colombo	910, Lanka Filling Station, Ranala	1002.24	1396.106	1786.092	72.439	93.67	4350.547	0.191976			
Western Province	Colombo	No.133, New Galle Rd, Moratuw a	251.66	234.6	633.86		8.57	1128.69	0.185805	0.197175	0.014677	0.050807
Western Province	Colombo	Ishangi Enterpris es, No.331, Boralugo da, Kosgama	430.58	769.4	515.46	42.03	3.64	1761.11	0.213745			

Table 5.7: Randomly Selected 3 Station

Table 5.8: Randomly Selected 3 Station Moratuwa, Sri Lanka.

	University of woratuwa, Sh Lanka.											
	(and a second s			tronic v.lib.n			tation	5	Motor Cyles			
Isl	andwide F	'uel										
Cons	Consumption Survey		Motor Cycles	Three wheelers	Cars & S/Wagon s	Jeep & Pajero	ajero r Van Total Using Petrol one / Consump Sample		Average	Standard Dev	Stdv/(n)^ 0.5	
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	tion				
Western Province	Colombo	No.133, New Galle Rd, Moratuw a	251.66	234.6	633.86		8.57	1128.69	0.185805			
Western Province	Colombo	No134, Horana Road, Kesbewa	613.5	334.33	599.05	100.1	203.3	1850.28	0.27631	0.226347	0.045982	0.050807
Western Province	Colombo	Badaraga ma Road, Kesbawa	313.36	400.457	372.16	88.952	28.86	1203.789	0.216926			

Table 5.9: Randomly Selected 3 Station

					Pet	rol			Motor Cyles				
Islandwide Fuel Consumption Survey			Motor Cycles	S/Wagon		Jeep & Pajero	Passenge r Van	Total Petrol Consump	Using one	Average	Standard Dev	Stdv/(n)^ 0.5	
Province	District	Filling station	Liters	Liters	Liters	Liters	Liters	tion	Sample				
Western Province	Colombo	No.27, Colombo Rd, Avissawe Ila	542.092	1185.1	1093.77	41.35	123	2985.312	0.151322				
Western F	Colombo	No.138, R	.138, R 692.96		161.03	52	166.4	1580.98	0.365259	0.303236	0.132297	0.050807	
Western Province	Colombo	MPCS Ltd, Ingiriya Rd, Padukka	521.58	398.91	152.05	33.08		1105.62	0.393128				

Mean values of the selected 5 stations are 0.19, 0.22 and 0.3. For Ho hypothesis to be true the sample mean should be in the range of $0.19 < m_2 < 0.23$. The above randomly selected 3 stations iverify that when 3 samples are selected randomly the result won't be accurate by the probability of 95%.

6. CONCLUSION

The analysis was carried out in the year 2012 and VKT was calculated for all the vehicle types in Sri Lanka for the year 2012.

Motor cycles have the highest Vehicle Kilometers travelled within the petrol Vehicles. That is about 15.41billion kilometers. The second most highest is Three wheelers and it is about 8.1billion kilometers and third, the cars and wagons and it is about 3.91 billion kilometers. It's clear that the motor cycle usage in Sri Lanka is higher than the other vehicle types. Figure 3.4 shows the breakdown of the VKT for motor cycles. It's well depicted that in Western Province and in North Western Province the motor cycle usage is higher than the other provinces.

VKT of diesel vehicles where the passenger van shows the highest VKT out of all the diesel vehicle types that is about 505.192 million kilometers

Although motor cycle has the highest VKT in Sri Lanka When we consider the VKT per vehicle in the whole country, it reveals that most used vehicle in Sri Lanka is three wheelers where the second most used vehicle is motor cycles. This well depict that Sri Lanka is a third world developing country.

Highest usage of three wheelers is in Western Province and second highest in North Western Province. The minimum usage of three wheelers is in Eastern Province. Electronic Theses & Dissertations

Highest usage of cars and Wagons are in Western Province and that is comparatively higher by 5 billion kilometers than all the other provinces and second highest in North Western Province.

Considering the fuel sale in year 2010, 2011, fuel sale growth factor is calculated for the year 2013 and by assuming the vehicle factors that used for the year 2012 is same as the year 2013, then VKT is predicted for the year 2013 for all the vehicle types in Sri Lanka.

The vehicle factor was calculated for different vehicle type in District vise, Provinces vise and Island wide.

To predict the future VKT, vehicle factor, Fuel usage, Fuel consumption rate are required. In the current study in order to find vehicle factor, fuel sales data collected from randomly selected 500 fuel stations in island wide. However repetition of similar exercise in every year would not be economical. Hypothesis analysis was carried out to find the minimum no of survey points which has 95% accuracy. This study reveals that minimum no of survey fuel stations are represented the entire fuel station to the extent of 95% accuracy level.

As a sample calculation the possible number of stations were found for Colombo district for Motor Cycles is 8.

Similarly other vehicle types also can be tested for estimation of vehicle factor by hypothetically and can be found the minimum no of stations that can represent the entire fuel stations in District wise.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

7. FURTHER RESEARCH

The analysis was done for the year 2012. In the current study the vehicle factor was found by collecting the fuel sales data from randomly selected 500 sample stations. But it is not economical to perform same exercise in each year to find the vehicle factor. Because the possible 8 stations were found instead of 30 stations from which motorcycle factorcould be estimated to 95% accuracy level in Colombo district. As a future study the possible number of stations in each district for each vehicle type can be computed. Further for this study the VKT of buses was not considered. As a future study this research can be extended with incorporating the VKT of buses.

In this research the vehicular movement within different provinces was not considered. Future research should be carried out with incorporating that factor to get a more precise VKT factor. And if the VKT factor can be found in route vise it will be a great importance in designing routes in future.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

8. REFERENCES

NZ Ministry for the Environment (2009) Vehicle kilometers travelled by road Environmental Report Card, March 2009

Energy Information Administration (2005) Household vehicles energy use: latest data & trends US Department of Energy Washington D.C.

Fort Collins LUTRAQ Team (2001) Estimation of VMT and VMT growth rate VMT reduction project, www.fcgov.com/climateprotection/pdf/ctf-res-lutraq.pdf (Accessed on 31 December 2012)

Kumapley, Robert (1994), Estimating Statewide Vehicle-Miles Traveled in Indiana Master's Thesis, School of Civil Engineering, Purdue University

Afzal Hossain1, David Gargett (2011) Road vehicle-kilometers travelled estimated from state/territory fuel sales, Bureau of Infrastructure, Transport and Regional Economics, Department of Infrastructure and Transport, GPO Box 501, Canberra ACT 2601, Australia

Grace Corpuz, Michelle McCabe, Kamila Ryszawa, Australia Boarnet and Crane (2001) The Development of Sydney WKTO Regression Woodel BysTearisplottland Population Data Centre (TPDC) New South Wales Department of Planning

Dr. AmalS.Kumarage (2009) Estimation of annual kms by vehicle type from interviews Submitted to Transport Studies and Planning Center, Ministry of highways and Transport by Colombo Sri Lanka

Fricker, J.D. and Kumapley, R.K. (2002) Updating procedures to estimate and forecast vehicle miles travelled, Joint Transportation Research Program, Purdue University, West Lafayette, USA

Leduc, G. (2008) Road traffic data collection methods and applications, Joint Research Committee, European Commission, Seville, Spain

Azevedo, C.L and Cardoso, J. (2009) Estimation of annual traffic volumes: A model for Portugal, Paper presented at the Young Researchers Seminar 2009, Torino, Italy

Annex 1

Date	:	Time (a.m. / p.m.)

Fuel Type : Petrol

	Motor	Cycles	Three v	vheelers	Cars & S	/Wagons	Jeep &	Pajero	Passen	ger Van
S. No.	Ltr.	Km/ Ltr.	Ltr.	r. Km/ Ltr. Ltr.		Km/ Ltr.	Ltr. Km/ Ltr.		Ltr.	Km/ Ltr.
1										
2										
3										
4										
5										
6										

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Date : Time (a.m. / p. m.) :

Fuel Type : Diesel

S. No.	Thr whe rs	ele	S/V	rs & Vago ns	Pic	k Up	Jee Pa	ep & jero	Pas ger	sen Van	Goo Va	ods an	Min	i Bus	В	us		ght uck		lium uck		rge uck	3 A Rigi			xle d Tk.	4 A Art'o		Ha Trac	nd cktor	Ha Trac	
	Ltr.	K m/	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km / Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.	Ltr.	Km/ Ltr.
1																																
2																																
3																																

						Petrol						
Province	District	EE Division	Filling station	Motor Cycles	Three wheelers	Cars & S/Wagons	Jeep & Pajero	Passenge r Van	Three wheelers	Cars & S/Wago ns	Pick Up	Jeep & Pajero
				km/ltr.	km/ltr.	km/ltr.	km/ltr.	km/ltr.	km/ltr.	km/ltr.	km/ltr.	km/ltr.
Western Province	Calombo	Colombo	910, Lanka Filling Station, Ranala	59.74286	24.153846	13.0294118	9.5	12.5	31.66667	9.333333	9.5	9.5
Western Province	Colombo	Colombo	Multi purpose cooperative society ltd, Kaduwela	63.9	24_5	14_525	7.25	14.8	36.66667	12	10	9
Western Province	Colombo	Colombo	No.415, Galle Rd, Ratmalana	58.69231	23.807692	10.3461538	5.8	9.842105	32.76923	10_35938	12.37037	11.73929
Western Province	Calombo	Colombo	No. 133, New Galle Rd, Moratuwa	53.57143	24	10.7241379		11	32.81818	11.875	13	8.5
Western Province	Calombo	Avissawella	No134, Horana Road, Kesbewa	53.47619	27.652174	11_7142857	12	12	26	11.05882	9	10
Western Province	Colombo	Avissawella	B&S Auto Enterprises Pvt Ltd, No. 160, High Level Rd, Homagama	56.40741	28.153846	11.4736842	11.25	11_33333	35.71429	11.6	10.111111	10.8
Western Province	Gampaha	Gampaha	No.09, Yakkala Road, Gampaha	49.94286	24.4286	13.4667	30	13	35.66667	13.25	8.675	12.5
Western Province	Gampaha	Gampaha	Piyadasa & sons, Minuwangoda	50.45455	28	12.25	23	16_33333	29	15.5	11.833333	10_33333
Western Province	Gampaha	Negombo	Lanka Filling Station, Tudella, Ja-Ela	57.64706	29_558824	11_5714286		10.2	29_5	14.71429		14
Western Province	Gampaha	Negombo	Lanka Filling Station,Kanuwana, Ja- Ela	49.62963	29.444444	12.8181818		11.46667	30	15_36364		15.5
Western Province	Gampaha	Nittambuwa	MPCS, Attanagalla(Veyangoda)	49.31429	26.114286	16.5151515	13	14.42857	35.41667	20	8.6666667	8
Western Province	Gampaha	Nittambuwa	Co-op Filling Station_Giridara	63.85714	25.685714	11_3793103		14	33.6	14.75	10_571429	10.5
Western Province	Gampaha	Nittambuwa	Co-op Filling Station Kiridiwela	61.714	23.5	13.6666667		20				
Western Province	Kalutara	Kalutara	No.436, Kalutara North	53.52381	26.769231	13.6666667		14	21.5	8.5	14	13
Western Province	Kalutara	Kalutara Uni	No. 400, Sagana Enternisch, Calle Rd Rabutara North	138178125	ı, Sri	Lam	a.	15_33333	33.66667	13		13
Western Province	Kalutara	Agalawatta Elec	stronic Theses &	38. 23077	S46 02857	ations	7.25	15	26.11111	6.3125	13	7_625
Western Province	Kalutara	Horana WW	Wank the Bushinghar . Ik	62.85714	27_971429	14.4375	8.75		31	13	10_5	9_5
Central Province	Kandy	Kandy	Gunaratne Enterprises, Pujapitiya, Kandy	50.78571	23.4	16	17.5	10	33	13		13.5
Central Province	Kandy	Kandy	Hadeniya,Wenallagama	60.71429	25.526316	13			33.7	14_33333	12	13.5

				DISTRICT V	VISE SALES				
	20 (01.04.2010-			20	11	2012			
	PETROL	DIESEL		PETROL	DIESEL	PETROL	DIESEL		
Kandy	23,525,700	49,269,000		36,715,800	81,737,700	42,489,769	85,462,712		
Matale	8,121,300	19,598,700		12,713,055	34,838,100	13,873,200	34,062,600		
Nuwara eliya	4,897,200	15,506,700		7,877,100	27,792,600	8,487,600	24,334,200		
Batticaloa	7,458,000	14,526,600		11,114,605	22,383,900	13,173,600	25,481,960		
Ampara	13,308,041	28,122,600		18,493,200	37,481,400	19,608,600	40,972,800		
Trincomalee	5,464,800	19,555,800		7,728,600	31,148,700	9,236,739	26,832,339		
Anuradhapura	20,889,000	45,107,700		31,219,875	75,111,300	35,418,900	81,574,698		
Polonnaruwa	9,750,276	25,126,200		14,044,800	37,884,000	15,094,200	40,887,000		
Jaffna	9,860,400	16,665,000		16,536,300	29,412,900	19,661,400	34,699,500		
Mannar	1,329,900	5,250,300		2,003,100	7,108,200	2,121,900	8,411,700		
Mulalativu	198,000	1,531,200		953,700	6,088,500	2,554,200	13,823,700		
Vavuniya	2,214,300	8,801,100		3,455,100	22,258,500	3,689,400	27,934,500		
Killinochchi	788,700	3,039,300		2,323,200	8,768,100	2,824,800	10,777,800		
Kurunegala	43,896,290	79,140,600		66,336,595	125,938,090	72,438,300	129,921,355		
Puttalam	22,494,365	44,909,435		32,610,600	71,227,200	32,468,700	65,102,400		
Ratnapura	19,024,500	39,972,900		28,201,960	64,771,878	31,026,600	68,630,100		
Kegalle	14,117,400	26,512,200		21,892,200	42,663,888	23,868,900	43,820,700		
Galla	20,829,600	35,574,000		31,960,322	63,792,793	37,151,400	64,864,800		
Matara	11,938,8231	1VC495567/407	N	Or18,449,416	Sr180,745,874.	19,872,600	68,425,500		
Hambantota	11,078,100	1-31,109,100h	è	16,642,895	55,248,600	17,391,000	50,553,782		
Badulla	9,385,200	22,321,200	OC.	14,289,000	39,378,900	15,800,400	40,481,100		
Moneragala	8,438,430	W.20,982,470.	ac	.IK _{13,084,500}	30,541,500	12,718,200	29,099,400		
Colombo	112,642,200	141,018,900		169,982,466	257,316,476	184,807,107	249,223,425		
Gampaha	73,293,014	128,831,011		111,927,809	219,337,800	123,871,491	226,426,389		
Kalutara	24,763,200	43,335,600		38,029,200	76,074,900	41,556,900	74,589,944		

Annex IV

From MCC data from Planning Division RDA

	Avera		
	(Week Days)		
Hour	(1-5)	Entire week	
0000 -0100	161	191.3	
0100 - 0200	87.6	105.7	
0200 - 0300	54	74.7	
0300 - 0400	51.4	61.9	
0500 - 0600	233.8	217.9	Night Factor
0600 - 0700	1326.4	191.6	
0700 - 0800	2387	1819.3	
0800 - 0900	2432	1990.3	
0900 - 1000	1742.4	1674.3	
1000 - 1100	1748.8	1832.7	
1100 - 1200	1870.6	1842.6	
1200 - 1300	1885.4	1864.0	www. Sri Lonko
1300 - 1400	Electroni	1794.9	awa, Sri Lanka. Dissertations
1400 - 1500	1786.6	1699.0	Dissertations
1500 - 1600	1679.8	1607.1	
1600 - 1700	1859.2	1743.9	
1700 - 1800	2341	1956.3	
1800 - 1900	2327.6	1891.3	
1900 - 2000	1736.4	1325	
2000 - 2100	1288	1042	
2100 - 2200	806.4	604.0	
2200 - 2300	511	514.4	
2300 - 2400	319.4	334.4	
	30584.8	26471.6	

Night Factor1.2